nmie-wrapper.cc 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053
  1. ///
  2. /// @file nmie-wrapper.cc
  3. /// @author Ladutenko Konstantin <kostyfisik at gmail (.) com>
  4. /// @date Tue Sep 3 00:38:27 2013
  5. /// @copyright 2013 Ladutenko Konstantin
  6. ///
  7. /// nmie-wrapper is free software: you can redistribute it and/or modify
  8. /// it under the terms of the GNU General Public License as published by
  9. /// the Free Software Foundation, either version 3 of the License, or
  10. /// (at your option) any later version.
  11. ///
  12. /// nmie-wrapper is distributed in the hope that it will be useful,
  13. /// but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. /// GNU General Public License for more details.
  16. ///
  17. /// You should have received a copy of the GNU General Public License
  18. /// along with nmie-wrapper. If not, see <http://www.gnu.org/licenses/>.
  19. ///
  20. /// nmie-wrapper uses nmie.c from scattnlay by Ovidio Pena
  21. /// <ovidio@bytesfall.com> as a linked library. He has an additional condition to
  22. /// his library:
  23. // The only additional condition is that we expect that all publications //
  24. // describing work using this software , or all commercial products //
  25. // using it, cite the following reference: //
  26. // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
  27. // a multilayered sphere," Computer Physics Communications, //
  28. // vol. 180, Nov. 2009, pp. 2348-2354. //
  29. ///
  30. /// @brief Wrapper class around nMie function for ease of use
  31. ///
  32. #include "nmie-wrapper.h"
  33. //#include "nmie.h"
  34. #include <array>
  35. #include <algorithm>
  36. #include <cstdio>
  37. #include <cstdlib>
  38. #include <stdexcept>
  39. #include <vector>
  40. namespace nmie {
  41. //helpers
  42. template<class T> inline T pow2(const T value) {return value*value;}
  43. #define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
  44. // ********************************************************************** //
  45. // ********************************************************************** //
  46. // ********************************************************************** //
  47. //emulate C call.
  48. int nMie_wrapper(int L, const std::vector<double>& x, const std::vector<std::complex<double> >& m,
  49. int nTheta, const std::vector<double>& Theta,
  50. double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
  51. std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
  52. if (x.size() != L || m.size() != L)
  53. throw std::invalid_argument("Declared number of layers do not fit x and m!");
  54. if (Theta.size() != nTheta)
  55. throw std::invalid_argument("Declared number of sample for Theta is not correct!");
  56. try {
  57. MultiLayerMie multi_layer_mie;
  58. multi_layer_mie.SetWidthSP(x);
  59. multi_layer_mie.SetIndexSP(m);
  60. multi_layer_mie.SetAngles(Theta);
  61. multi_layer_mie.RunMieCalculations();
  62. *Qext = multi_layer_mie.GetQext();
  63. *Qsca = multi_layer_mie.GetQsca();
  64. *Qabs = multi_layer_mie.GetQabs();
  65. *Qbk = multi_layer_mie.GetQbk();
  66. *Qpr = multi_layer_mie.GetQpr();
  67. *g = multi_layer_mie.GetAsymmetryFactor();
  68. *Albedo = multi_layer_mie.GetAlbedo();
  69. S1 = multi_layer_mie.GetS1();
  70. S2 = multi_layer_mie.GetS2();
  71. } catch( const std::invalid_argument& ia ) {
  72. // Will catch if multi_layer_mie fails or other errors.
  73. std::cerr << "Invalid argument: " << ia.what() << std::endl;
  74. return -1;
  75. }
  76. return 0;
  77. }
  78. // ********************************************************************** //
  79. // ********************************************************************** //
  80. // ********************************************************************** //
  81. double MultiLayerMie::GetQext() {
  82. if (!isMieCalculated_)
  83. throw std::invalid_argument("You should run calculations before result reques!");
  84. return Qext_;
  85. }
  86. // ********************************************************************** //
  87. // ********************************************************************** //
  88. // ********************************************************************** //
  89. double MultiLayerMie::GetQabs() {
  90. if (!isMieCalculated_)
  91. throw std::invalid_argument("You should run calculations before result reques!");
  92. return Qabs_;
  93. }
  94. // ********************************************************************** //
  95. // ********************************************************************** //
  96. // ********************************************************************** //
  97. double MultiLayerMie::GetQsca() {
  98. if (!isMieCalculated_)
  99. throw std::invalid_argument("You should run calculations before result reques!");
  100. return Qsca_;
  101. }
  102. // ********************************************************************** //
  103. // ********************************************************************** //
  104. // ********************************************************************** //
  105. double MultiLayerMie::GetQbk() {
  106. if (!isMieCalculated_)
  107. throw std::invalid_argument("You should run calculations before result reques!");
  108. return Qbk_;
  109. }
  110. // ********************************************************************** //
  111. // ********************************************************************** //
  112. // ********************************************************************** //
  113. double MultiLayerMie::GetQpr() {
  114. if (!isMieCalculated_)
  115. throw std::invalid_argument("You should run calculations before result reques!");
  116. return Qpr_;
  117. }
  118. // ********************************************************************** //
  119. // ********************************************************************** //
  120. // ********************************************************************** //
  121. double MultiLayerMie::GetAsymmetryFactor() {
  122. if (!isMieCalculated_)
  123. throw std::invalid_argument("You should run calculations before result reques!");
  124. return asymmetry_factor_;
  125. }
  126. // ********************************************************************** //
  127. // ********************************************************************** //
  128. // ********************************************************************** //
  129. double MultiLayerMie::GetAlbedo() {
  130. if (!isMieCalculated_)
  131. throw std::invalid_argument("You should run calculations before result reques!");
  132. return albedo_;
  133. }
  134. // ********************************************************************** //
  135. // ********************************************************************** //
  136. // ********************************************************************** //
  137. std::vector<std::complex<double> > MultiLayerMie::GetS1() {
  138. return S1_;
  139. }
  140. // ********************************************************************** //
  141. // ********************************************************************** //
  142. // ********************************************************************** //
  143. std::vector<std::complex<double> > MultiLayerMie::GetS2() {
  144. return S2_;
  145. }
  146. // ********************************************************************** //
  147. // ********************************************************************** //
  148. // ********************************************************************** //
  149. void MultiLayerMie::SetAngles(const std::vector<double>& angles) {
  150. isMieCalculated_ = false;
  151. theta_ = angles;
  152. // theta_.clear();
  153. // for (auto value : angles) theta_.push_back(value);
  154. } // end of SetAngles()
  155. // ********************************************************************** //
  156. // ********************************************************************** //
  157. // ********************************************************************** //
  158. void MultiLayerMie::SetWidthSP(const std::vector<double>& size_parameter) {
  159. isMieCalculated_ = false;
  160. size_parameter_.clear();
  161. double prev_size_parameter = 0.0;
  162. for (auto layer_size_parameter : size_parameter) {
  163. if (layer_size_parameter <= 0.0)
  164. throw std::invalid_argument("Size parameter should be positive!");
  165. if (prev_size_parameter > layer_size_parameter)
  166. throw std::invalid_argument
  167. ("Size parameter for next layer should be larger than the previous one!");
  168. prev_size_parameter = layer_size_parameter;
  169. size_parameter_.push_back(layer_size_parameter);
  170. }
  171. }
  172. // end of void MultiLayerMie::SetWidthSP(...);
  173. // ********************************************************************** //
  174. // ********************************************************************** //
  175. // ********************************************************************** //
  176. void MultiLayerMie::SetIndexSP(const std::vector< std::complex<double> >& index) {
  177. isMieCalculated_ = false;
  178. //index_.clear();
  179. index_ = index;
  180. // for (auto value : index) index_.push_back(value);
  181. } // end of void MultiLayerMie::SetIndexSP(...);
  182. // ********************************************************************** //
  183. // ********************************************************************** //
  184. // ********************************************************************** //
  185. void MultiLayerMie::SetPEC(int layer_position) {
  186. if (layer_position < 0)
  187. throw std::invalid_argument("Error! Layers are numbered from 0!");
  188. PEC_layer_position_ = layer_position;
  189. }
  190. // ********************************************************************** //
  191. // ********************************************************************** //
  192. // ********************************************************************** //
  193. void MultiLayerMie::SetMaxTermsNumber(int nmax) {
  194. nmax_ = nmax;
  195. }
  196. // ********************************************************************** //
  197. // ********************************************************************** //
  198. // ********************************************************************** //
  199. void MultiLayerMie::GenerateSizeParameter() {
  200. size_parameter_.clear();
  201. double radius = 0.0;
  202. for (auto width : target_width_) {
  203. radius += width;
  204. size_parameter_.push_back(2*PI*radius / wavelength_);
  205. }
  206. for (auto width : coating_width_) {
  207. radius += width;
  208. size_parameter_.push_back(2*PI*radius / wavelength_);
  209. }
  210. total_radius_ = radius;
  211. } // end of void MultiLayerMie::GenerateSizeParameter();
  212. // ********************************************************************** //
  213. // ********************************************************************** //
  214. // ********************************************************************** //
  215. double MultiLayerMie::GetTotalRadius() {
  216. if (total_radius_ == 0) GenerateSizeParameter();
  217. return total_radius_;
  218. } // end of double MultiLayerMie::GetTotalRadius();
  219. // ********************************************************************** //
  220. // ********************************************************************** //
  221. // ********************************************************************** //
  222. std::vector< std::array<double,5> >
  223. MultiLayerMie::GetSpectra(double from_WL, double to_WL, int samples) {
  224. std::vector< std::array<double,5> > spectra;
  225. double step_WL = (to_WL - from_WL)/ static_cast<double>(samples);
  226. double wavelength_backup = wavelength_;
  227. long fails = 0;
  228. for (double WL = from_WL; WL < to_WL; WL += step_WL) {
  229. double Qext, Qsca, Qabs, Qbk;
  230. wavelength_ = WL;
  231. try {
  232. RunMieCalculations();
  233. } catch( const std::invalid_argument& ia ) {
  234. fails++;
  235. continue;
  236. }
  237. //printf("%3.1f ",WL);
  238. spectra.push_back({wavelength_, Qext, Qsca, Qabs, Qbk});
  239. } // end of for each WL in spectra
  240. printf("fails %li\n",fails);
  241. wavelength_ = wavelength_backup;
  242. return spectra;
  243. }
  244. // ********************************************************************** //
  245. // ********************************************************************** //
  246. // ********************************************************************** //
  247. // Calculate Nstop - equation (17)
  248. //
  249. void MultiLayerMie::Nstop() {
  250. const double& xL = size_parameter_.back();
  251. if (xL <= 8) {
  252. nmax_ = round(xL + 4*pow(xL, 1/3) + 1);
  253. } else if (xL <= 4200) {
  254. nmax_ = round(xL + 4.05*pow(xL, 1/3) + 2);
  255. } else {
  256. nmax_ = round(xL + 4*pow(xL, 1/3) + 2);
  257. }
  258. }
  259. // ********************************************************************** //
  260. // ********************************************************************** //
  261. // ********************************************************************** //
  262. void MultiLayerMie::Nmax(int first_layer) {
  263. int ri, riM1;
  264. const std::vector<double>& x = size_parameter_;
  265. const std::vector<std::complex<double> >& m = index_;
  266. const int& pl = PEC_layer_position_;
  267. Nstop(); // Set initial nmax_ value
  268. for (int i = first_layer; i < x.size(); i++) {
  269. if (i > PEC_layer_position_)
  270. ri = round(std::abs(x[i]*m[i]));
  271. else
  272. ri = 0;
  273. nmax_ = std::max(nmax_, ri);
  274. // first layer is pec, if pec is present
  275. if ((i > first_layer) && ((i - 1) > PEC_layer_position_))
  276. riM1 = round(std::abs(x[i - 1]* m[i]));
  277. else
  278. riM1 = 0;
  279. nmax_ = std::max(nmax_, riM1);
  280. }
  281. nmax_ += 15; // Final nmax_ value
  282. }
  283. //**********************************************************************************//
  284. // This function calculates the spherical Bessel (jn) and Hankel (h1n) functions //
  285. // and their derivatives for a given complex value z. See pag. 87 B&H. //
  286. // //
  287. // Input parameters: //
  288. // z: Real argument to evaluate jn and h1n //
  289. // nmax_: Maximum number of terms to calculate jn and h1n //
  290. // //
  291. // Output parameters: //
  292. // jn, h1n: Spherical Bessel and Hankel functions //
  293. // jnp, h1np: Derivatives of the spherical Bessel and Hankel functions //
  294. // //
  295. // The implementation follows the algorithm by I.J. Thompson and A.R. Barnett, //
  296. // Comp. Phys. Comm. 47 (1987) 245-257. //
  297. // //
  298. // Complex spherical Bessel functions from n=0..nmax_-1 for z in the upper half //
  299. // plane (Im(z) > -3). //
  300. // //
  301. // j[n] = j/n(z) Regular solution: j[0]=sin(z)/z //
  302. // j'[n] = d[j/n(z)]/dz //
  303. // h1[n] = h[0]/n(z) Irregular Hankel function: //
  304. // h1'[n] = d[h[0]/n(z)]/dz h1[0] = j0(z) + i*y0(z) //
  305. // = (sin(z)-i*cos(z))/z //
  306. // = -i*exp(i*z)/z //
  307. // Using complex CF1, and trigonometric forms for n=0 solutions. //
  308. //**********************************************************************************//
  309. void MultiLayerMie::sbesjh(std::complex<double> z,
  310. std::vector<std::complex<double> >& jn,
  311. std::vector<std::complex<double> >& jnp,
  312. std::vector<std::complex<double> >& h1n,
  313. std::vector<std::complex<double> >& h1np) {
  314. const int limit = 20000;
  315. const double accur = 1.0e-12;
  316. const double tm30 = 1e-30;
  317. double absc;
  318. std::complex<double> zi, w;
  319. std::complex<double> pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb;
  320. absc = std::abs(std::real(z)) + std::abs(std::imag(z));
  321. if ((absc < accur) || (std::imag(z) < -3.0)) {
  322. throw std::invalid_argument("TODO add error description for condition if ((absc < accur) || (std::imag(z) < -3.0))");
  323. }
  324. zi = 1.0/z;
  325. w = zi + zi;
  326. pl = double(nmax_)*zi;
  327. f = pl + zi;
  328. b = f + f + zi;
  329. d = 0.0;
  330. c = f;
  331. for (int n = 0; n < limit; n++) {
  332. d = b - d;
  333. c = b - 1.0/c;
  334. absc = std::abs(std::real(d)) + std::abs(std::imag(d));
  335. if (absc < tm30) {
  336. d = tm30;
  337. }
  338. absc = std::abs(std::real(c)) + std::abs(std::imag(c));
  339. if (absc < tm30) {
  340. c = tm30;
  341. }
  342. d = 1.0/d;
  343. del = d*c;
  344. f = f*del;
  345. b += w;
  346. absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
  347. if (absc < accur) {
  348. // We have obtained the desired accuracy
  349. break;
  350. }
  351. }
  352. if (absc > accur) {
  353. throw std::invalid_argument("We were not able to obtain the desired accuracy");
  354. }
  355. jn[nmax_ - 1] = tm30;
  356. jnp[nmax_ - 1] = f*jn[nmax_ - 1];
  357. // Downward recursion to n=0 (N.B. Coulomb Functions)
  358. for (int n = nmax_ - 2; n >= 0; n--) {
  359. jn[n] = pl*jn[n + 1] + jnp[n + 1];
  360. jnp[n] = pl*jn[n] - jn[n + 1];
  361. pl = pl - zi;
  362. }
  363. // Calculate the n=0 Bessel Functions
  364. jn0 = zi*std::sin(z);
  365. h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
  366. h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
  367. // Rescale j[n], j'[n], converting to spherical Bessel functions.
  368. // Recur h1[n], h1'[n] as spherical Bessel functions.
  369. w = 1.0/jn[0];
  370. pl = zi;
  371. for (int n = 0; n < nmax_; n++) {
  372. jn[n] = jn0*(w*jn[n]);
  373. jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
  374. if (n != 0) {
  375. h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
  376. // check if hankel is increasing (upward stable)
  377. if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
  378. jndb = z;
  379. h1nldb = h1n[n];
  380. h1nbdb = h1n[n - 1];
  381. }
  382. pl += zi;
  383. h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
  384. }
  385. }
  386. }
  387. //**********************************************************************************//
  388. // This function calculates the spherical Bessel functions (bj and by) and the //
  389. // logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H. //
  390. // //
  391. // Input parameters: //
  392. // z: Complex argument to evaluate bj, by and bd //
  393. // nmax_: Maximum number of terms to calculate bj, by and bd //
  394. // //
  395. // Output parameters: //
  396. // bj, by: Spherical Bessel functions //
  397. // bd: Logarithmic derivative //
  398. //**********************************************************************************//
  399. void MultiLayerMie::sphericalBessel(std::complex<double> z,
  400. std::vector<std::complex<double> >& bj,
  401. std::vector<std::complex<double> >& by,
  402. std::vector<std::complex<double> >& bd) {
  403. std::vector<std::complex<double> > jn(nmax_), jnp(nmax_), h1n(nmax_), h1np(nmax_);
  404. sbesjh(z, jn, jnp, h1n, h1np);
  405. for (int n = 0; n < nmax_; n++) {
  406. bj[n] = jn[n];
  407. by[n] = (h1n[n] - jn[n])/std::complex<double>(0.0, 1.0);
  408. bd[n] = jnp[n]/jn[n] + 1.0/z;
  409. }
  410. }
  411. // ********************************************************************** //
  412. // ********************************************************************** //
  413. // ********************************************************************** //
  414. // Calculate an - equation (5)
  415. std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
  416. std::complex<double> PsiXL, std::complex<double> ZetaXL,
  417. std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
  418. std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
  419. std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
  420. return Num/Denom;
  421. }
  422. // ********************************************************************** //
  423. // ********************************************************************** //
  424. // ********************************************************************** //
  425. // Calculate bn - equation (6)
  426. std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
  427. std::complex<double> PsiXL, std::complex<double> ZetaXL,
  428. std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
  429. std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
  430. std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
  431. return Num/Denom;
  432. }
  433. // ********************************************************************** //
  434. // ********************************************************************** //
  435. // ********************************************************************** //
  436. // Calculates S1 - equation (25a)
  437. std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
  438. double Pi, double Tau) {
  439. return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
  440. }
  441. // ********************************************************************** //
  442. // ********************************************************************** //
  443. // ********************************************************************** //
  444. // Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
  445. std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
  446. double Pi, double Tau) {
  447. return calc_S1(n, an, bn, Tau, Pi);
  448. }
  449. //**********************************************************************************//
  450. // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
  451. // real argument (x). //
  452. // Equations (20a) - (21b) //
  453. // //
  454. // Input parameters: //
  455. // x: Real argument to evaluate Psi and Zeta //
  456. // nmax: Maximum number of terms to calculate Psi and Zeta //
  457. // //
  458. // Output parameters: //
  459. // Psi, Zeta: Riccati-Bessel functions //
  460. //**********************************************************************************//
  461. void MultiLayerMie::calcPsiZeta(double x,
  462. std::vector<std::complex<double> > D1,
  463. std::vector<std::complex<double> > D3,
  464. std::vector<std::complex<double> >& Psi,
  465. std::vector<std::complex<double> >& Zeta) {
  466. //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
  467. Psi[0] = std::complex<double>(sin(x), 0);
  468. Zeta[0] = std::complex<double>(sin(x), -cos(x));
  469. for (int n = 1; n <= nmax_; n++) {
  470. Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
  471. Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
  472. }
  473. }
  474. //**********************************************************************************//
  475. // This function calculates the logarithmic derivatives of the Riccati-Bessel //
  476. // functions (D1 and D3) for a complex argument (z). //
  477. // Equations (16a), (16b) and (18a) - (18d) //
  478. // //
  479. // Input parameters: //
  480. // z: Complex argument to evaluate D1 and D3 //
  481. // nmax_: Maximum number of terms to calculate D1 and D3 //
  482. // //
  483. // Output parameters: //
  484. // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
  485. //**********************************************************************************//
  486. // //ovidio
  487. // void MultiLayerMie::calcD1D3(std::complex<double> z,
  488. // std::vector<std::complex<double> >& D1,
  489. // std::vector<std::complex<double> >& D3) {
  490. // int n;
  491. // std::complex<double> nz, PsiZeta;
  492. // // Downward recurrence for D1 - equations (16a) and (16b)
  493. // D1[nmax_] = std::complex<double>(0.0, 0.0);
  494. // for (n = nmax_; n > 0; n--) {
  495. // nz = double(n)/z;
  496. // D1[n - 1] = nz - 1.0/(D1[n] + nz);
  497. // }
  498. // // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
  499. // PsiZeta = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
  500. // D3[0] = std::complex<double>(0.0, 1.0);
  501. // for (n = 1; n <= nmax_; n++) {
  502. // nz = double(n)/z;
  503. // PsiZeta = PsiZeta*(nz - D1[n - 1])*(nz - D3[n - 1]);
  504. // D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta;
  505. // }
  506. // }
  507. //tig
  508. void MultiLayerMie::calcD1D3(const std::complex<double> z,
  509. std::vector<std::complex<double> >& D1,
  510. std::vector<std::complex<double> >& D3) {
  511. // Downward recurrence for D1 - equations (16a) and (16b)
  512. D1[nmax_] = std::complex<double>(0.0, 0.0);
  513. const std::complex<double> zinv = 1.0/z;
  514. for (int n = nmax_; n > 0; n--) {
  515. D1[n - 1] = double(n)*zinv - 1.0/(D1[n] + double(n)*zinv);
  516. }
  517. // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
  518. PsiZeta_[0] = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
  519. D3[0] = std::complex<double>(0.0, 1.0);
  520. for (int n = 1; n <= nmax_; n++) {
  521. PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<double>(n)*zinv - D1[n - 1])*(static_cast<double>(n)*zinv- D3[n - 1]);
  522. D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta_[n];
  523. }
  524. }
  525. //**********************************************************************************//
  526. // This function calculates Pi and Tau for all values of Theta. //
  527. // Equations (26a) - (26c) //
  528. // //
  529. // Input parameters: //
  530. // nmax_: Maximum number of terms to calculate Pi and Tau //
  531. // nTheta: Number of scattering angles //
  532. // Theta: Array containing all the scattering angles where the scattering //
  533. // amplitudes will be calculated //
  534. // //
  535. // Output parameters: //
  536. // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
  537. //**********************************************************************************//
  538. void MultiLayerMie::calcPiTau(std::vector< std::vector<double> >& Pi,
  539. std::vector< std::vector<double> >& Tau) {
  540. //****************************************************//
  541. // Equations (26a) - (26c) //
  542. //****************************************************//
  543. std::vector<double> costheta(theta_.size(), 0.0);
  544. for (int t = 0; t < theta_.size(); t++) {
  545. costheta[t] = cos(theta_[t]);
  546. }
  547. for (int n = 0; n < nmax_; n++) {
  548. for (int t = 0; t < theta_.size(); t++) {
  549. if (n == 0) {
  550. // Initialize Pi and Tau
  551. Pi[n][t] = 1.0;
  552. Tau[n][t] = (n + 1)*costheta[t];
  553. } else {
  554. // Calculate the actual values
  555. Pi[n][t] = ((n == 1) ? ((n + n + 1)*costheta[t]*Pi[n - 1][t]/n)
  556. : (((n + n + 1)*costheta[t]*Pi[n - 1][t]
  557. - (n + 1)*Pi[n - 2][t])/n));
  558. Tau[n][t] = (n + 1)*costheta[t]*Pi[n][t] - (n + 2)*Pi[n - 1][t];
  559. }
  560. }
  561. }
  562. }
  563. //**********************************************************************************//
  564. // This function calculates the scattering coefficients required to calculate //
  565. // both the near- and far-field parameters. //
  566. // //
  567. // Input parameters: //
  568. // L: Number of layers //
  569. // pl: Index of PEC layer. If there is none just send -1 //
  570. // x: Array containing the size parameters of the layers [0..L-1] //
  571. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  572. // nmax: Maximum number of multipolar expansion terms to be used for the //
  573. // calculations. Only use it if you know what you are doing, otherwise //
  574. // set this parameter to -1 and the function will calculate it. //
  575. // //
  576. // Output parameters: //
  577. // an, bn: Complex scattering amplitudes //
  578. // //
  579. // Return value: //
  580. // Number of multipolar expansion terms used for the calculations //
  581. //**********************************************************************************//
  582. void MultiLayerMie::ScattCoeffs(std::vector<std::complex<double> >& an,
  583. std::vector<std::complex<double> >& bn) {
  584. //************************************************************************//
  585. // Calculate the index of the first layer. It can be either 0 (default) //
  586. // or the index of the outermost PEC layer. In the latter case all layers //
  587. // below the PEC are discarded. //
  588. //************************************************************************//
  589. const std::vector<double>& x = size_parameter_;
  590. const std::vector<std::complex<double> >& m = index_;
  591. const int& pl = PEC_layer_position_;
  592. const int L = index_.size();
  593. // TODO, is it possible for PEC to have a zero index? If yes than is should be:
  594. // int fl = (pl > -1) ? pl : 0;
  595. int fl = (pl > 0) ? pl : 0;
  596. if (nmax_ <= 0) Nmax(fl);
  597. std::complex<double> z1, z2;
  598. //**************************************************************************//
  599. // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
  600. // means that index = layer number - 1 or index = n - 1. The only exception //
  601. // are the arrays for representing D1, D3 and Q because they need a value //
  602. // for the index 0 (zero), hence it is important to consider this shift //
  603. // between different arrays. The change was done to optimize memory usage. //
  604. //**************************************************************************//
  605. // Allocate memory to the arrays
  606. std::vector<std::complex<double> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
  607. D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
  608. std::vector<std::vector<std::complex<double> > > Q(L), Ha(L), Hb(L);
  609. for (int l = 0; l < L; l++) {
  610. // D1_mlxl[l].resize(nmax_ + 1);
  611. // D1_mlxlM1[l].resize(nmax_ + 1);
  612. // D3_mlxl[l].resize(nmax_ + 1);
  613. // D3_mlxlM1[l].resize(nmax_ + 1);
  614. Q[l].resize(nmax_ + 1);
  615. Ha[l].resize(nmax_);
  616. Hb[l].resize(nmax_);
  617. }
  618. an.resize(nmax_);
  619. bn.resize(nmax_);
  620. PsiZeta_.resize(nmax_ + 1);
  621. std::vector<std::complex<double> > D1XL(nmax_ + 1), D3XL(nmax_ + 1),
  622. PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
  623. //*************************************************//
  624. // Calculate D1 and D3 for z1 in the first layer //
  625. //*************************************************//
  626. if (fl == pl) { // PEC layer
  627. for (int n = 0; n <= nmax_; n++) {
  628. D1_mlxl[n] = std::complex<double>(0.0, -1.0);
  629. D3_mlxl[n] = std::complex<double>(0.0, 1.0);
  630. }
  631. } else { // Regular layer
  632. z1 = x[fl]* m[fl];
  633. // Calculate D1 and D3
  634. calcD1D3(z1, D1_mlxl, D3_mlxl);
  635. }
  636. //******************************************************************//
  637. // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
  638. //******************************************************************//
  639. for (int n = 0; n < nmax_; n++) {
  640. Ha[fl][n] = D1_mlxl[n + 1];
  641. Hb[fl][n] = D1_mlxl[n + 1];
  642. }
  643. //*****************************************************//
  644. // Iteration from the second layer to the last one (L) //
  645. //*****************************************************//
  646. std::complex<double> Temp, Num, Denom;
  647. std::complex<double> G1, G2;
  648. for (int l = fl + 1; l < L; l++) {
  649. //************************************************************//
  650. //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L //
  651. //************************************************************//
  652. z1 = x[l]*m[l];
  653. z2 = x[l - 1]*m[l];
  654. //Calculate D1 and D3 for z1
  655. calcD1D3(z1, D1_mlxl, D3_mlxl);
  656. //Calculate D1 and D3 for z2
  657. calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
  658. //*********************************************//
  659. //Calculate Q, Ha and Hb in the layers fl+1..L //
  660. //*********************************************//
  661. // Upward recurrence for Q - equations (19a) and (19b)
  662. Num = exp(-2.0*(z1.imag() - z2.imag()))
  663. * std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
  664. Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
  665. Q[l][0] = Num/Denom;
  666. for (int n = 1; n <= nmax_; n++) {
  667. Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]);
  668. Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]);
  669. Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
  670. }
  671. // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
  672. for (int n = 1; n <= nmax_; n++) {
  673. //Ha
  674. if ((l - 1) == pl) { // The layer below the current one is a PEC layer
  675. G1 = -D1_mlxlM1[n];
  676. G2 = -D3_mlxlM1[n];
  677. } else {
  678. G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
  679. G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
  680. } // end of if PEC
  681. Temp = Q[l][n]*G1;
  682. Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
  683. Denom = G2 - Temp;
  684. Ha[l][n - 1] = Num/Denom;
  685. //Hb
  686. if ((l - 1) == pl) { // The layer below the current one is a PEC layer
  687. G1 = Hb[l - 1][n - 1];
  688. G2 = Hb[l - 1][n - 1];
  689. } else {
  690. G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
  691. G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
  692. } // end of if PEC
  693. Temp = Q[l][n]*G1;
  694. Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
  695. Denom = (G2- Temp);
  696. Hb[l][n - 1] = (Num/ Denom);
  697. } // end of for Ha and Hb terms
  698. } // end of for layers iteration
  699. //**************************************//
  700. //Calculate D1, D3, Psi and Zeta for XL //
  701. //**************************************//
  702. // Calculate D1XL and D3XL
  703. calcD1D3(x[L - 1], D1XL, D3XL);
  704. // Calculate PsiXL and ZetaXL
  705. calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL);
  706. //*********************************************************************//
  707. // Finally, we calculate the scattering coefficients (an and bn) and //
  708. // the angular functions (Pi and Tau). Note that for these arrays the //
  709. // first layer is 0 (zero), in future versions all arrays will follow //
  710. // this convention to save memory. (13 Nov, 2014) //
  711. //*********************************************************************//
  712. for (int n = 0; n < nmax_; n++) {
  713. //********************************************************************//
  714. //Expressions for calculating an and bn coefficients are not valid if //
  715. //there is only one PEC layer (ie, for a simple PEC sphere). //
  716. //********************************************************************//
  717. if (pl < (L - 1)) {
  718. an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
  719. bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
  720. } else {
  721. an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
  722. bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
  723. }
  724. } // end of for an and bn terms
  725. } // end of void MultiLayerMie::ScattCoeffs(...)
  726. // ********************************************************************** //
  727. // ********************************************************************** //
  728. // ********************************************************************** //
  729. void MultiLayerMie::InitMieCalculations() {
  730. // Initialize the scattering parameters
  731. Qext_ = 0;
  732. Qsca_ = 0;
  733. Qabs_ = 0;
  734. Qbk_ = 0;
  735. Qpr_ = 0;
  736. asymmetry_factor_ = 0;
  737. albedo_ = 0;
  738. // Initialize the scattering amplitudes
  739. std::vector<std::complex<double> > tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
  740. S1_.swap(tmp1);
  741. S2_ = S1_;
  742. }
  743. // ********************************************************************** //
  744. // ********************************************************************** //
  745. // ********************************************************************** //
  746. //**********************************************************************************//
  747. // This function calculates the actual scattering parameters and amplitudes //
  748. // //
  749. // Input parameters: //
  750. // L: Number of layers //
  751. // pl: Index of PEC layer. If there is none just send -1 //
  752. // x: Array containing the size parameters of the layers [0..L-1] //
  753. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  754. // nTheta: Number of scattering angles //
  755. // Theta: Array containing all the scattering angles where the scattering //
  756. // amplitudes will be calculated //
  757. // nmax_: Maximum number of multipolar expansion terms to be used for the //
  758. // calculations. Only use it if you know what you are doing, otherwise //
  759. // set this parameter to -1 and the function will calculate it //
  760. // //
  761. // Output parameters: //
  762. // Qext: Efficiency factor for extinction //
  763. // Qsca: Efficiency factor for scattering //
  764. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  765. // Qbk: Efficiency factor for backscattering //
  766. // Qpr: Efficiency factor for the radiation pressure //
  767. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  768. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  769. // S1, S2: Complex scattering amplitudes //
  770. // //
  771. // Return value: //
  772. // Number of multipolar expansion terms used for the calculations //
  773. //**********************************************************************************//
  774. void MultiLayerMie::RunMieCalculations() {
  775. if (size_parameter_.size() != index_.size())
  776. throw std::invalid_argument("Each size parameter should have only one index!");
  777. std::vector<std::complex<double> > an, bn;
  778. std::complex<double> Qbktmp(0.0, 0.0);
  779. const std::vector<double>& x = size_parameter_;
  780. const std::vector<std::complex<double> >& m = index_;
  781. // Calculate scattering coefficients
  782. ScattCoeffs(an, bn);
  783. // std::vector< std::vector<double> > Pi(nmax_), Tau(nmax_);
  784. std::vector< std::vector<double> > Pi, Tau;
  785. Pi.resize(nmax_);
  786. Tau.resize(nmax_);
  787. for (int i =0; i< nmax_; ++i) {
  788. Pi[i].resize(theta_.size());
  789. Tau[i].resize(theta_.size());
  790. }
  791. calcPiTau(Pi, Tau);
  792. InitMieCalculations();
  793. // By using downward recurrence we avoid loss of precision due to float rounding errors
  794. // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
  795. // http://en.wikipedia.org/wiki/Loss_of_significance
  796. for (int i = nmax_ - 2; i >= 0; i--) {
  797. int n = i + 1;
  798. // Equation (27)
  799. Qext_ += (n + n + 1)*(an[i].real() + bn[i].real());
  800. // Equation (28)
  801. Qsca_ += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag()
  802. + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
  803. // Equation (29) TODO We must check carefully this equation. If we
  804. // remove the typecast to double then the result changes. Which is
  805. // the correct one??? Ovidio (2014/12/10) With cast ratio will
  806. // give double, without cast (n + n + 1)/(n*(n + 1)) will be
  807. // rounded to integer. Tig (2015/02/24)
  808. Qpr_ += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real())
  809. + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
  810. // Equation (33)
  811. Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
  812. // Calculate the scattering amplitudes (S1 and S2) //
  813. // Equations (25a) - (25b) //
  814. for (int t = 0; t < theta_.size(); t++) {
  815. S1_[t] += calc_S1(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
  816. S2_[t] += calc_S2(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
  817. }
  818. }
  819. double x2 = pow2(x.back());
  820. Qext_ = 2*(Qext_)/x2; // Equation (27)
  821. Qsca_ = 2*(Qsca_)/x2; // Equation (28)
  822. Qpr_ = Qext_ - 4*(Qpr_)/x2; // Equation (29)
  823. Qabs_ = Qext_ - Qsca_; // Equation (30)
  824. albedo_ = Qsca_ / Qext_; // Equation (31)
  825. asymmetry_factor_ = (Qext_ - Qpr_) / Qsca_; // Equation (32)
  826. Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
  827. isMieCalculated_ = true;
  828. //return nmax;
  829. }
  830. // ********************************************************************** //
  831. // ********************************************************************** //
  832. // ********************************************************************** //
  833. // external scattering field = incident + scattered
  834. // BH p.92 (4.37), 94 (4.45), 95 (4.50)
  835. // assume: medium is non-absorbing; refim = 0; Uabs = 0
  836. void MultiLayerMie::fieldExt(double Rho, double Phi, double Theta, std::vector<double> Pi, std::vector<double> Tau,
  837. std::vector<std::complex<double> > an, std::vector<std::complex<double> > bn,
  838. std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
  839. double rn = 0.0;
  840. std::complex<double> zn, xxip, encap;
  841. std::vector<std::complex<double> > vm3o1n, vm3e1n, vn3o1n, vn3e1n;
  842. vm3o1n.resize(3);
  843. vm3e1n.resize(3);
  844. vn3o1n.resize(3);
  845. vn3e1n.resize(3);
  846. std::vector<std::complex<double> > Ei, Hi, Es, Hs;
  847. Ei.resize(3);
  848. Hi.resize(3);
  849. Es.resize(3);
  850. Hs.resize(3);
  851. for (int i = 0; i < 3; i++) {
  852. Ei[i] = std::complex<double>(0.0, 0.0);
  853. Hi[i] = std::complex<double>(0.0, 0.0);
  854. Es[i] = std::complex<double>(0.0, 0.0);
  855. Hs[i] = std::complex<double>(0.0, 0.0);
  856. }
  857. std::vector<std::complex<double> > bj, by, bd;
  858. bj.resize(nmax_);
  859. by.resize(nmax_);
  860. bd.resize(nmax_);
  861. // Calculate spherical Bessel and Hankel functions
  862. sphericalBessel(Rho, bj, by, bd);
  863. for (int n = 0; n < nmax_; n++) {
  864. rn = double(n + 1);
  865. zn = bj[n] + std::complex<double>(0.0, 1.0)*by[n];
  866. xxip = Rho*(bj[n] + std::complex<double>(0.0, 1.0)*by[n]) - rn*zn;
  867. vm3o1n[0] = std::complex<double>(0.0, 0.0);
  868. vm3o1n[1] = std::cos(Phi)*Pi[n]*zn;
  869. vm3o1n[2] = -(std::sin(Phi)*Tau[n]*zn);
  870. vm3e1n[0] = std::complex<double>(0.0, 0.0);
  871. vm3e1n[1] = -(std::sin(Phi)*Pi[n]*zn);
  872. vm3e1n[2] = -(std::cos(Phi)*Tau[n]*zn);
  873. vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
  874. vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho;
  875. vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho;
  876. vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
  877. vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho;
  878. vn3e1n[2] = -(std::sin(Phi)*Pi[n]*xxip/Rho);
  879. // scattered field: BH p.94 (4.45)
  880. encap = std::pow(std::complex<double>(0.0, 1.0), rn)*(2.0*rn + 1.0)/(rn*(rn + 1.0));
  881. for (int i = 0; i < 3; i++) {
  882. Es[i] = Es[i] + encap*(std::complex<double>(0.0, 1.0)*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]);
  883. Hs[i] = Hs[i] + encap*(std::complex<double>(0.0, 1.0)*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]);
  884. }
  885. }
  886. // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
  887. // basis unit vectors = er, etheta, ephi
  888. std::complex<double> eifac = std::exp(std::complex<double>(0.0, 1.0)*Rho*std::cos(Theta));
  889. Ei[0] = eifac*std::sin(Theta)*std::cos(Phi);
  890. Ei[1] = eifac*std::cos(Theta)*std::cos(Phi);
  891. Ei[2] = -(eifac*std::sin(Phi));
  892. // magnetic field
  893. double hffact = 1.0/(cc*mu);
  894. for (int i = 0; i < 3; i++) {
  895. Hs[i] = hffact*Hs[i];
  896. }
  897. // incident H field: BH p.26 (2.43), p.89 (4.21)
  898. std::complex<double> hffacta = hffact;
  899. std::complex<double> hifac = eifac*hffacta;
  900. Hi[0] = hifac*std::sin(Theta)*std::sin(Phi);
  901. Hi[1] = hifac*std::cos(Theta)*std::sin(Phi);
  902. Hi[2] = hifac*std::cos(Phi);
  903. for (int i = 0; i < 3; i++) {
  904. // electric field E [V m-1] = EF*E0
  905. E[i] = Ei[i] + Es[i];
  906. H[i] = Hi[i] + Hs[i];
  907. }
  908. }
  909. // ********************************************************************** //
  910. // ********************************************************************** //
  911. // ********************************************************************** //
  912. //**********************************************************************************//
  913. // This function calculates complex electric and magnetic field in the surroundings //
  914. // and inside (TODO) the particle. //
  915. // //
  916. // Input parameters: //
  917. // L: Number of layers //
  918. // pl: Index of PEC layer. If there is none just send 0 (zero) //
  919. // x: Array containing the size parameters of the layers [0..L-1] //
  920. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  921. // nmax: Maximum number of multipolar expansion terms to be used for the //
  922. // calculations. Only use it if you know what you are doing, otherwise //
  923. // set this parameter to 0 (zero) and the function will calculate it. //
  924. // ncoord: Number of coordinate points //
  925. // Coords: Array containing all coordinates where the complex electric and //
  926. // magnetic fields will be calculated //
  927. // //
  928. // Output parameters: //
  929. // E, H: Complex electric and magnetic field at the provided coordinates //
  930. // //
  931. // Return value: //
  932. // Number of multipolar expansion terms used for the calculations //
  933. //**********************************************************************************//
  934. // int MultiLayerMie::nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
  935. // int ncoord, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
  936. // std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
  937. // double Rho, Phi, Theta;
  938. // std::vector<std::complex<double> > an, bn;
  939. // // This array contains the fields in spherical coordinates
  940. // std::vector<std::complex<double> > Es, Hs;
  941. // Es.resize(3);
  942. // Hs.resize(3);
  943. // // Calculate scattering coefficients
  944. // ScattCoeffs(L, pl, an, bn);
  945. // std::vector<double> Pi, Tau;
  946. // Pi.resize(nmax_);
  947. // Tau.resize(nmax_);
  948. // for (int c = 0; c < ncoord; c++) {
  949. // // Convert to spherical coordinates
  950. // Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
  951. // if (Rho < 1e-3) {
  952. // // Avoid convergence problems
  953. // Rho = 1e-3;
  954. // }
  955. // Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
  956. // Theta = acos(Xp[c]/Rho);
  957. // calcPiTau(Theta, Pi, Tau);
  958. // //*******************************************************//
  959. // // external scattering field = incident + scattered //
  960. // // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
  961. // // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
  962. // //*******************************************************//
  963. // // Firstly the easiest case: the field outside the particle
  964. // if (Rho >= x[L - 1]) {
  965. // fieldExt(Rho, Phi, Theta, Pi, Tau, an, bn, Es, Hs);
  966. // } else {
  967. // // TODO, for now just set all the fields to zero
  968. // for (int i = 0; i < 3; i++) {
  969. // Es[i] = std::complex<double>(0.0, 0.0);
  970. // Hs[i] = std::complex<double>(0.0, 0.0);
  971. // }
  972. // }
  973. // //Now, convert the fields back to cartesian coordinates
  974. // E[c][0] = std::sin(Theta)*std::cos(Phi)*Es[0] + std::cos(Theta)*std::cos(Phi)*Es[1] - std::sin(Phi)*Es[2];
  975. // E[c][1] = std::sin(Theta)*std::sin(Phi)*Es[0] + std::cos(Theta)*std::sin(Phi)*Es[1] + std::cos(Phi)*Es[2];
  976. // E[c][2] = std::cos(Theta)*Es[0] - std::sin(Theta)*Es[1];
  977. // H[c][0] = std::sin(Theta)*std::cos(Phi)*Hs[0] + std::cos(Theta)*std::cos(Phi)*Hs[1] - std::sin(Phi)*Hs[2];
  978. // H[c][1] = std::sin(Theta)*std::sin(Phi)*Hs[0] + std::cos(Theta)*std::sin(Phi)*Hs[1] + std::cos(Phi)*Hs[2];
  979. // H[c][2] = std::cos(Theta)*Hs[0] - std::sin(Theta)*Hs[1];
  980. // }
  981. // return nmax;
  982. // } // end of int nField()
  983. } // end of namespace nmie