nmie.cc 70 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313
  1. //**********************************************************************************//
  2. // Copyright (C) 2009-2015 Ovidio Pena <ovidio@bytesfall.com> //
  3. // Copyright (C) 2013-2015 Konstantin Ladutenko <kostyfisik@gmail.com> //
  4. // //
  5. // This file is part of scattnlay //
  6. // //
  7. // This program is free software: you can redistribute it and/or modify //
  8. // it under the terms of the GNU General Public License as published by //
  9. // the Free Software Foundation, either version 3 of the License, or //
  10. // (at your option) any later version. //
  11. // //
  12. // This program is distributed in the hope that it will be useful, //
  13. // but WITHOUT ANY WARRANTY; without even the implied warranty of //
  14. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
  15. // GNU General Public License for more details. //
  16. // //
  17. // The only additional remark is that we expect that all publications //
  18. // describing work using this software, or all commercial products //
  19. // using it, cite the following reference: //
  20. // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
  21. // a multilayered sphere," Computer Physics Communications, //
  22. // vol. 180, Nov. 2009, pp. 2348-2354. //
  23. // //
  24. // You should have received a copy of the GNU General Public License //
  25. // along with this program. If not, see <http://www.gnu.org/licenses/>. //
  26. //**********************************************************************************//
  27. //**********************************************************************************//
  28. // This class implements the algorithm for a multilayered sphere described by: //
  29. // [1] W. Yang, "Improved recursive algorithm for light scattering by a //
  30. // multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. //
  31. // //
  32. // You can find the description of all the used equations in: //
  33. // [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
  34. // a multilayered sphere," Computer Physics Communications, //
  35. // vol. 180, Nov. 2009, pp. 2348-2354. //
  36. // //
  37. // Hereinafter all equations numbers refer to [2] //
  38. //**********************************************************************************//
  39. #include "nmie.h"
  40. #include <array>
  41. #include <algorithm>
  42. #include <cstdio>
  43. #include <cstdlib>
  44. #include <stdexcept>
  45. #include <vector>
  46. namespace nmie {
  47. //helpers
  48. template<class T> inline T pow2(const T value) {return value*value;}
  49. int round(double x) {
  50. return x >= 0 ? (int)(x + 0.5):(int)(x - 0.5);
  51. }
  52. //**********************************************************************************//
  53. // This function emulates a C call to calculate the scattering coefficients //
  54. // required to calculate both the near- and far-field parameters. //
  55. // //
  56. // Input parameters: //
  57. // L: Number of layers //
  58. // pl: Index of PEC layer. If there is none just send -1 //
  59. // x: Array containing the size parameters of the layers [0..L-1] //
  60. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  61. // nmax: Maximum number of multipolar expansion terms to be used for the //
  62. // calculations. Only use it if you know what you are doing, otherwise //
  63. // set this parameter to -1 and the function will calculate it. //
  64. // //
  65. // Output parameters: //
  66. // an, bn: Complex scattering amplitudes //
  67. // //
  68. // Return value: //
  69. // Number of multipolar expansion terms used for the calculations //
  70. //**********************************************************************************//
  71. int ScattCoeffs(const unsigned int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nmax, std::vector<std::complex<double> >& an, std::vector<std::complex<double> >& bn) {
  72. if (x.size() != L || m.size() != L)
  73. throw std::invalid_argument("Declared number of layers do not fit x and m!");
  74. try {
  75. MultiLayerMie ml_mie;
  76. ml_mie.SetLayersSize(x);
  77. ml_mie.SetLayersIndex(m);
  78. ml_mie.SetPECLayer(pl);
  79. ml_mie.SetMaxTerms(nmax);
  80. ml_mie.calcScattCoeffs();
  81. an = ml_mie.GetAn();
  82. bn = ml_mie.GetBn();
  83. return ml_mie.GetMaxTerms();
  84. } catch(const std::invalid_argument& ia) {
  85. // Will catch if ml_mie fails or other errors.
  86. std::cerr << "Invalid argument: " << ia.what() << std::endl;
  87. throw std::invalid_argument(ia);
  88. return -1;
  89. }
  90. return 0;
  91. }
  92. //**********************************************************************************//
  93. // This function emulates a C call to calculate the actual scattering parameters //
  94. // and amplitudes. //
  95. // //
  96. // Input parameters: //
  97. // L: Number of layers //
  98. // pl: Index of PEC layer. If there is none just send -1 //
  99. // x: Array containing the size parameters of the layers [0..L-1] //
  100. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  101. // nTheta: Number of scattering angles //
  102. // Theta: Array containing all the scattering angles where the scattering //
  103. // amplitudes will be calculated //
  104. // nmax: Maximum number of multipolar expansion terms to be used for the //
  105. // calculations. Only use it if you know what you are doing, otherwise //
  106. // set this parameter to -1 and the function will calculate it //
  107. // //
  108. // Output parameters: //
  109. // Qext: Efficiency factor for extinction //
  110. // Qsca: Efficiency factor for scattering //
  111. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  112. // Qbk: Efficiency factor for backscattering //
  113. // Qpr: Efficiency factor for the radiation pressure //
  114. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  115. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  116. // S1, S2: Complex scattering amplitudes //
  117. // //
  118. // Return value: //
  119. // Number of multipolar expansion terms used for the calculations //
  120. //**********************************************************************************//
  121. int nMie(const unsigned int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
  122. if (x.size() != L || m.size() != L)
  123. throw std::invalid_argument("Declared number of layers do not fit x and m!");
  124. if (Theta.size() != nTheta)
  125. throw std::invalid_argument("Declared number of sample for Theta is not correct!");
  126. try {
  127. MultiLayerMie ml_mie;
  128. ml_mie.SetLayersSize(x);
  129. ml_mie.SetLayersIndex(m);
  130. ml_mie.SetAngles(Theta);
  131. ml_mie.SetPECLayer(pl);
  132. ml_mie.SetMaxTerms(nmax);
  133. ml_mie.RunMieCalculation();
  134. *Qext = ml_mie.GetQext();
  135. *Qsca = ml_mie.GetQsca();
  136. *Qabs = ml_mie.GetQabs();
  137. *Qbk = ml_mie.GetQbk();
  138. *Qpr = ml_mie.GetQpr();
  139. *g = ml_mie.GetAsymmetryFactor();
  140. *Albedo = ml_mie.GetAlbedo();
  141. S1 = ml_mie.GetS1();
  142. S2 = ml_mie.GetS2();
  143. return ml_mie.GetMaxTerms();
  144. } catch(const std::invalid_argument& ia) {
  145. // Will catch if ml_mie fails or other errors.
  146. std::cerr << "Invalid argument: " << ia.what() << std::endl;
  147. throw std::invalid_argument(ia);
  148. return -1;
  149. }
  150. return 0;
  151. }
  152. //**********************************************************************************//
  153. // This function is just a wrapper to call the full 'nMie' function with fewer //
  154. // parameters, it is here mainly for compatibility with older versions of the //
  155. // program. Also, you can use it if you neither have a PEC layer nor want to define //
  156. // any limit for the maximum number of terms. //
  157. // //
  158. // Input parameters: //
  159. // L: Number of layers //
  160. // x: Array containing the size parameters of the layers [0..L-1] //
  161. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  162. // nTheta: Number of scattering angles //
  163. // Theta: Array containing all the scattering angles where the scattering //
  164. // amplitudes will be calculated //
  165. // //
  166. // Output parameters: //
  167. // Qext: Efficiency factor for extinction //
  168. // Qsca: Efficiency factor for scattering //
  169. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  170. // Qbk: Efficiency factor for backscattering //
  171. // Qpr: Efficiency factor for the radiation pressure //
  172. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  173. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  174. // S1, S2: Complex scattering amplitudes //
  175. // //
  176. // Return value: //
  177. // Number of multipolar expansion terms used for the calculations //
  178. //**********************************************************************************//
  179. int nMie(const unsigned int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
  180. return nmie::nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
  181. }
  182. //**********************************************************************************//
  183. // This function is just a wrapper to call the full 'nMie' function with fewer //
  184. // parameters, it is useful if you want to include a PEC layer but not a limit //
  185. // for the maximum number of terms. //
  186. // //
  187. // Input parameters: //
  188. // L: Number of layers //
  189. // pl: Index of PEC layer. If there is none just send -1 //
  190. // x: Array containing the size parameters of the layers [0..L-1] //
  191. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  192. // nTheta: Number of scattering angles //
  193. // Theta: Array containing all the scattering angles where the scattering //
  194. // amplitudes will be calculated //
  195. // //
  196. // Output parameters: //
  197. // Qext: Efficiency factor for extinction //
  198. // Qsca: Efficiency factor for scattering //
  199. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  200. // Qbk: Efficiency factor for backscattering //
  201. // Qpr: Efficiency factor for the radiation pressure //
  202. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  203. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  204. // S1, S2: Complex scattering amplitudes //
  205. // //
  206. // Return value: //
  207. // Number of multipolar expansion terms used for the calculations //
  208. //**********************************************************************************//
  209. int nMie(const unsigned int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
  210. return nmie::nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
  211. }
  212. //**********************************************************************************//
  213. // This function is just a wrapper to call the full 'nMie' function with fewer //
  214. // parameters, it is useful if you want to include a limit for the maximum number //
  215. // of terms but not a PEC layer. //
  216. // //
  217. // Input parameters: //
  218. // L: Number of layers //
  219. // x: Array containing the size parameters of the layers [0..L-1] //
  220. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  221. // nTheta: Number of scattering angles //
  222. // Theta: Array containing all the scattering angles where the scattering //
  223. // amplitudes will be calculated //
  224. // nmax: Maximum number of multipolar expansion terms to be used for the //
  225. // calculations. Only use it if you know what you are doing, otherwise //
  226. // set this parameter to -1 and the function will calculate it //
  227. // //
  228. // Output parameters: //
  229. // Qext: Efficiency factor for extinction //
  230. // Qsca: Efficiency factor for scattering //
  231. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  232. // Qbk: Efficiency factor for backscattering //
  233. // Qpr: Efficiency factor for the radiation pressure //
  234. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  235. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  236. // S1, S2: Complex scattering amplitudes //
  237. // //
  238. // Return value: //
  239. // Number of multipolar expansion terms used for the calculations //
  240. //**********************************************************************************//
  241. int nMie(const unsigned int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
  242. return nmie::nMie(L, -1, x, m, nTheta, Theta, nmax, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
  243. }
  244. //**********************************************************************************//
  245. // This function emulates a C call to calculate complex electric and magnetic field //
  246. // in the surroundings and inside the particle. //
  247. // //
  248. // Input parameters: //
  249. // L: Number of layers //
  250. // pl: Index of PEC layer. If there is none just send 0 (zero) //
  251. // x: Array containing the size parameters of the layers [0..L-1] //
  252. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  253. // nmax: Maximum number of multipolar expansion terms to be used for the //
  254. // calculations. Only use it if you know what you are doing, otherwise //
  255. // set this parameter to 0 (zero) and the function will calculate it. //
  256. // ncoord: Number of coordinate points //
  257. // Coords: Array containing all coordinates where the complex electric and //
  258. // magnetic fields will be calculated //
  259. // //
  260. // Output parameters: //
  261. // E, H: Complex electric and magnetic field at the provided coordinates //
  262. // //
  263. // Return value: //
  264. // Number of multipolar expansion terms used for the calculations //
  265. //**********************************************************************************//
  266. int nField(const unsigned int L, const int pl, const std::vector<double>& x, const std::vector<std::complex<double> >& m, const int nmax, const unsigned int ncoord, const std::vector<double>& Xp_vec, const std::vector<double>& Yp_vec, const std::vector<double>& Zp_vec, std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
  267. if (x.size() != L || m.size() != L)
  268. throw std::invalid_argument("Declared number of layers do not fit x and m!");
  269. if (Xp_vec.size() != ncoord || Yp_vec.size() != ncoord || Zp_vec.size() != ncoord
  270. || E.size() != ncoord || H.size() != ncoord)
  271. throw std::invalid_argument("Declared number of coords do not fit Xp, Yp, Zp, E, or H!");
  272. for (auto f:E)
  273. if (f.size() != 3)
  274. throw std::invalid_argument("Field E is not 3D!");
  275. for (auto f:H)
  276. if (f.size() != 3)
  277. throw std::invalid_argument("Field H is not 3D!");
  278. try {
  279. MultiLayerMie ml_mie;
  280. ml_mie.SetPECLayer(pl);
  281. ml_mie.SetLayersSize(x);
  282. ml_mie.SetLayersIndex(m);
  283. ml_mie.SetFieldCoords({Xp_vec, Yp_vec, Zp_vec});
  284. ml_mie.RunFieldCalculation();
  285. E = ml_mie.GetFieldE();
  286. H = ml_mie.GetFieldH();
  287. return ml_mie.GetMaxTerms();
  288. } catch(const std::invalid_argument& ia) {
  289. // Will catch if ml_mie fails or other errors.
  290. std::cerr << "Invalid argument: " << ia.what() << std::endl;
  291. throw std::invalid_argument(ia);
  292. return - 1;
  293. }
  294. return 0;
  295. }
  296. // ********************************************************************** //
  297. // Returns previously calculated Qext //
  298. // ********************************************************************** //
  299. double MultiLayerMie::GetQext() {
  300. if (!isMieCalculated_)
  301. throw std::invalid_argument("You should run calculations before result request!");
  302. return Qext_;
  303. }
  304. // ********************************************************************** //
  305. // Returns previously calculated Qabs //
  306. // ********************************************************************** //
  307. double MultiLayerMie::GetQabs() {
  308. if (!isMieCalculated_)
  309. throw std::invalid_argument("You should run calculations before result request!");
  310. return Qabs_;
  311. }
  312. // ********************************************************************** //
  313. // Returns previously calculated Qsca //
  314. // ********************************************************************** //
  315. double MultiLayerMie::GetQsca() {
  316. if (!isMieCalculated_)
  317. throw std::invalid_argument("You should run calculations before result request!");
  318. return Qsca_;
  319. }
  320. // ********************************************************************** //
  321. // Returns previously calculated Qbk //
  322. // ********************************************************************** //
  323. double MultiLayerMie::GetQbk() {
  324. if (!isMieCalculated_)
  325. throw std::invalid_argument("You should run calculations before result request!");
  326. return Qbk_;
  327. }
  328. // ********************************************************************** //
  329. // Returns previously calculated Qpr //
  330. // ********************************************************************** //
  331. double MultiLayerMie::GetQpr() {
  332. if (!isMieCalculated_)
  333. throw std::invalid_argument("You should run calculations before result request!");
  334. return Qpr_;
  335. }
  336. // ********************************************************************** //
  337. // Returns previously calculated assymetry factor //
  338. // ********************************************************************** //
  339. double MultiLayerMie::GetAsymmetryFactor() {
  340. if (!isMieCalculated_)
  341. throw std::invalid_argument("You should run calculations before result request!");
  342. return asymmetry_factor_;
  343. }
  344. // ********************************************************************** //
  345. // Returns previously calculated Albedo //
  346. // ********************************************************************** //
  347. double MultiLayerMie::GetAlbedo() {
  348. if (!isMieCalculated_)
  349. throw std::invalid_argument("You should run calculations before result request!");
  350. return albedo_;
  351. }
  352. // ********************************************************************** //
  353. // Returns previously calculated S1 //
  354. // ********************************************************************** //
  355. std::vector<std::complex<double> > MultiLayerMie::GetS1() {
  356. if (!isMieCalculated_)
  357. throw std::invalid_argument("You should run calculations before result request!");
  358. return S1_;
  359. }
  360. // ********************************************************************** //
  361. // Returns previously calculated S2 //
  362. // ********************************************************************** //
  363. std::vector<std::complex<double> > MultiLayerMie::GetS2() {
  364. if (!isMieCalculated_)
  365. throw std::invalid_argument("You should run calculations before result request!");
  366. return S2_;
  367. }
  368. // ********************************************************************** //
  369. // Modify scattering (theta) angles //
  370. // ********************************************************************** //
  371. void MultiLayerMie::SetAngles(const std::vector<double>& angles) {
  372. MarkUncalculated();
  373. theta_ = angles;
  374. }
  375. // ********************************************************************** //
  376. // Modify size of all layers //
  377. // ********************************************************************** //
  378. void MultiLayerMie::SetLayersSize(const std::vector<double>& layer_size) {
  379. MarkUncalculated();
  380. size_param_.clear();
  381. double prev_layer_size = 0.0;
  382. for (auto curr_layer_size : layer_size) {
  383. if (curr_layer_size <= 0.0)
  384. throw std::invalid_argument("Size parameter should be positive!");
  385. if (prev_layer_size > curr_layer_size)
  386. throw std::invalid_argument
  387. ("Size parameter for next layer should be larger than the previous one!");
  388. prev_layer_size = curr_layer_size;
  389. size_param_.push_back(curr_layer_size);
  390. }
  391. }
  392. // ********************************************************************** //
  393. // Modify refractive index of all layers //
  394. // ********************************************************************** //
  395. void MultiLayerMie::SetLayersIndex(const std::vector< std::complex<double> >& index) {
  396. MarkUncalculated();
  397. refractive_index_ = index;
  398. }
  399. // ********************************************************************** //
  400. // Modify coordinates for field calculation //
  401. // ********************************************************************** //
  402. void MultiLayerMie::SetFieldCoords(const std::vector< std::vector<double> >& coords) {
  403. if (coords.size() != 3)
  404. throw std::invalid_argument("Error! Wrong dimension of field monitor points!");
  405. if (coords[0].size() != coords[1].size() || coords[0].size() != coords[2].size())
  406. throw std::invalid_argument("Error! Missing coordinates for field monitor points!");
  407. coords_ = coords;
  408. }
  409. // ********************************************************************** //
  410. // Modify index of PEC layer //
  411. // ********************************************************************** //
  412. void MultiLayerMie::SetPECLayer(int layer_position) {
  413. MarkUncalculated();
  414. if (layer_position < 0 && layer_position != -1)
  415. throw std::invalid_argument("Error! Layers are numbered from 0!");
  416. PEC_layer_position_ = layer_position;
  417. }
  418. // ********************************************************************** //
  419. // Set maximun number of terms to be used //
  420. // ********************************************************************** //
  421. void MultiLayerMie::SetMaxTerms(int nmax) {
  422. MarkUncalculated();
  423. nmax_preset_ = nmax;
  424. }
  425. // ********************************************************************** //
  426. // Get total size parameter of particle //
  427. // ********************************************************************** //
  428. double MultiLayerMie::GetSizeParameter() {
  429. if (size_param_.size() > 0)
  430. return size_param_.back();
  431. else
  432. return 0;
  433. }
  434. // ********************************************************************** //
  435. // Mark uncalculated //
  436. // ********************************************************************** //
  437. void MultiLayerMie::MarkUncalculated() {
  438. isExpCoeffsCalc_ = false;
  439. isScaCoeffsCalc_ = false;
  440. isMieCalculated_ = false;
  441. }
  442. // ********************************************************************** //
  443. // Clear layer information //
  444. // ********************************************************************** //
  445. void MultiLayerMie::ClearLayers() {
  446. MarkUncalculated();
  447. size_param_.clear();
  448. refractive_index_.clear();
  449. }
  450. // ********************************************************************** //
  451. // ********************************************************************** //
  452. // ********************************************************************** //
  453. // Computational core
  454. // ********************************************************************** //
  455. // ********************************************************************** //
  456. // ********************************************************************** //
  457. // ********************************************************************** //
  458. // Calculate calcNstop - equation (17) //
  459. // ********************************************************************** //
  460. void MultiLayerMie::calcNstop() {
  461. const double& xL = size_param_.back();
  462. if (xL <= 8) {
  463. nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 1);
  464. } else if (xL <= 4200) {
  465. nmax_ = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
  466. } else {
  467. nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 2);
  468. }
  469. }
  470. // ********************************************************************** //
  471. // Maximum number of terms required for the calculation //
  472. // ********************************************************************** //
  473. void MultiLayerMie::calcNmax(unsigned int first_layer) {
  474. int ri, riM1;
  475. const std::vector<double>& x = size_param_;
  476. const std::vector<std::complex<double> >& m = refractive_index_;
  477. calcNstop(); // Set initial nmax_ value
  478. for (unsigned int i = first_layer; i < x.size(); i++) {
  479. if (static_cast<int>(i) > PEC_layer_position_) // static_cast used to avoid warning
  480. ri = round(std::abs(x[i]*m[i]));
  481. else
  482. ri = 0;
  483. nmax_ = std::max(nmax_, ri);
  484. // first layer is pec, if pec is present
  485. if ((i > first_layer) && (static_cast<int>(i - 1) > PEC_layer_position_))
  486. riM1 = round(std::abs(x[i - 1]* m[i]));
  487. else
  488. riM1 = 0;
  489. nmax_ = std::max(nmax_, riM1);
  490. }
  491. nmax_ += 15; // Final nmax_ value
  492. }
  493. // ********************************************************************** //
  494. // Calculate an - equation (5) //
  495. // ********************************************************************** //
  496. std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
  497. std::complex<double> PsiXL, std::complex<double> ZetaXL,
  498. std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
  499. std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
  500. std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
  501. return Num/Denom;
  502. }
  503. // ********************************************************************** //
  504. // Calculate bn - equation (6) //
  505. // ********************************************************************** //
  506. std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
  507. std::complex<double> PsiXL, std::complex<double> ZetaXL,
  508. std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
  509. std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
  510. std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
  511. return Num/Denom;
  512. }
  513. // ********************************************************************** //
  514. // Calculates S1 - equation (25a) //
  515. // ********************************************************************** //
  516. std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
  517. double Pi, double Tau) {
  518. return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
  519. }
  520. // ********************************************************************** //
  521. // Calculates S2 - equation (25b) (it's the same as (25a), just switches //
  522. // Pi and Tau) //
  523. // ********************************************************************** //
  524. std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
  525. double Pi, double Tau) {
  526. return calc_S1(n, an, bn, Tau, Pi);
  527. }
  528. //**********************************************************************************//
  529. // This function calculates the logarithmic derivatives of the Riccati-Bessel //
  530. // functions (D1 and D3) for a complex argument (z). //
  531. // Equations (16a), (16b) and (18a) - (18d) //
  532. // //
  533. // Input parameters: //
  534. // z: Complex argument to evaluate D1 and D3 //
  535. // nmax_: Maximum number of terms to calculate D1 and D3 //
  536. // //
  537. // Output parameters: //
  538. // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
  539. //**********************************************************************************//
  540. void MultiLayerMie::calcD1D3(const std::complex<double> z,
  541. std::vector<std::complex<double> >& D1,
  542. std::vector<std::complex<double> >& D3) {
  543. // Downward recurrence for D1 - equations (16a) and (16b)
  544. D1[nmax_] = std::complex<double>(0.0, 0.0);
  545. const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
  546. for (int n = nmax_; n > 0; n--) {
  547. D1[n - 1] = static_cast<double>(n)*zinv - 1.0/(D1[n] + static_cast<double>(n)*zinv);
  548. }
  549. if (std::abs(D1[0]) > 1.0e15) {
  550. throw std::invalid_argument("Unstable D1! Please, try to change input parameters!\n");
  551. //printf("Warning: Potentially unstable D1! Please, try to change input parameters!\n");
  552. }
  553. // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
  554. PsiZeta_[0] = 0.5*(1.0 - std::complex<double>(std::cos(2.0*z.real()), std::sin(2.0*z.real()))
  555. *std::exp(-2.0*z.imag()));
  556. D3[0] = std::complex<double>(0.0, 1.0);
  557. for (int n = 1; n <= nmax_; n++) {
  558. PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<double>(n)*zinv - D1[n - 1])
  559. *(static_cast<double>(n)*zinv - D3[n - 1]);
  560. D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta_[n];
  561. }
  562. }
  563. //**********************************************************************************//
  564. // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
  565. // complex argument (z). //
  566. // Equations (20a) - (21b) //
  567. // //
  568. // Input parameters: //
  569. // z: Complex argument to evaluate Psi and Zeta //
  570. // nmax: Maximum number of terms to calculate Psi and Zeta //
  571. // //
  572. // Output parameters: //
  573. // Psi, Zeta: Riccati-Bessel functions //
  574. //**********************************************************************************//
  575. void MultiLayerMie::calcPsiZeta(std::complex<double> z,
  576. std::vector<std::complex<double> >& Psi,
  577. std::vector<std::complex<double> >& Zeta) {
  578. std::complex<double> c_i(0.0, 1.0);
  579. std::vector<std::complex<double> > D1(nmax_ + 1), D3(nmax_ + 1);
  580. // First, calculate the logarithmic derivatives
  581. calcD1D3(z, D1, D3);
  582. // Now, use the upward recurrence to calculate Psi and Zeta - equations (20a) - (21b)
  583. Psi[0] = std::sin(z);
  584. Zeta[0] = std::sin(z) - c_i*std::cos(z);
  585. for (int n = 1; n <= nmax_; n++) {
  586. Psi[n] = Psi[n - 1]*(static_cast<double>(n)/z - D1[n - 1]);
  587. Zeta[n] = Zeta[n - 1]*(static_cast<double>(n)/z - D3[n - 1]);
  588. }
  589. }
  590. //**********************************************************************************//
  591. // This function calculates Pi and Tau for a given value of cos(Theta). //
  592. // Equations (26a) - (26c) //
  593. // //
  594. // Input parameters: //
  595. // nmax_: Maximum number of terms to calculate Pi and Tau //
  596. // nTheta: Number of scattering angles //
  597. // Theta: Array containing all the scattering angles where the scattering //
  598. // amplitudes will be calculated //
  599. // //
  600. // Output parameters: //
  601. // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
  602. //**********************************************************************************//
  603. void MultiLayerMie::calcPiTau(const double& costheta,
  604. std::vector<double>& Pi, std::vector<double>& Tau) {
  605. int i;
  606. //****************************************************//
  607. // Equations (26a) - (26c) //
  608. //****************************************************//
  609. // Initialize Pi and Tau
  610. Pi[0] = 1.0; // n=1
  611. Tau[0] = costheta;
  612. // Calculate the actual values
  613. if (nmax_ > 1) {
  614. Pi[1] = 3*costheta*Pi[0]; //n=2
  615. Tau[1] = 2*costheta*Pi[1] - 3*Pi[0];
  616. for (i = 2; i < nmax_; i++) { //n=[3..nmax_]
  617. Pi[i] = ((i + i + 1)*costheta*Pi[i - 1] - (i + 1)*Pi[i - 2])/i;
  618. Tau[i] = (i + 1)*costheta*Pi[i] - (i + 2)*Pi[i - 1];
  619. }
  620. }
  621. } // end of MultiLayerMie::calcPiTau(...)
  622. //**********************************************************************************//
  623. // This function calculates vector spherical harmonics (eq. 4.50, p. 95 BH), //
  624. // required to calculate the near-field parameters. //
  625. // //
  626. // Input parameters: //
  627. // Rho: Radial distance //
  628. // Phi: Azimuthal angle //
  629. // Theta: Polar angle //
  630. // rn: Either the spherical Ricatti-Bessel function of first or third kind //
  631. // Dn: Logarithmic derivative of rn //
  632. // Pi, Tau: Angular functions Pi and Tau //
  633. // n: Order of vector spherical harmonics //
  634. // //
  635. // Output parameters: //
  636. // Mo1n, Me1n, No1n, Ne1n: Complex vector spherical harmonics //
  637. //**********************************************************************************//
  638. void MultiLayerMie::calcSpherHarm(const std::complex<double> Rho, const double Theta, const double Phi,
  639. const std::complex<double>& rn, const std::complex<double>& Dn,
  640. const double& Pi, const double& Tau, const double& n,
  641. std::vector<std::complex<double> >& Mo1n, std::vector<std::complex<double> >& Me1n,
  642. std::vector<std::complex<double> >& No1n, std::vector<std::complex<double> >& Ne1n) {
  643. // using eq 4.50 in BH
  644. std::complex<double> c_zero(0.0, 0.0);
  645. using std::sin;
  646. using std::cos;
  647. Mo1n[0] = c_zero;
  648. Mo1n[1] = cos(Phi)*Pi*rn/Rho;
  649. Mo1n[2] = -sin(Phi)*Tau*rn/Rho;
  650. Me1n[0] = c_zero;
  651. Me1n[1] = -sin(Phi)*Pi*rn/Rho;
  652. Me1n[2] = -cos(Phi)*Tau*rn/Rho;
  653. No1n[0] = sin(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;
  654. No1n[1] = sin(Phi)*Tau*Dn*rn/Rho;
  655. No1n[2] = cos(Phi)*Pi*Dn*rn/Rho;
  656. Ne1n[0] = cos(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;
  657. Ne1n[1] = cos(Phi)*Tau*Dn*rn/Rho;
  658. Ne1n[2] = -sin(Phi)*Pi*Dn*rn/Rho;
  659. } // end of MultiLayerMie::calcSpherHarm(...)
  660. //**********************************************************************************//
  661. // This function calculates the scattering coefficients required to calculate //
  662. // both the near- and far-field parameters. //
  663. // //
  664. // Input parameters: //
  665. // L: Number of layers //
  666. // pl: Index of PEC layer. If there is none just send -1 //
  667. // x: Array containing the size parameters of the layers [0..L-1] //
  668. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  669. // nmax: Maximum number of multipolar expansion terms to be used for the //
  670. // calculations. Only use it if you know what you are doing, otherwise //
  671. // set this parameter to -1 and the function will calculate it. //
  672. // //
  673. // Output parameters: //
  674. // an, bn: Complex scattering amplitudes //
  675. // //
  676. // Return value: //
  677. // Number of multipolar expansion terms used for the calculations //
  678. //**********************************************************************************//
  679. void MultiLayerMie::calcScattCoeffs() {
  680. isScaCoeffsCalc_ = false;
  681. const std::vector<double>& x = size_param_;
  682. const std::vector<std::complex<double> >& m = refractive_index_;
  683. const int& pl = PEC_layer_position_;
  684. const int L = refractive_index_.size();
  685. //************************************************************************//
  686. // Calculate the index of the first layer. It can be either 0 (default) //
  687. // or the index of the outermost PEC layer. In the latter case all layers //
  688. // below the PEC are discarded. //
  689. // ***********************************************************************//
  690. int fl = (pl > 0) ? pl : 0;
  691. if (nmax_preset_ <= 0) calcNmax(fl);
  692. else nmax_ = nmax_preset_;
  693. std::complex<double> z1, z2;
  694. //**************************************************************************//
  695. // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
  696. // means that index = layer number - 1 or index = n - 1. The only exception //
  697. // are the arrays for representing D1, D3 and Q because they need a value //
  698. // for the index 0 (zero), hence it is important to consider this shift //
  699. // between different arrays. The change was done to optimize memory usage. //
  700. //**************************************************************************//
  701. // Allocate memory to the arrays
  702. std::vector<std::complex<double> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
  703. D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
  704. std::vector<std::vector<std::complex<double> > > Q(L), Ha(L), Hb(L);
  705. for (int l = 0; l < L; l++) {
  706. Q[l].resize(nmax_ + 1);
  707. Ha[l].resize(nmax_);
  708. Hb[l].resize(nmax_);
  709. }
  710. an_.resize(nmax_);
  711. bn_.resize(nmax_);
  712. PsiZeta_.resize(nmax_ + 1);
  713. std::vector<std::complex<double> > PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
  714. //*************************************************//
  715. // Calculate D1 and D3 for z1 in the first layer //
  716. //*************************************************//
  717. if (fl == pl) { // PEC layer
  718. for (int n = 0; n <= nmax_; n++) {
  719. D1_mlxl[n] = std::complex<double>(0.0, - 1.0);
  720. D3_mlxl[n] = std::complex<double>(0.0, 1.0);
  721. }
  722. } else { // Regular layer
  723. z1 = x[fl]* m[fl];
  724. // Calculate D1 and D3
  725. calcD1D3(z1, D1_mlxl, D3_mlxl);
  726. }
  727. //******************************************************************//
  728. // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
  729. //******************************************************************//
  730. for (int n = 0; n < nmax_; n++) {
  731. Ha[fl][n] = D1_mlxl[n + 1];
  732. Hb[fl][n] = D1_mlxl[n + 1];
  733. }
  734. //*****************************************************//
  735. // Iteration from the second layer to the last one (L) //
  736. //*****************************************************//
  737. std::complex<double> Temp, Num, Denom;
  738. std::complex<double> G1, G2;
  739. for (int l = fl + 1; l < L; l++) {
  740. //************************************************************//
  741. //Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L //
  742. //************************************************************//
  743. z1 = x[l]*m[l];
  744. z2 = x[l - 1]*m[l];
  745. //Calculate D1 and D3 for z1
  746. calcD1D3(z1, D1_mlxl, D3_mlxl);
  747. //Calculate D1 and D3 for z2
  748. calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
  749. //*************************************************//
  750. //Calculate Q, Ha and Hb in the layers fl + 1..L //
  751. //*************************************************//
  752. // Upward recurrence for Q - equations (19a) and (19b)
  753. Num = std::exp(-2.0*(z1.imag() - z2.imag()))
  754. *std::complex<double>(std::cos(-2.0*z2.real()) - std::exp(-2.0*z2.imag()), std::sin(-2.0*z2.real()));
  755. Denom = std::complex<double>(std::cos(-2.0*z1.real()) - std::exp(-2.0*z1.imag()), std::sin(-2.0*z1.real()));
  756. Q[l][0] = Num/Denom;
  757. for (int n = 1; n <= nmax_; n++) {
  758. Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]);
  759. Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]);
  760. Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
  761. }
  762. // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
  763. for (int n = 1; n <= nmax_; n++) {
  764. //Ha
  765. if ((l - 1) == pl) { // The layer below the current one is a PEC layer
  766. G1 = -D1_mlxlM1[n];
  767. G2 = -D3_mlxlM1[n];
  768. } else {
  769. G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
  770. G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
  771. } // end of if PEC
  772. Temp = Q[l][n]*G1;
  773. Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
  774. Denom = G2 - Temp;
  775. Ha[l][n - 1] = Num/Denom;
  776. //Hb
  777. if ((l - 1) == pl) { // The layer below the current one is a PEC layer
  778. G1 = Hb[l - 1][n - 1];
  779. G2 = Hb[l - 1][n - 1];
  780. } else {
  781. G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
  782. G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
  783. } // end of if PEC
  784. Temp = Q[l][n]*G1;
  785. Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
  786. Denom = (G2- Temp);
  787. Hb[l][n - 1] = (Num/ Denom);
  788. } // end of for Ha and Hb terms
  789. } // end of for layers iteration
  790. //**************************************//
  791. //Calculate Psi and Zeta for XL //
  792. //**************************************//
  793. // Calculate PsiXL and ZetaXL
  794. calcPsiZeta(x[L - 1], PsiXL, ZetaXL);
  795. //*********************************************************************//
  796. // Finally, we calculate the scattering coefficients (an and bn) and //
  797. // the angular functions (Pi and Tau). Note that for these arrays the //
  798. // first layer is 0 (zero), in future versions all arrays will follow //
  799. // this convention to save memory. (13 Nov, 2014) //
  800. //*********************************************************************//
  801. for (int n = 0; n < nmax_; n++) {
  802. //********************************************************************//
  803. //Expressions for calculating an and bn coefficients are not valid if //
  804. //there is only one PEC layer (ie, for a simple PEC sphere). //
  805. //********************************************************************//
  806. if (pl < (L - 1)) {
  807. an_[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
  808. bn_[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
  809. } else {
  810. an_[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
  811. bn_[n] = PsiXL[n + 1]/ZetaXL[n + 1];
  812. }
  813. } // end of for an and bn terms
  814. isScaCoeffsCalc_ = true;
  815. } // end of MultiLayerMie::calcScattCoeffs()
  816. //**********************************************************************************//
  817. // This function calculates the actual scattering parameters and amplitudes //
  818. // //
  819. // Input parameters: //
  820. // L: Number of layers //
  821. // pl: Index of PEC layer. If there is none just send -1 //
  822. // x: Array containing the size parameters of the layers [0..L-1] //
  823. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  824. // nTheta: Number of scattering angles //
  825. // Theta: Array containing all the scattering angles where the scattering //
  826. // amplitudes will be calculated //
  827. // nmax_: Maximum number of multipolar expansion terms to be used for the //
  828. // calculations. Only use it if you know what you are doing, otherwise //
  829. // set this parameter to -1 and the function will calculate it //
  830. // //
  831. // Output parameters: //
  832. // Qext: Efficiency factor for extinction //
  833. // Qsca: Efficiency factor for scattering //
  834. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  835. // Qbk: Efficiency factor for backscattering //
  836. // Qpr: Efficiency factor for the radiation pressure //
  837. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  838. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  839. // S1, S2: Complex scattering amplitudes //
  840. // //
  841. // Return value: //
  842. // Number of multipolar expansion terms used for the calculations //
  843. //**********************************************************************************//
  844. void MultiLayerMie::RunMieCalculation() {
  845. if (size_param_.size() != refractive_index_.size())
  846. throw std::invalid_argument("Each size parameter should have only one index!");
  847. if (size_param_.size() == 0)
  848. throw std::invalid_argument("Initialize model first!");
  849. const std::vector<double>& x = size_param_;
  850. MarkUncalculated();
  851. // Calculate scattering coefficients
  852. calcScattCoeffs();
  853. // Initialize the scattering parameters
  854. Qext_ = 0.0;
  855. Qsca_ = 0.0;
  856. Qabs_ = 0.0;
  857. Qbk_ = 0.0;
  858. Qpr_ = 0.0;
  859. asymmetry_factor_ = 0.0;
  860. albedo_ = 0.0;
  861. // Initialize the scattering amplitudes
  862. std::vector<std::complex<double> > tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
  863. S1_.swap(tmp1);
  864. S2_ = S1_;
  865. std::vector<double> Pi(nmax_), Tau(nmax_);
  866. std::complex<double> Qbktmp(0.0, 0.0);
  867. std::vector< std::complex<double> > Qbktmp_ch(nmax_ - 1, Qbktmp);
  868. // By using downward recurrence we avoid loss of precision due to float rounding errors
  869. // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
  870. // http://en.wikipedia.org/wiki/Loss_of_significance
  871. for (int i = nmax_ - 2; i >= 0; i--) {
  872. const int n = i + 1;
  873. // Equation (27)
  874. Qext_ += (n + n + 1.0)*(an_[i].real() + bn_[i].real());
  875. // Equation (28)
  876. Qsca_ += (n + n + 1.0)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
  877. + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
  878. // Equation (29)
  879. Qpr_ += ((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real())
  880. + ((double)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real());
  881. // Equation (33)
  882. Qbktmp += (double)(n + n + 1)*(1 - 2*(n % 2))*(an_[i]- bn_[i]);
  883. // Calculate the scattering amplitudes (S1 and S2) //
  884. // Precalculate cos(theta) - gives about 5% speed up.
  885. std::vector<double> costheta(theta_.size(), 0.0);
  886. for (int t = 0; t < theta_.size(); t++) {
  887. costheta[t] = std::cos(theta_[t]);
  888. }
  889. // Equations (25a) - (25b) //
  890. for (unsigned int t = 0; t < theta_.size(); t++) {
  891. calcPiTau(costheta[t], Pi, Tau);
  892. S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[i], Tau[i]);
  893. S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[i], Tau[i]);
  894. }
  895. }
  896. double x2 = pow2(x.back());
  897. Qext_ = 2.0*(Qext_)/x2; // Equation (27)
  898. Qsca_ = 2.0*(Qsca_)/x2; // Equation (28)
  899. Qpr_ = Qext_ - 4.0*(Qpr_)/x2; // Equation (29)
  900. Qabs_ = Qext_ - Qsca_; // Equation (30)
  901. albedo_ = Qsca_/Qext_; // Equation (31)
  902. asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_; // Equation (32)
  903. Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
  904. isMieCalculated_ = true;
  905. }
  906. //**********************************************************************************//
  907. // This function calculates the expansion coefficients inside the particle, //
  908. // required to calculate the near-field parameters. //
  909. // //
  910. // Input parameters: //
  911. // L: Number of layers //
  912. // pl: Index of PEC layer. If there is none just send -1 //
  913. // x: Array containing the size parameters of the layers [0..L-1] //
  914. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  915. // nmax: Maximum number of multipolar expansion terms to be used for the //
  916. // calculations. Only use it if you know what you are doing, otherwise //
  917. // set this parameter to -1 and the function will calculate it. //
  918. // //
  919. // Output parameters: //
  920. // aln, bln, cln, dln: Complex scattering amplitudes inside the particle //
  921. // //
  922. // Return value: //
  923. // Number of multipolar expansion terms used for the calculations //
  924. //**********************************************************************************//
  925. void MultiLayerMie::calcExpanCoeffs() {
  926. if (!isScaCoeffsCalc_)
  927. throw std::invalid_argument("(ExpanCoeffs) You should calculate external coefficients first!");
  928. isExpCoeffsCalc_ = false;
  929. std::complex<double> c_one(1.0, 0.0), c_zero(0.0, 0.0);
  930. const int L = refractive_index_.size();
  931. aln_.resize(L + 1);
  932. bln_.resize(L + 1);
  933. cln_.resize(L + 1);
  934. dln_.resize(L + 1);
  935. for (int l = 0; l <= L; l++) {
  936. aln_[l].resize(nmax_);
  937. bln_[l].resize(nmax_);
  938. cln_[l].resize(nmax_);
  939. dln_[l].resize(nmax_);
  940. }
  941. // Yang, paragraph under eq. A3
  942. // a^(L + 1)_n = a_n, d^(L + 1) = 1 ...
  943. for (int n = 0; n < nmax_; n++) {
  944. aln_[L][n] = an_[n];
  945. bln_[L][n] = bn_[n];
  946. cln_[L][n] = c_one;
  947. dln_[L][n] = c_one;
  948. }
  949. std::vector<std::complex<double> > D1z(nmax_ + 1), D1z1(nmax_ + 1), D3z(nmax_ + 1), D3z1(nmax_ + 1);
  950. std::vector<std::complex<double> > Psiz(nmax_ + 1), Psiz1(nmax_ + 1), Zetaz(nmax_ + 1), Zetaz1(nmax_ + 1);
  951. std::complex<double> denomZeta, denomPsi, T1, T2, T3, T4;
  952. auto& m = refractive_index_;
  953. std::vector< std::complex<double> > m1(L);
  954. for (int l = 0; l < L - 1; l++) m1[l] = m[l + 1];
  955. m1[L - 1] = std::complex<double> (1.0, 0.0);
  956. std::complex<double> z, z1;
  957. for (int l = L - 1; l >= 0; l--) {
  958. if (l <= PEC_layer_position_) { // We are inside a PEC. All coefficients must be zero!!!
  959. for (int n = 0; n < nmax_; n++) {
  960. // aln
  961. aln_[l][n] = c_zero;
  962. // bln
  963. bln_[l][n] = c_zero;
  964. // cln
  965. cln_[l][n] = c_zero;
  966. // dln
  967. dln_[l][n] = c_zero;
  968. }
  969. } else { // Regular material, just do the calculation
  970. z = size_param_[l]*m[l];
  971. z1 = size_param_[l]*m1[l];
  972. calcD1D3(z, D1z, D3z);
  973. calcD1D3(z1, D1z1, D3z1);
  974. calcPsiZeta(z, Psiz, Zetaz);
  975. calcPsiZeta(z1, Psiz1, Zetaz1);
  976. for (int n = 0; n < nmax_; n++) {
  977. int n1 = n + 1;
  978. denomZeta = Zetaz[n1]*(D1z[n1] - D3z[n1]);
  979. denomPsi = Psiz[n1]*(D1z[n1] - D3z[n1]);
  980. T1 = aln_[l + 1][n]*Zetaz1[n1] - dln_[l + 1][n]*Psiz1[n1];
  981. T2 = (bln_[l + 1][n]*Zetaz1[n1] - cln_[l + 1][n]*Psiz1[n1])*m[l]/m1[l];
  982. T3 = (dln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - aln_[l + 1][n]*D3z1[n1]*Zetaz1[n1])*m[l]/m1[l];
  983. T4 = cln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - bln_[l + 1][n]*D3z1[n1]*Zetaz1[n1];
  984. // aln
  985. aln_[l][n] = (D1z[n1]*T1 + T3)/denomZeta;
  986. // bln
  987. bln_[l][n] = (D1z[n1]*T2 + T4)/denomZeta;
  988. // cln
  989. cln_[l][n] = (D3z[n1]*T2 + T4)/denomPsi;
  990. // dln
  991. dln_[l][n] = (D3z[n1]*T1 + T3)/denomPsi;
  992. } // end of all n
  993. } // end PEC condition
  994. } // end of all l
  995. // Check the result and change aln_[0][n] and aln_[0][n] for exact zero
  996. for (int n = 0; n < nmax_; ++n) {
  997. if (std::abs(aln_[0][n]) < 1e-10) aln_[0][n] = 0.0;
  998. else {
  999. //throw std::invalid_argument("Unstable calculation of aln_[0][n]!");
  1000. printf("Warning: Potentially unstable calculation of aln (aln[0][%i] = %g, %gi)\n", n, aln_[0][n].real(), aln_[0][n].imag());
  1001. aln_[0][n] = 0.0;
  1002. }
  1003. if (std::abs(bln_[0][n]) < 1e-10) bln_[0][n] = 0.0;
  1004. else {
  1005. //throw std::invalid_argument("Unstable calculation of bln_[0][n]!");
  1006. printf("Warning: Potentially unstable calculation of bln (bln[0][%i] = %g, %gi) pl=%d\n", n, bln_[0][n].real(), bln_[0][n].imag(), PEC_layer_position_);
  1007. bln_[0][n] = 0.0;
  1008. }
  1009. }
  1010. isExpCoeffsCalc_ = true;
  1011. } // end of void MultiLayerMie::calcExpanCoeffs()
  1012. //**********************************************************************************//
  1013. // This function calculates the electric (E) and magnetic (H) fields inside and //
  1014. // around the particle. //
  1015. // //
  1016. // Input parameters (coordinates of the point): //
  1017. // Rho: Radial distance //
  1018. // Phi: Azimuthal angle //
  1019. // Theta: Polar angle //
  1020. // //
  1021. // Output parameters: //
  1022. // E, H: Complex electric and magnetic fields //
  1023. //**********************************************************************************//
  1024. void MultiLayerMie::calcField(const double Rho, const double Theta, const double Phi,
  1025. std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
  1026. std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
  1027. std::vector<std::complex<double> > ipow = {c_one, c_i, -c_one, -c_i}; // Vector containing precomputed integer powers of i to avoid computation
  1028. std::vector<std::complex<double> > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3);
  1029. std::vector<std::complex<double> > M1o1n(3), M1e1n(3), N1o1n(3), N1e1n(3);
  1030. std::vector<std::complex<double> > Psi(nmax_ + 1), D1n(nmax_ + 1), Zeta(nmax_ + 1), D3n(nmax_ + 1);
  1031. std::vector<double> Pi(nmax_), Tau(nmax_);
  1032. int l = 0; // Layer number
  1033. std::complex<double> ml;
  1034. // Initialize E and H
  1035. for (int i = 0; i < 3; i++) {
  1036. E[i] = c_zero;
  1037. H[i] = c_zero;
  1038. }
  1039. if (Rho > size_param_.back()) {
  1040. l = size_param_.size();
  1041. ml = c_one;
  1042. } else {
  1043. for (int i = size_param_.size() - 1; i >= 0 ; i--) {
  1044. if (Rho <= size_param_[i]) {
  1045. l = i;
  1046. }
  1047. }
  1048. ml = refractive_index_[l];
  1049. }
  1050. // Calculate logarithmic derivative of the Ricatti-Bessel functions
  1051. calcD1D3(Rho*ml, D1n, D3n);
  1052. // Calculate Ricatti-Bessel functions
  1053. calcPsiZeta(Rho*ml, Psi, Zeta);
  1054. // Calculate angular functions Pi and Tau
  1055. calcPiTau(std::cos(Theta), Pi, Tau);
  1056. for (int n = nmax_ - 2; n >= 0; n--) {
  1057. int n1 = n + 1;
  1058. double rn = static_cast<double>(n1);
  1059. // using BH 4.12 and 4.50
  1060. calcSpherHarm(Rho*ml, Theta, Phi, Psi[n1], D1n[n1], Pi[n], Tau[n], rn, M1o1n, M1e1n, N1o1n, N1e1n);
  1061. calcSpherHarm(Rho*ml, Theta, Phi, Zeta[n1], D3n[n1], Pi[n], Tau[n], rn, M3o1n, M3e1n, N3o1n, N3e1n);
  1062. // Total field in the lth layer: eqs. (1) and (2) in Yang, Appl. Opt., 42 (2003) 1710-1720
  1063. std::complex<double> En = ipow[n1 % 4]*(rn + rn + 1.0)/(rn*rn + rn);
  1064. for (int i = 0; i < 3; i++) {
  1065. // electric field E [V m - 1] = EF*E0
  1066. E[i] += En*(cln_[l][n]*M1o1n[i] - c_i*dln_[l][n]*N1e1n[i]
  1067. + c_i*aln_[l][n]*N3e1n[i] - bln_[l][n]*M3o1n[i]);
  1068. H[i] += En*(-dln_[l][n]*M1e1n[i] - c_i*cln_[l][n]*N1o1n[i]
  1069. + c_i*bln_[l][n]*N3o1n[i] + aln_[l][n]*M3e1n[i]);
  1070. }
  1071. } // end of for all n
  1072. // magnetic field
  1073. std::complex<double> hffact = ml/(cc_*mu_);
  1074. for (int i = 0; i < 3; i++) {
  1075. H[i] = hffact*H[i];
  1076. }
  1077. } // end of MultiLayerMie::calcField(...)
  1078. //**********************************************************************************//
  1079. // This function calculates complex electric and magnetic field in the surroundings //
  1080. // and inside the particle. //
  1081. // //
  1082. // Input parameters: //
  1083. // L: Number of layers //
  1084. // pl: Index of PEC layer. If there is none just send 0 (zero) //
  1085. // x: Array containing the size parameters of the layers [0..L-1] //
  1086. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  1087. // nmax: Maximum number of multipolar expansion terms to be used for the //
  1088. // calculations. Only use it if you know what you are doing, otherwise //
  1089. // set this parameter to 0 (zero) and the function will calculate it. //
  1090. // ncoord: Number of coordinate points //
  1091. // Coords: Array containing all coordinates where the complex electric and //
  1092. // magnetic fields will be calculated //
  1093. // //
  1094. // Output parameters: //
  1095. // E, H: Complex electric and magnetic field at the provided coordinates //
  1096. // //
  1097. // Return value: //
  1098. // Number of multipolar expansion terms used for the calculations //
  1099. //**********************************************************************************//
  1100. void MultiLayerMie::RunFieldCalculation() {
  1101. double Rho, Theta, Phi;
  1102. // Calculate scattering coefficients an_ and bn_
  1103. calcScattCoeffs();
  1104. // Calculate expansion coefficients aln_, bln_, cln_, and dln_
  1105. calcExpanCoeffs();
  1106. long total_points = coords_[0].size();
  1107. E_.resize(total_points);
  1108. H_.resize(total_points);
  1109. for (auto& f : E_) f.resize(3);
  1110. for (auto& f : H_) f.resize(3);
  1111. for (int point = 0; point < total_points; point++) {
  1112. const double& Xp = coords_[0][point];
  1113. const double& Yp = coords_[1][point];
  1114. const double& Zp = coords_[2][point];
  1115. // Convert to spherical coordinates
  1116. Rho = std::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
  1117. // If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
  1118. Theta = (Rho > 0.0) ? std::acos(Zp/Rho) : 0.0;
  1119. // If Xp=Yp=0 then Phi is undefined. Just set it to zero to avoid problems
  1120. if (Xp == 0.0)
  1121. Phi = (Yp != 0.0) ? std::asin(Yp/std::sqrt(pow2(Xp) + pow2(Yp))) : 0.0;
  1122. else
  1123. Phi = std::acos(Xp/std::sqrt(pow2(Xp) + pow2(Yp)));
  1124. // Avoid convergence problems due to Rho too small
  1125. if (Rho < 1e-5) Rho = 1e-5;
  1126. //*******************************************************//
  1127. // external scattering field = incident + scattered //
  1128. // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
  1129. // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
  1130. //*******************************************************//
  1131. // This array contains the fields in spherical coordinates
  1132. std::vector<std::complex<double> > Es(3), Hs(3);
  1133. // Do the actual calculation of electric and magnetic field
  1134. calcField(Rho, Theta, Phi, Es, Hs);
  1135. { //Now, convert the fields back to cartesian coordinates
  1136. using std::sin;
  1137. using std::cos;
  1138. E_[point][0] = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];
  1139. E_[point][1] = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];
  1140. E_[point][2] = cos(Theta)*Es[0] - sin(Theta)*Es[1];
  1141. H_[point][0] = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];
  1142. H_[point][1] = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
  1143. H_[point][2] = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
  1144. }
  1145. } // end of for all field coordinates
  1146. } // end of MultiLayerMie::RunFieldCalculation()
  1147. } // end of namespace nmie