example-get-Mie.cc 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161
  1. //**********************************************************************************//
  2. // Copyright (C) 2009-2015 Ovidio Pena <ovidio@bytesfall.com> //
  3. // Copyright (C) 2013-2015 Konstantin Ladutenko <kostyfisik@gmail.com> //
  4. // //
  5. // This file is part of scattnlay //
  6. // //
  7. // This program is free software: you can redistribute it and/or modify //
  8. // it under the terms of the GNU General Public License as published by //
  9. // the Free Software Foundation, either version 3 of the License, or //
  10. // (at your option) any later version. //
  11. // //
  12. // This program is distributed in the hope that it will be useful, //
  13. // but WITHOUT ANY WARRANTY; without even the implied warranty of //
  14. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
  15. // GNU General Public License for more details. //
  16. // //
  17. // The only additional remark is that we expect that all publications //
  18. // describing work using this software, or all commercial products //
  19. // using it, cite the following reference: //
  20. // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
  21. // a multilayered sphere," Computer Physics Communications, //
  22. // vol. 180, Nov. 2009, pp. 2348-2354. //
  23. // //
  24. // You should have received a copy of the GNU General Public License //
  25. // along with this program. If not, see <http://www.gnu.org/licenses/>. //
  26. //**********************************************************************************//
  27. // This program returns expansion coefficents of Mie series
  28. #include <complex>
  29. #include <cstdio>
  30. #include <string>
  31. #include "../src/nmie-applied.h"
  32. template<class T> inline T pow2(const T value) {return value*value;}
  33. int main(int argc, char *argv[]) {
  34. try {
  35. nmie::MultiLayerMieApplied multi_layer_mie;
  36. const std::complex<double> epsilon_Si(18.4631066585, 0.6259727805);
  37. const std::complex<double> epsilon_Ag(-8.5014154589, 0.7585845411);
  38. const std::complex<double> index_Si = std::sqrt(epsilon_Si);
  39. const std::complex<double> index_Ag = std::sqrt(epsilon_Ag);
  40. double WL=500; //nm
  41. double core_width = 5.27; //nm Si
  42. double inner_width = 8.22; //nm Ag
  43. double outer_width = 67.91; //nm Si
  44. bool isSiAgSi = true;
  45. //bool isSiAgSi = false;
  46. if (isSiAgSi) {
  47. multi_layer_mie.AddTargetLayer(core_width, index_Si);
  48. multi_layer_mie.AddTargetLayer(inner_width, index_Ag);
  49. multi_layer_mie.AddTargetLayer(outer_width, index_Si);
  50. } else {
  51. inner_width = 31.93; //nm Ag
  52. outer_width = 4.06; //nm Si
  53. multi_layer_mie.AddTargetLayer(inner_width, index_Ag);
  54. multi_layer_mie.AddTargetLayer(outer_width, index_Si);
  55. }
  56. FILE *fp;
  57. std::string fname = "sum-abs-spectra.dat";
  58. fp = fopen(fname.c_str(), "w");
  59. multi_layer_mie.SetWavelength(WL);
  60. multi_layer_mie.RunMieCalculation();
  61. double Qabs = multi_layer_mie.GetQabs();
  62. printf("Qabs = %g\n", Qabs);
  63. std::vector< std::vector<std::complex<double> > > aln, bln, cln, dln;
  64. multi_layer_mie.GetExpanCoeffs(aln, bln, cln, dln);
  65. std::string str = std::string("#WL ");
  66. for (int l = 0; l<aln.size(); ++l) {
  67. for (int n = 0; n<3; ++n) {
  68. str+="|a|+|d|_ln"+std::to_string(l)+std::to_string(n)+" "
  69. + "|b|+|c|_ln"+std::to_string(l)+std::to_string(n)+" ";
  70. }
  71. }
  72. str+="\n";
  73. fprintf(fp, "%s", str.c_str());
  74. fprintf(fp, "# |a|+|d|");
  75. str.clear();
  76. double from_WL = 400;
  77. double to_WL = 600;
  78. int total_points = 401;
  79. double delta_WL = std::abs(to_WL - from_WL)/(total_points-1.0);
  80. for (int i = 0; i<total_points; ++i) {
  81. WL = from_WL + i*delta_WL;
  82. str+=std::to_string(WL);
  83. multi_layer_mie.SetWavelength(WL);
  84. multi_layer_mie.RunMieCalculation();
  85. multi_layer_mie.GetQabs();
  86. multi_layer_mie.GetExpanCoeffs(aln, bln, cln, dln);
  87. for (int l = 0; l<aln.size(); ++l) {
  88. for (int n = 0; n<3; ++n) {
  89. str+=" "+std::to_string(std::abs(aln[l][n])
  90. + std::abs(dln[l][n]) )
  91. + " "
  92. + std::to_string(std::abs(bln[l][n])
  93. + std::abs(cln[l][n]) );
  94. }
  95. }
  96. str+="\n";
  97. fprintf(fp, "%s", str.c_str());
  98. str.clear();
  99. }
  100. fclose(fp);
  101. WL = 500;
  102. multi_layer_mie.SetWavelength(WL);
  103. multi_layer_mie.RunMieCalculation();
  104. multi_layer_mie.GetQabs();
  105. multi_layer_mie.GetExpanCoeffs(aln, bln, cln, dln);
  106. printf("\n Scattering");
  107. for (int l = 0; l<aln.size(); ++l) {
  108. int n = 0;
  109. printf("aln[%i][%i] = %g, %gi\n", l, n+1, aln[l][n].real(), aln[l][n].imag());
  110. printf("bln[%i][%i] = %g, %gi\n", l, n+1, bln[l][n].real(), bln[l][n].imag());
  111. printf("cln[%i][%i] = %g, %gi\n", l, n+1, cln[l][n].real(), cln[l][n].imag());
  112. printf("dln[%i][%i] = %g, %gi\n", l, n+1, dln[l][n].real(), dln[l][n].imag());
  113. n = 1;
  114. printf("aln[%i][%i] = %g, %gi\n", l, n+1, aln[l][n].real(), aln[l][n].imag());
  115. printf("bln[%i][%i] = %g, %gi\n", l, n+1, bln[l][n].real(), bln[l][n].imag());
  116. printf("cln[%i][%i] = %g, %gi\n", l, n+1, cln[l][n].real(), cln[l][n].imag());
  117. printf("dln[%i][%i] = %g, %gi\n", l, n+1, dln[l][n].real(), dln[l][n].imag());
  118. // n = 2;
  119. // printf("aln[%i][%i] = %g, %gi\n", l, n+1, aln[l][n].real(), aln[l][n].imag());
  120. // printf("bln[%i][%i] = %g, %gi\n", l, n+1, bln[l][n].real(), bln[l][n].imag());
  121. // printf("cln[%i][%i] = %g, %gi\n", l, n+1, cln[l][n].real(), cln[l][n].imag());
  122. // printf("dln[%i][%i] = %g, %gi\n", l, n+1, dln[l][n].real(), dln[l][n].imag());
  123. }
  124. printf("\n Absorbtion\n");
  125. for (int l = 0; l<aln.size(); ++l) {
  126. if (l == aln.size()-1) printf(" Total ");
  127. printf("===== l=%i =====\n", l);
  128. int n = 0;
  129. printf("aln[%i][%i] = %g\n", l, n+1, aln[l][n].real() - pow2(std::abs(aln[l][n])));
  130. printf("bln[%i][%i] = %g\n", l, n+1, bln[l][n].real() - pow2(std::abs(bln[l][n])));
  131. printf("cln[%i][%i] = %g\n", l, n+1, cln[l][n].real() - pow2(std::abs(cln[l][n])));
  132. printf("dln[%i][%i] = %g\n", l, n+1, dln[l][n].real() - pow2(std::abs(dln[l][n])));
  133. n = 1;
  134. printf("aln[%i][%i] = %g\n", l, n+1, aln[l][n].real() - pow2(std::abs(aln[l][n])));
  135. printf("bln[%i][%i] = %g\n", l, n+1, bln[l][n].real() - pow2(std::abs(bln[l][n])));
  136. printf("cln[%i][%i] = %g\n", l, n+1, cln[l][n].real() - pow2(std::abs(cln[l][n])));
  137. printf("dln[%i][%i] = %g\n", l, n+1, dln[l][n].real() - pow2(std::abs(dln[l][n])));
  138. // n = 2;
  139. // printf("aln[%i][%i] = %g\n", l, n+1, aln[l][n].real() - pow2(std::abs(aln[l][n])));
  140. // printf("bln[%i][%i] = %g\n", l, n+1, bln[l][n].real() - pow2(std::abs(bln[l][n])));
  141. // printf("cln[%i][%i] = %g\n", l, n+1, cln[l][n].real() - pow2(std::abs(cln[l][n])));
  142. // printf("dln[%i][%i] = %g\n", l, n+1, dln[l][n].real() - pow2(std::abs(dln[l][n])));
  143. }
  144. } catch( const std::invalid_argument& ia ) {
  145. // Will catch if multi_layer_mie fails or other errors.
  146. std::cerr << "Invalid argument: " << ia.what() << std::endl;
  147. return -1;
  148. }
  149. return 0;
  150. }