nmie.cc 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803
  1. //**********************************************************************************//
  2. // Copyright (C) 2009-2015 Ovidio Pena <ovidio@bytesfall.com> //
  3. // //
  4. // This file is part of scattnlay //
  5. // //
  6. // This program is free software: you can redistribute it and/or modify //
  7. // it under the terms of the GNU General Public License as published by //
  8. // the Free Software Foundation, either version 3 of the License, or //
  9. // (at your option) any later version. //
  10. // //
  11. // This program is distributed in the hope that it will be useful, //
  12. // but WITHOUT ANY WARRANTY; without even the implied warranty of //
  13. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
  14. // GNU General Public License for more details. //
  15. // //
  16. // The only additional remark is that we expect that all publications //
  17. // describing work using this software, or all commercial products //
  18. // using it, cite the following reference: //
  19. // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
  20. // a multilayered sphere," Computer Physics Communications, //
  21. // vol. 180, Nov. 2009, pp. 2348-2354. //
  22. // //
  23. // You should have received a copy of the GNU General Public License //
  24. // along with this program. If not, see <http://www.gnu.org/licenses/>. //
  25. //**********************************************************************************//
  26. //**********************************************************************************//
  27. // This library implements the algorithm for a multilayered sphere described by: //
  28. // [1] W. Yang, "Improved recursive algorithm for light scattering by a //
  29. // multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. //
  30. // //
  31. // You can find the description of all the used equations in: //
  32. // [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
  33. // a multilayered sphere," Computer Physics Communications, //
  34. // vol. 180, Nov. 2009, pp. 2348-2354. //
  35. // //
  36. // Hereinafter all equations numbers refer to [2] //
  37. //**********************************************************************************//
  38. #include <math.h>
  39. #include <stdlib.h>
  40. #include <stdio.h>
  41. #include "nmie.h"
  42. #define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
  43. // Calculate Nstop - equation (17)
  44. int Nstop(double xL) {
  45. int result;
  46. if (xL <= 8) {
  47. result = round(xL + 4*pow(xL, 1/3) + 1);
  48. } else if (xL <= 4200) {
  49. result = round(xL + 4.05*pow(xL, 1/3) + 2);
  50. } else {
  51. result = round(xL + 4*pow(xL, 1/3) + 2);
  52. }
  53. return result;
  54. }
  55. //**********************************************************************************//
  56. int Nmax(int L, int fl, int pl,
  57. std::vector<double> x,
  58. std::vector<std::complex<double> > m) {
  59. int i, result, ri, riM1;
  60. result = Nstop(x[L - 1]);
  61. for (i = fl; i < L; i++) {
  62. if (i > pl) {
  63. ri = round(std::abs(x[i]*m[i]));
  64. } else {
  65. ri = 0;
  66. }
  67. if (result < ri) {
  68. result = ri;
  69. }
  70. if ((i > fl) && ((i - 1) > pl)) {
  71. riM1 = round(std::abs(x[i - 1]* m[i]));
  72. } else {
  73. riM1 = 0;
  74. }
  75. if (result < riM1) {
  76. result = riM1;
  77. }
  78. }
  79. return result + 15;
  80. }
  81. //**********************************************************************************//
  82. // This function calculates the spherical Bessel functions (jn and yn) for a given //
  83. // real value r. See pag. 87 B&H. //
  84. // //
  85. // Input parameters: //
  86. // r: Real argument to evaluate jn and yn //
  87. // n_max: Maximum number of terms to calculate jn and yn //
  88. // //
  89. // Output parameters: //
  90. // jn, yn: Spherical Bessel functions (double) //
  91. //**********************************************************************************//
  92. void sphericalBessel(double r, int n_max, std::vector<double> &j, std::vector<double> &y) {
  93. int n;
  94. if (n_max >= 1) {
  95. j[0] = sin(r)/r;
  96. y[0] = -cos(r)/r;
  97. }
  98. if (n_max >= 2) {
  99. j[1] = sin(r)/r/r - cos(r)/r;
  100. y[1] = -cos(r)/r/r - sin(r)/r;
  101. }
  102. for (n = 2; n < n_max; n++) {
  103. j[n] = double(n + n + 1)*j[n - 1]/r - j[n - 2];
  104. y[n] = double(n + n + 1)*y[n - 1]/r - h[n - 2];
  105. }
  106. }
  107. //**********************************************************************************//
  108. // This function calculates the spherical Hankel functions (h1n and h2n) for a //
  109. // given real value r. See eqs. (4.13) and (4.14), pag. 87 B&H. //
  110. // //
  111. // Input parameters: //
  112. // r: Real argument to evaluate h1n and h2n //
  113. // n_max: Maximum number of terms to calculate h1n and h2n //
  114. // //
  115. // Output parameters: //
  116. // h1n, h2n: Spherical Hankel functions (complex) //
  117. //**********************************************************************************//
  118. void sphericalHankel(double r, int n_max, std::vector<std::complex<double> > &h1, std::vector<std::complex<double> > &h2) {
  119. int n;
  120. std::complex<double> j, y;
  121. j.resize(n_max);
  122. h.resize(n_max);
  123. sphericalBessel(r, n_max, j, y);
  124. for (n = 0; n < n_max; n++) {
  125. h1[n] = std::complex<double> (j[n], y[n]);
  126. h2[n] = std::complex<double> (j[n], -y[n]);
  127. }
  128. }
  129. // Calculate an - equation (5)
  130. std::complex<double> calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
  131. std::complex<double> PsiXL, std::complex<double> ZetaXL,
  132. std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
  133. std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
  134. std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
  135. return Num/Denom;
  136. }
  137. // Calculate bn - equation (6)
  138. std::complex<double> calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
  139. std::complex<double> PsiXL, std::complex<double> ZetaXL,
  140. std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
  141. std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
  142. std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
  143. return Num/Denom;
  144. }
  145. // Calculates S1 - equation (25a)
  146. std::complex<double> calc_S1(int n, std::complex<double> an, std::complex<double> bn,
  147. double Pi, double Tau) {
  148. return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
  149. }
  150. // Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
  151. std::complex<double> calc_S2(int n, std::complex<double> an, std::complex<double> bn,
  152. double Pi, double Tau) {
  153. return calc_S1(n, an, bn, Tau, Pi);
  154. }
  155. //**********************************************************************************//
  156. // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
  157. // real argument (x). //
  158. // Equations (20a) - (21b) //
  159. // //
  160. // Input parameters: //
  161. // x: Real argument to evaluate Psi and Zeta //
  162. // n_max: Maximum number of terms to calculate Psi and Zeta //
  163. // //
  164. // Output parameters: //
  165. // Psi, Zeta: Riccati-Bessel functions //
  166. //**********************************************************************************//
  167. void calcPsiZeta(double x, int n_max,
  168. std::vector<std::complex<double> > D1,
  169. std::vector<std::complex<double> > D3,
  170. std::vector<std::complex<double> > &Psi,
  171. std::vector<std::complex<double> > &Zeta) {
  172. int n;
  173. //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
  174. Psi[0] = std::complex<double>(sin(x), 0);
  175. Zeta[0] = std::complex<double>(sin(x), -cos(x));
  176. for (n = 1; n <= n_max; n++) {
  177. Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
  178. Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
  179. }
  180. }
  181. //**********************************************************************************//
  182. // This function calculates the logarithmic derivatives of the Riccati-Bessel //
  183. // functions (D1 and D3) for a complex argument (z). //
  184. // Equations (16a), (16b) and (18a) - (18d) //
  185. // //
  186. // Input parameters: //
  187. // z: Complex argument to evaluate D1 and D3 //
  188. // n_max: Maximum number of terms to calculate D1 and D3 //
  189. // //
  190. // Output parameters: //
  191. // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
  192. //**********************************************************************************//
  193. void calcD1D3(std::complex<double> z, int n_max,
  194. std::vector<std::complex<double> > &D1,
  195. std::vector<std::complex<double> > &D3) {
  196. int n;
  197. std::vector<std::complex<double> > PsiZeta;
  198. PsiZeta.resize(n_max + 1);
  199. // Downward recurrence for D1 - equations (16a) and (16b)
  200. D1[n_max] = std::complex<double>(0.0, 0.0);
  201. for (n = n_max; n > 0; n--) {
  202. D1[n - 1] = double(n)/z - 1.0/(D1[n] + double(n)/z);
  203. }
  204. // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
  205. PsiZeta[0] = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
  206. D3[0] = std::complex<double>(0.0, 1.0);
  207. for (n = 1; n <= n_max; n++) {
  208. PsiZeta[n] = PsiZeta[n - 1]*(double(n)/z - D1[n - 1])*(double(n)/z- D3[n - 1]);
  209. D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta[n];
  210. }
  211. }
  212. //**********************************************************************************//
  213. // This function calculates Pi and Tau for all values of Theta. //
  214. // Equations (26a) - (26c) //
  215. // //
  216. // Input parameters: //
  217. // n_max: Maximum number of terms to calculate Pi and Tau //
  218. // nTheta: Number of scattering angles //
  219. // Theta: Array containing all the scattering angles where the scattering //
  220. // amplitudes will be calculated //
  221. // //
  222. // Output parameters: //
  223. // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
  224. //**********************************************************************************//
  225. void calcPiTau(int n_max, int nTheta, std::vector<double> Theta,
  226. std::vector< std::vector<double> > &Pi,
  227. std::vector< std::vector<double> > &Tau) {
  228. int n, t;
  229. for (n = 0; n < n_max; n++) {
  230. //****************************************************//
  231. // Equations (26a) - (26c) //
  232. //****************************************************//
  233. for (t = 0; t < nTheta; t++) {
  234. if (n == 0) {
  235. // Initialize Pi and Tau
  236. Pi[n][t] = 1.0;
  237. Tau[n][t] = (n + 1)*cos(Theta[t]);
  238. } else {
  239. // Calculate the actual values
  240. Pi[n][t] = ((n == 1) ? ((n + n + 1)*cos(Theta[t])*Pi[n - 1][t]/n)
  241. : (((n + n + 1)*cos(Theta[t])*Pi[n - 1][t] - (n + 1)*Pi[n - 2][t])/n));
  242. Tau[n][t] = (n + 1)*cos(Theta[t])*Pi[n][t] - (n + 2)*Pi[n - 1][t];
  243. }
  244. }
  245. }
  246. }
  247. //**********************************************************************************//
  248. // This function calculates the scattering coefficients required to calculate //
  249. // both the near- and far-field parameters. //
  250. // //
  251. // Input parameters: //
  252. // L: Number of layers //
  253. // pl: Index of PEC layer. If there is none just send -1 //
  254. // x: Array containing the size parameters of the layers [0..L-1] //
  255. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  256. // n_max: Maximum number of multipolar expansion terms to be used for the //
  257. // calculations. Only used if you know what you are doing, otherwise set //
  258. // this parameter to -1 and the function will calculate it. //
  259. // //
  260. // Output parameters: //
  261. // an, bn: Complex scattering amplitudes //
  262. // //
  263. // Return value: //
  264. // Number of multipolar expansion terms used for the calculations //
  265. //**********************************************************************************//
  266. int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int n_max,
  267. std::vector<std::complex<double> > &an, std::vector<std::complex<double> > &bn) {
  268. //************************************************************************//
  269. // Calculate the index of the first layer. It can be either 0 (default) //
  270. // or the index of the outermost PEC layer. In the latter case all layers //
  271. // below the PEC are discarded. //
  272. //************************************************************************//
  273. int fl = (pl > 0) ? pl : 0;
  274. if (n_max <= 0) {
  275. n_max = Nmax(L, fl, pl, x, m);
  276. }
  277. std::complex<double> z1, z2;
  278. std::complex<double> Num, Denom;
  279. std::complex<double> G1, G2;
  280. std::complex<double> Temp;
  281. int n, l;
  282. //**************************************************************************//
  283. // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
  284. // means that index = layer number - 1 or index = n - 1. The only exception //
  285. // are the arrays for representing D1, D3 and Q because they need a value //
  286. // for the index 0 (zero), hence it is important to consider this shift //
  287. // between different arrays. The change was done to optimize memory usage. //
  288. //**************************************************************************//
  289. // Allocate memory to the arrays
  290. std::vector<std::vector<std::complex<double> > > D1_mlxl, D1_mlxlM1;
  291. D1_mlxl.resize(L);
  292. D1_mlxlM1.resize(L);
  293. std::vector<std::vector<std::complex<double> > > D3_mlxl, D3_mlxlM1;
  294. D3_mlxl.resize(L);
  295. D3_mlxlM1.resize(L);
  296. std::vector<std::vector<std::complex<double> > > Q;
  297. Q.resize(L);
  298. std::vector<std::vector<std::complex<double> > > Ha, Hb;
  299. Ha.resize(L);
  300. Hb.resize(L);
  301. for (l = 0; l < L; l++) {
  302. D1_mlxl[l].resize(n_max + 1);
  303. D1_mlxlM1[l].resize(n_max + 1);
  304. D3_mlxl[l].resize(n_max + 1);
  305. D3_mlxlM1[l].resize(n_max + 1);
  306. Q[l].resize(n_max + 1);
  307. Ha[l].resize(n_max);
  308. Hb[l].resize(n_max);
  309. }
  310. an.resize(n_max);
  311. bn.resize(n_max);
  312. std::vector<std::complex<double> > D1XL, D3XL;
  313. D1XL.resize(n_max + 1);
  314. D3XL.resize(n_max + 1);
  315. std::vector<std::complex<double> > PsiXL, ZetaXL;
  316. PsiXL.resize(n_max + 1);
  317. ZetaXL.resize(n_max + 1);
  318. //*************************************************//
  319. // Calculate D1 and D3 for z1 in the first layer //
  320. //*************************************************//
  321. if (fl == pl) { // PEC layer
  322. for (n = 0; n <= n_max; n++) {
  323. D1_mlxl[fl][n] = std::complex<double>(0.0, -1.0);
  324. D3_mlxl[fl][n] = std::complex<double>(0.0, 1.0);
  325. }
  326. } else { // Regular layer
  327. z1 = x[fl]* m[fl];
  328. // Calculate D1 and D3
  329. calcD1D3(z1, n_max, D1_mlxl[fl], D3_mlxl[fl]);
  330. }
  331. //******************************************************************//
  332. // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
  333. //******************************************************************//
  334. for (n = 0; n < n_max; n++) {
  335. Ha[fl][n] = D1_mlxl[fl][n + 1];
  336. Hb[fl][n] = D1_mlxl[fl][n + 1];
  337. }
  338. //*****************************************************//
  339. // Iteration from the second layer to the last one (L) //
  340. //*****************************************************//
  341. for (l = fl + 1; l < L; l++) {
  342. //************************************************************//
  343. //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L //
  344. //************************************************************//
  345. z1 = x[l]*m[l];
  346. z2 = x[l - 1]*m[l];
  347. //Calculate D1 and D3 for z1
  348. calcD1D3(z1, n_max, D1_mlxl[l], D3_mlxl[l]);
  349. //Calculate D1 and D3 for z2
  350. calcD1D3(z2, n_max, D1_mlxlM1[l], D3_mlxlM1[l]);
  351. //*********************************************//
  352. //Calculate Q, Ha and Hb in the layers fl+1..L //
  353. //*********************************************//
  354. // Upward recurrence for Q - equations (19a) and (19b)
  355. Num = exp(-2.0*(z1.imag() - z2.imag()))*std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
  356. Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
  357. Q[l][0] = Num/Denom;
  358. for (n = 1; n <= n_max; n++) {
  359. Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]);
  360. Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]);
  361. Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom;
  362. }
  363. // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
  364. for (n = 1; n <= n_max; n++) {
  365. //Ha
  366. if ((l - 1) == pl) { // The layer below the current one is a PEC layer
  367. G1 = -D1_mlxlM1[l][n];
  368. G2 = -D3_mlxlM1[l][n];
  369. } else {
  370. G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]);
  371. G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]);
  372. }
  373. Temp = Q[l][n]*G1;
  374. Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]);
  375. Denom = G2 - Temp;
  376. Ha[l][n - 1] = Num/Denom;
  377. //Hb
  378. if ((l - 1) == pl) { // The layer below the current one is a PEC layer
  379. G1 = Hb[l - 1][n - 1];
  380. G2 = Hb[l - 1][n - 1];
  381. } else {
  382. G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]);
  383. G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]);
  384. }
  385. Temp = Q[l][n]*G1;
  386. Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]);
  387. Denom = (G2- Temp);
  388. Hb[l][n - 1] = (Num/ Denom);
  389. }
  390. }
  391. //**************************************//
  392. //Calculate D1, D3, Psi and Zeta for XL //
  393. //**************************************//
  394. // Calculate D1XL and D3XL
  395. calcD1D3(x[L - 1], n_max, D1XL, D3XL);
  396. // Calculate PsiXL and ZetaXL
  397. calcPsiZeta(x[L - 1], n_max, D1XL, D3XL, PsiXL, ZetaXL);
  398. //*********************************************************************//
  399. // Finally, we calculate the scattering coefficients (an and bn) and //
  400. // the angular functions (Pi and Tau). Note that for these arrays the //
  401. // first layer is 0 (zero), in future versions all arrays will follow //
  402. // this convention to save memory. (13 Nov, 2014) //
  403. //*********************************************************************//
  404. for (n = 0; n < n_max; n++) {
  405. //********************************************************************//
  406. //Expressions for calculating an and bn coefficients are not valid if //
  407. //there is only one PEC layer (ie, for a simple PEC sphere). //
  408. //********************************************************************//
  409. if (pl < (L - 1)) {
  410. an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
  411. bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
  412. } else {
  413. an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
  414. bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
  415. }
  416. }
  417. return n_max;
  418. }
  419. //**********************************************************************************//
  420. // This function calculates the actual scattering parameters and amplitudes //
  421. // //
  422. // Input parameters: //
  423. // L: Number of layers //
  424. // pl: Index of PEC layer. If there is none just send -1 //
  425. // x: Array containing the size parameters of the layers [0..L-1] //
  426. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  427. // nTheta: Number of scattering angles //
  428. // Theta: Array containing all the scattering angles where the scattering //
  429. // amplitudes will be calculated //
  430. // n_max: Maximum number of multipolar expansion terms to be used for the //
  431. // calculations. Only used if you know what you are doing, otherwise set //
  432. // this parameter to -1 and the function will calculate it //
  433. // //
  434. // Output parameters: //
  435. // Qext: Efficiency factor for extinction //
  436. // Qsca: Efficiency factor for scattering //
  437. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  438. // Qbk: Efficiency factor for backscattering //
  439. // Qpr: Efficiency factor for the radiation pressure //
  440. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  441. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  442. // S1, S2: Complex scattering amplitudes //
  443. // //
  444. // Return value: //
  445. // Number of multipolar expansion terms used for the calculations //
  446. //**********************************************************************************//
  447. int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
  448. int nTheta, std::vector<double> Theta, int n_max,
  449. double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
  450. std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
  451. int i, n, t;
  452. std::vector<std::complex<double> > an, bn;
  453. std::complex<double> Qbktmp;
  454. // Calculate scattering coefficients
  455. n_max = ScattCoeffs(L, pl, x, m, n_max, an, bn);
  456. std::vector< std::vector<double> > Pi;
  457. Pi.resize(n_max);
  458. std::vector< std::vector<double> > Tau;
  459. Tau.resize(n_max);
  460. for (n = 0; n < n_max; n++) {
  461. Pi[n].resize(nTheta);
  462. Tau[n].resize(nTheta);
  463. }
  464. calcPiTau(n_max, nTheta, Theta, Pi, Tau);
  465. double x2 = x[L - 1]*x[L - 1];
  466. // Initialize the scattering parameters
  467. *Qext = 0;
  468. *Qsca = 0;
  469. *Qabs = 0;
  470. *Qbk = 0;
  471. Qbktmp = std::complex<double>(0.0, 0.0);
  472. *Qpr = 0;
  473. *g = 0;
  474. *Albedo = 0;
  475. // Initialize the scattering amplitudes
  476. for (t = 0; t < nTheta; t++) {
  477. S1[t] = std::complex<double>(0.0, 0.0);
  478. S2[t] = std::complex<double>(0.0, 0.0);
  479. }
  480. // By using downward recurrence we avoid loss of precision due to float rounding errors
  481. // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
  482. // http://en.wikipedia.org/wiki/Loss_of_significance
  483. for (i = n_max - 2; i >= 0; i--) {
  484. n = i + 1;
  485. // Equation (27)
  486. *Qext += (n + n + 1)*(an[i].real() + bn[i].real());
  487. // Equation (28)
  488. *Qsca += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
  489. // Equation (29)
  490. // We must check carefully this equation. If we remove the typecast to double then the result changes. Which is the correct one??? Ovidio (2014/12/10)
  491. *Qpr += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
  492. // Equation (33)
  493. Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
  494. //****************************************************//
  495. // Calculate the scattering amplitudes (S1 and S2) //
  496. // Equations (25a) - (25b) //
  497. //****************************************************//
  498. for (t = 0; t < nTheta; t++) {
  499. S1[t] += calc_S1(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
  500. S2[t] += calc_S2(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
  501. }
  502. }
  503. *Qext = 2*(*Qext)/x2; // Equation (27)
  504. *Qsca = 2*(*Qsca)/x2; // Equation (28)
  505. *Qpr = *Qext - 4*(*Qpr)/x2; // Equation (29)
  506. *Qabs = *Qext - *Qsca; // Equation (30)
  507. *Albedo = *Qsca / *Qext; // Equation (31)
  508. *g = (*Qext - *Qpr) / *Qsca; // Equation (32)
  509. *Qbk = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
  510. return n_max;
  511. }
  512. //**********************************************************************************//
  513. // This function is just a wrapper to call the full 'nMie' function with fewer //
  514. // parameters, it is here mainly for compatibility with older versions of the //
  515. // program. Also, you can use it if you neither have a PEC layer nor want to define //
  516. // any limit for the maximum number of terms. //
  517. // //
  518. // Input parameters: //
  519. // L: Number of layers //
  520. // x: Array containing the size parameters of the layers [0..L-1] //
  521. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  522. // nTheta: Number of scattering angles //
  523. // Theta: Array containing all the scattering angles where the scattering //
  524. // amplitudes will be calculated //
  525. // //
  526. // Output parameters: //
  527. // Qext: Efficiency factor for extinction //
  528. // Qsca: Efficiency factor for scattering //
  529. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  530. // Qbk: Efficiency factor for backscattering //
  531. // Qpr: Efficiency factor for the radiation pressure //
  532. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  533. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  534. // S1, S2: Complex scattering amplitudes //
  535. // //
  536. // Return value: //
  537. // Number of multipolar expansion terms used for the calculations //
  538. //**********************************************************************************//
  539. int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
  540. int nTheta, std::vector<double> Theta,
  541. double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
  542. std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
  543. return nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
  544. }
  545. //**********************************************************************************//
  546. // This function is just a wrapper to call the full 'nMie' function with fewer //
  547. // parameters, it is useful if you want to include a PEC layer but not a limit //
  548. // for the maximum number of terms. //
  549. // //
  550. // Input parameters: //
  551. // L: Number of layers //
  552. // pl: Index of PEC layer. If there is none just send -1 //
  553. // x: Array containing the size parameters of the layers [0..L-1] //
  554. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  555. // nTheta: Number of scattering angles //
  556. // Theta: Array containing all the scattering angles where the scattering //
  557. // amplitudes will be calculated //
  558. // //
  559. // Output parameters: //
  560. // Qext: Efficiency factor for extinction //
  561. // Qsca: Efficiency factor for scattering //
  562. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  563. // Qbk: Efficiency factor for backscattering //
  564. // Qpr: Efficiency factor for the radiation pressure //
  565. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  566. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  567. // S1, S2: Complex scattering amplitudes //
  568. // //
  569. // Return value: //
  570. // Number of multipolar expansion terms used for the calculations //
  571. //**********************************************************************************//
  572. int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
  573. int nTheta, std::vector<double> Theta,
  574. double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
  575. std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
  576. return nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
  577. }
  578. //**********************************************************************************//
  579. // This function is just a wrapper to call the full 'nMie' function with fewer //
  580. // parameters, it is useful if you want to include a limit for the maximum number //
  581. // of terms but not a PEC layer. //
  582. // //
  583. // Input parameters: //
  584. // L: Number of layers //
  585. // x: Array containing the size parameters of the layers [0..L-1] //
  586. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  587. // nTheta: Number of scattering angles //
  588. // Theta: Array containing all the scattering angles where the scattering //
  589. // amplitudes will be calculated //
  590. // n_max: Maximum number of multipolar expansion terms to be used for the //
  591. // calculations. Only used if you know what you are doing, otherwise set //
  592. // this parameter to -1 and the function will calculate it //
  593. // //
  594. // Output parameters: //
  595. // Qext: Efficiency factor for extinction //
  596. // Qsca: Efficiency factor for scattering //
  597. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  598. // Qbk: Efficiency factor for backscattering //
  599. // Qpr: Efficiency factor for the radiation pressure //
  600. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  601. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  602. // S1, S2: Complex scattering amplitudes //
  603. // //
  604. // Return value: //
  605. // Number of multipolar expansion terms used for the calculations //
  606. //**********************************************************************************//
  607. int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
  608. int nTheta, std::vector<double> Theta, int n_max,
  609. double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
  610. std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
  611. return nMie(L, -1, x, m, nTheta, Theta, n_max, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
  612. }
  613. //**********************************************************************************//
  614. // This function calculates complex electric and magnetic field in the surroundings //
  615. // and inside (TODO) the particle. //
  616. // //
  617. // Input parameters: //
  618. // L: Number of layers //
  619. // pl: Index of PEC layer. If there is none just send 0 (zero) //
  620. // x: Array containing the size parameters of the layers [0..L-1] //
  621. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  622. // n_max: Maximum number of multipolar expansion terms to be used for the //
  623. // calculations. Only used if you know what you are doing, otherwise set //
  624. // this parameter to 0 (zero) and the function will calculate it. //
  625. // nCoords: Number of coordinate points //
  626. // Coords: Array containing all coordinates where the complex electric and //
  627. // magnetic fields will be calculated //
  628. // //
  629. // Output parameters: //
  630. // E, H: Complex electric and magnetic field at the provided coordinates //
  631. // //
  632. // Return value: //
  633. // Number of multipolar expansion terms used for the calculations //
  634. //**********************************************************************************//
  635. int nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int n_max,
  636. int nCoords, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
  637. std::vector<std::complex<double> > &E, std::vector<std::complex<double> > &H) {
  638. int i, n, c;
  639. std::vector<std::complex<double> > an, bn;
  640. // Calculate scattering coefficients
  641. n_max = ScattCoeffs(L, pl, x, m, n_max, an, bn);
  642. std::vector< std::vector<double> > Pi, Tau;
  643. Pi.resize(n_max);
  644. Tau.resize(n_max);
  645. for (n = 0; n < n_max; n++) {
  646. Pi[n].resize(nCoords);
  647. Tau[n].resize(nCoords);
  648. }
  649. std::vector<double> Rho, Phi, Theta;
  650. Rho.resize(nCoords);
  651. Phi.resize(nCoords);
  652. Theta.resize(nCoords);
  653. for (c = 0; c < nCoords; c++) {
  654. // Convert to spherical coordinates
  655. Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
  656. if (Rho < 1e-3) {
  657. Rho = 1e-3;
  658. }
  659. Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
  660. Theta = acos(Xp[c]/Rho[c]);
  661. }
  662. calcPiTau(n_max, nCoords, Theta, Pi, Tau);
  663. std::vector<double > j, y;
  664. std::vector<std::complex<double> > h1, h2;
  665. j.resize(n_max);
  666. y.resize(n_max);
  667. h1.resize(n_max);
  668. h2.resize(n_max);
  669. for (c = 0; c < nCoords; c++) {
  670. //*******************************************************//
  671. // external scattering field = incident + scattered //
  672. // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
  673. // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
  674. //*******************************************************//
  675. // Calculate spherical Bessel and Hankel functions
  676. sphericalBessel(Rho, n_max, j, y);
  677. sphericalHankel(Rho, n_max, h1, h2);
  678. // Initialize the fields
  679. E[c] = std::complex<double>(0.0, 0.0);
  680. H[c] = std::complex<double>(0.0, 0.0);
  681. // Firstly the easiest case, we want the field outside the particle
  682. if (Rho >= x[L - 1]) {
  683. }
  684. }
  685. return n_max;
  686. }