123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005 |
- //**********************************************************************************//
- // Copyright (C) 2009-2015 Ovidio Pena <ovidio@bytesfall.com> //
- // //
- // This file is part of scattnlay //
- // //
- // This program is free software: you can redistribute it and/or modify //
- // it under the terms of the GNU General Public License as published by //
- // the Free Software Foundation, either version 3 of the License, or //
- // (at your option) any later version. //
- // //
- // This program is distributed in the hope that it will be useful, //
- // but WITHOUT ANY WARRANTY; without even the implied warranty of //
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
- // GNU General Public License for more details. //
- // //
- // The only additional remark is that we expect that all publications //
- // describing work using this software, or all commercial products //
- // using it, cite the following reference: //
- // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, //
- // vol. 180, Nov. 2009, pp. 2348-2354. //
- // //
- // You should have received a copy of the GNU General Public License //
- // along with this program. If not, see <http://www.gnu.org/licenses/>. //
- //**********************************************************************************//
- //**********************************************************************************//
- // This library implements the algorithm for a multilayered sphere described by: //
- // [1] W. Yang, "Improved recursive algorithm for light scattering by a //
- // multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. //
- // //
- // You can find the description of all the used equations in: //
- // [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, //
- // vol. 180, Nov. 2009, pp. 2348-2354. //
- // //
- // Hereinafter all equations numbers refer to [2] //
- //**********************************************************************************//
- #include <math.h>
- #include <stdlib.h>
- #include <stdio.h>
- #include "nmie.h"
- #define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
- const double PI=3.14159265358979323846;
- // light speed [m s-1]
- double const cc = 2.99792458e8;
- // assume non-magnetic (MU=MU0=const) [N A-2]
- double const mu = 4.0*PI*1.0e-7;
- // Calculate Nstop - equation (17)
- int Nstop(double xL) {
- int result;
- if (xL <= 8) {
- result = round(xL + 4*pow(xL, 1.0/3.0) + 1);
- } else if (xL <= 4200) {
- result = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
- } else {
- result = round(xL + 4*pow(xL, 1.0/3.0) + 2);
- }
- return result;
- }
- //**********************************************************************************//
- int Nmax(int L, int fl, int pl,
- std::vector<double> x,
- std::vector<std::complex<double> > m) {
- int i, result, ri, riM1;
- result = Nstop(x[L - 1]);
- for (i = fl; i < L; i++) {
- if (i > pl) {
- ri = round(std::abs(x[i]*m[i]));
- } else {
- ri = 0;
- }
- if (result < ri) {
- result = ri;
- }
- if ((i > fl) && ((i - 1) > pl)) {
- riM1 = round(std::abs(x[i - 1]* m[i]));
- } else {
- riM1 = 0;
- }
- if (result < riM1) {
- result = riM1;
- }
- }
- return result + 15;
- }
- //**********************************************************************************//
- // This function calculates the spherical Bessel (jn) and Hankel (h1n) functions //
- // and their derivatives for a given complex value z. See pag. 87 B&H. //
- // //
- // Input parameters: //
- // z: Real argument to evaluate jn and h1n //
- // nmax: Maximum number of terms to calculate jn and h1n //
- // //
- // Output parameters: //
- // jn, h1n: Spherical Bessel and Hankel functions //
- // jnp, h1np: Derivatives of the spherical Bessel and Hankel functions //
- // //
- // The implementation follows the algorithm by I.J. Thompson and A.R. Barnett, //
- // Comp. Phys. Comm. 47 (1987) 245-257. //
- // //
- // Complex spherical Bessel functions from n=0..nmax-1 for z in the upper half //
- // plane (Im(z) > -3). //
- // //
- // j[n] = j/n(z) Regular solution: j[0]=sin(z)/z //
- // j'[n] = d[j/n(z)]/dz //
- // h1[n] = h[0]/n(z) Irregular Hankel function: //
- // h1'[n] = d[h[0]/n(z)]/dz h1[0] = j0(z) + i*y0(z) //
- // = (sin(z)-i*cos(z))/z //
- // = -i*exp(i*z)/z //
- // Using complex CF1, and trigonometric forms for n=0 solutions. //
- //**********************************************************************************//
- int sbesjh(std::complex<double> z, int nmax, std::vector<std::complex<double> >& jn, std::vector<std::complex<double> >& jnp, std::vector<std::complex<double> >& h1n, std::vector<std::complex<double> >& h1np) {
- const int limit = 20000;
- double const accur = 1.0e-12;
- double const tm30 = 1e-30;
- int n;
- double absc;
- std::complex<double> zi, w;
- std::complex<double> pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb;
- absc = std::abs(std::real(z)) + std::abs(std::imag(z));
- if ((absc < accur) || (std::imag(z) < -3.0)) {
- return -1;
- }
- zi = 1.0/z;
- w = zi + zi;
- pl = double(nmax)*zi;
- f = pl + zi;
- b = f + f + zi;
- d = 0.0;
- c = f;
- for (n = 0; n < limit; n++) {
- d = b - d;
- c = b - 1.0/c;
- absc = std::abs(std::real(d)) + std::abs(std::imag(d));
- if (absc < tm30) {
- d = tm30;
- }
- absc = std::abs(std::real(c)) + std::abs(std::imag(c));
- if (absc < tm30) {
- c = tm30;
- }
- d = 1.0/d;
- del = d*c;
- f = f*del;
- b += w;
- absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
- if (absc < accur) {
- // We have obtained the desired accuracy
- break;
- }
- }
- if (absc > accur) {
- // We were not able to obtain the desired accuracy
- return -2;
- }
- jn[nmax - 1] = tm30;
- jnp[nmax - 1] = f*jn[nmax - 1];
- // Downward recursion to n=0 (N.B. Coulomb Functions)
- for (n = nmax - 2; n >= 0; n--) {
- jn[n] = pl*jn[n + 1] + jnp[n + 1];
- jnp[n] = pl*jn[n] - jn[n + 1];
- pl = pl - zi;
- }
- // Calculate the n=0 Bessel Functions
- jn0 = zi*std::sin(z);
- h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
- h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
- // Rescale j[n], j'[n], converting to spherical Bessel functions.
- // Recur h1[n], h1'[n] as spherical Bessel functions.
- w = 1.0/jn[0];
- pl = zi;
- for (n = 0; n < nmax; n++) {
- jn[n] = jn0*(w*jn[n]);
- jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
- if (n != 0) {
- h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
- // check if hankel is increasing (upward stable)
- if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
- jndb = z;
- h1nldb = h1n[n];
- h1nbdb = h1n[n - 1];
- }
- pl += zi;
- h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
- }
- }
- // success
- return 0;
- }
- //**********************************************************************************//
- // This function calculates the spherical Bessel functions (bj and by) and the //
- // logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H. //
- // //
- // Input parameters: //
- // z: Complex argument to evaluate bj, by and bd //
- // nmax: Maximum number of terms to calculate bj, by and bd //
- // //
- // Output parameters: //
- // bj, by: Spherical Bessel functions //
- // bd: Logarithmic derivative //
- //**********************************************************************************//
- void sphericalBessel(std::complex<double> z, int nmax, std::vector<std::complex<double> >& bj, std::vector<std::complex<double> >& by, std::vector<std::complex<double> >& bd) {
- std::vector<std::complex<double> > jn, jnp, h1n, h1np;
- jn.resize(nmax);
- jnp.resize(nmax);
- h1n.resize(nmax);
- h1np.resize(nmax);
- // TODO verify that the function succeeds
- int ifail = sbesjh(z, nmax, jn, jnp, h1n, h1np);
- for (int n = 0; n < nmax; n++) {
- bj[n] = jn[n];
- by[n] = (h1n[n] - jn[n])/std::complex<double>(0.0, 1.0);
- bd[n] = jnp[n]/jn[n] + 1.0/z;
- }
- }
- // external scattering field = incident + scattered
- // BH p.92 (4.37), 94 (4.45), 95 (4.50)
- // assume: medium is non-absorbing; refim = 0; Uabs = 0
- void fieldExt(int nmax, double Rho, double Phi, double Theta, std::vector<double> Pi, std::vector<double> Tau,
- std::vector<std::complex<double> > an, std::vector<std::complex<double> > bn,
- std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
- int i, n, n1;
- double rn;
- std::complex<double> ci, zn, xxip, encap;
- std::vector<std::complex<double> > vm3o1n, vm3e1n, vn3o1n, vn3e1n;
- vm3o1n.resize(3);
- vm3e1n.resize(3);
- vn3o1n.resize(3);
- vn3e1n.resize(3);
- std::vector<std::complex<double> > Ei, Hi, Es, Hs;
- Ei.resize(3);
- Hi.resize(3);
- Es.resize(3);
- Hs.resize(3);
- for (i = 0; i < 3; i++) {
- Ei[i] = std::complex<double>(0.0, 0.0);
- Hi[i] = std::complex<double>(0.0, 0.0);
- Es[i] = std::complex<double>(0.0, 0.0);
- Hs[i] = std::complex<double>(0.0, 0.0);
- }
- std::vector<std::complex<double> > bj, by, bd;
- bj.resize(nmax+1);
- by.resize(nmax+1);
- bd.resize(nmax+1);
- // Calculate spherical Bessel and Hankel functions
- sphericalBessel(Rho, nmax, bj, by, bd);
- ci = std::complex<double>(0.0, 1.0);
- for (n = 0; n < nmax; n++) {
- n1 = n + 1;
- rn = double(n + 1);
- zn = bj[n1] + ci*by[n1];
- xxip = Rho*(bj[n] + ci*by[n]) - rn*zn;
- vm3o1n[0] = std::complex<double>(0.0, 0.0);
- vm3o1n[1] = std::cos(Phi)*Pi[n]*zn;
- vm3o1n[2] = -std::sin(Phi)*Tau[n]*zn;
- vm3e1n[0] = std::complex<double>(0.0, 0.0);
- vm3e1n[1] = -std::sin(Phi)*Pi[n]*zn;
- vm3e1n[2] = -std::cos(Phi)*Tau[n]*zn;
- vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
- vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho;
- vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho;
- vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
- vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho;
- vn3e1n[2] = -std::sin(Phi)*Pi[n]*xxip/Rho;
- // scattered field: BH p.94 (4.45)
- encap = std::pow(ci, rn)*(2.0*rn + 1.0)/(rn*rn + rn);
- for (i = 0; i < 3; i++) {
- Es[i] = Es[i] + encap*(ci*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]);
- Hs[i] = Hs[i] + encap*(ci*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]);
- }
- }
- // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
- // basis unit vectors = er, etheta, ephi
- std::complex<double> eifac = std::exp(std::complex<double>(0.0, Rho*std::cos(Theta)));
- Ei[0] = eifac*std::sin(Theta)*std::cos(Phi);
- Ei[1] = eifac*std::cos(Theta)*std::cos(Phi);
- Ei[2] = -eifac*std::sin(Phi);
- // magnetic field
- double hffact = 1.0/(cc*mu);
- for (i = 0; i < 3; i++) {
- Hs[i] = hffact*Hs[i];
- }
- // incident H field: BH p.26 (2.43), p.89 (4.21)
- std::complex<double> hffacta = hffact;
- std::complex<double> hifac = eifac*hffacta;
- Hi[0] = hifac*std::sin(Theta)*std::sin(Phi);
- Hi[1] = hifac*std::cos(Theta)*std::sin(Phi);
- Hi[2] = hifac*std::cos(Phi);
- for (i = 0; i < 3; i++) {
- // electric field E [V m-1] = EF*E0
- E[i] = Ei[i] + Es[i];
- H[i] = Hi[i] + Hs[i];
- }
- }
- // Calculate an - equation (5)
- std::complex<double> calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
- std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
- std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
- return Num/Denom;
- }
- // Calculate bn - equation (6)
- std::complex<double> calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
- std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
- std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
- return Num/Denom;
- }
- // Calculates S1 - equation (25a)
- std::complex<double> calc_S1(int n, std::complex<double> an, std::complex<double> bn,
- double Pi, double Tau) {
- return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
- }
- // Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
- std::complex<double> calc_S2(int n, std::complex<double> an, std::complex<double> bn,
- double Pi, double Tau) {
- return calc_S1(n, an, bn, Tau, Pi);
- }
- //**********************************************************************************//
- // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
- // real argument (x). //
- // Equations (20a) - (21b) //
- // //
- // Input parameters: //
- // x: Real argument to evaluate Psi and Zeta //
- // nmax: Maximum number of terms to calculate Psi and Zeta //
- // //
- // Output parameters: //
- // Psi, Zeta: Riccati-Bessel functions //
- //**********************************************************************************//
- void calcPsiZeta(double x, int nmax,
- std::vector<std::complex<double> > D1,
- std::vector<std::complex<double> > D3,
- std::vector<std::complex<double> >& Psi,
- std::vector<std::complex<double> >& Zeta) {
- int n;
- //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
- Psi[0] = std::complex<double>(sin(x), 0);
- Zeta[0] = std::complex<double>(sin(x), -cos(x));
- for (n = 1; n <= nmax; n++) {
- Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
- Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
- }
- }
- //**********************************************************************************//
- // This function calculates the logarithmic derivatives of the Riccati-Bessel //
- // functions (D1 and D3) for a complex argument (z). //
- // Equations (16a), (16b) and (18a) - (18d) //
- // //
- // Input parameters: //
- // z: Complex argument to evaluate D1 and D3 //
- // nmax: Maximum number of terms to calculate D1 and D3 //
- // //
- // Output parameters: //
- // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
- //**********************************************************************************//
- void calcD1D3(std::complex<double> z, int nmax,
- std::vector<std::complex<double> >& D1,
- std::vector<std::complex<double> >& D3) {
- int n;
- std::complex<double> nz, PsiZeta;
- // Downward recurrence for D1 - equations (16a) and (16b)
- D1[nmax] = std::complex<double>(0.0, 0.0);
- for (n = nmax; n > 0; n--) {
- nz = double(n)/z;
- D1[n - 1] = nz - 1.0/(D1[n] + nz);
- }
- // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
- PsiZeta = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
- D3[0] = std::complex<double>(0.0, 1.0);
- for (n = 1; n <= nmax; n++) {
- nz = double(n)/z;
- PsiZeta = PsiZeta*(nz - D1[n - 1])*(nz - D3[n - 1]);
- D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta;
- }
- }
- //**********************************************************************************//
- // This function calculates Pi and Tau for all values of Theta. //
- // Equations (26a) - (26c) //
- // //
- // Input parameters: //
- // nmax: Maximum number of terms to calculate Pi and Tau //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // //
- // Output parameters: //
- // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
- //**********************************************************************************//
- void calcPiTau(int nmax, double Theta, std::vector<double>& Pi, std::vector<double>& Tau) {
- int n;
- //****************************************************//
- // Equations (26a) - (26c) //
- //****************************************************//
- // Initialize Pi and Tau
- Pi[0] = 1.0;
- Tau[0] = cos(Theta);
- // Calculate the actual values
- if (nmax > 1) {
- Pi[1] = 3*Tau[0]*Pi[0];
- Tau[1] = 2*Tau[0]*Pi[1] - 3*Pi[0];
- for (n = 2; n < nmax; n++) {
- Pi[n] = ((n + n + 1)*Tau[0]*Pi[n - 1] - (n + 1)*Pi[n - 2])/n;
- Tau[n] = (n + 1)*Tau[0]*Pi[n] - (n + 2)*Pi[n - 1];
- }
- }
- }
- //**********************************************************************************//
- // This function calculates the scattering coefficients required to calculate //
- // both the near- and far-field parameters. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send -1 //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nmax: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only use it if you know what you are doing, otherwise //
- // set this parameter to -1 and the function will calculate it. //
- // //
- // Output parameters: //
- // an, bn: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
- std::vector<std::complex<double> >& an, std::vector<std::complex<double> >& bn) {
- //************************************************************************//
- // Calculate the index of the first layer. It can be either 0 (default) //
- // or the index of the outermost PEC layer. In the latter case all layers //
- // below the PEC are discarded. //
- //************************************************************************//
- int fl = (pl > 0) ? pl : 0;
- if (nmax <= 0) {
- nmax = Nmax(L, fl, pl, x, m);
- }
- std::complex<double> z1, z2;
- std::complex<double> Num, Denom;
- std::complex<double> G1, G2;
- std::complex<double> Temp;
- int n, l;
- //**************************************************************************//
- // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
- // means that index = layer number - 1 or index = n - 1. The only exception //
- // are the arrays for representing D1, D3 and Q because they need a value //
- // for the index 0 (zero), hence it is important to consider this shift //
- // between different arrays. The change was done to optimize memory usage. //
- //**************************************************************************//
- // Allocate memory to the arrays
- std::vector<std::vector<std::complex<double> > > D1_mlxl, D1_mlxlM1;
- D1_mlxl.resize(L);
- D1_mlxlM1.resize(L);
- std::vector<std::vector<std::complex<double> > > D3_mlxl, D3_mlxlM1;
- D3_mlxl.resize(L);
- D3_mlxlM1.resize(L);
- std::vector<std::vector<std::complex<double> > > Q;
- Q.resize(L);
- std::vector<std::vector<std::complex<double> > > Ha, Hb;
- Ha.resize(L);
- Hb.resize(L);
- for (l = 0; l < L; l++) {
- D1_mlxl[l].resize(nmax + 1);
- D1_mlxlM1[l].resize(nmax + 1);
- D3_mlxl[l].resize(nmax + 1);
- D3_mlxlM1[l].resize(nmax + 1);
- Q[l].resize(nmax + 1);
- Ha[l].resize(nmax);
- Hb[l].resize(nmax);
- }
- an.resize(nmax);
- bn.resize(nmax);
- std::vector<std::complex<double> > D1XL, D3XL;
- D1XL.resize(nmax + 1);
- D3XL.resize(nmax + 1);
- std::vector<std::complex<double> > PsiXL, ZetaXL;
- PsiXL.resize(nmax + 1);
- ZetaXL.resize(nmax + 1);
- //*************************************************//
- // Calculate D1 and D3 for z1 in the first layer //
- //*************************************************//
- if (fl == pl) { // PEC layer
- for (n = 0; n <= nmax; n++) {
- D1_mlxl[fl][n] = std::complex<double>(0.0, -1.0);
- D3_mlxl[fl][n] = std::complex<double>(0.0, 1.0);
- }
- } else { // Regular layer
- z1 = x[fl]* m[fl];
- // Calculate D1 and D3
- calcD1D3(z1, nmax, D1_mlxl[fl], D3_mlxl[fl]);
- }
- //******************************************************************//
- // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
- //******************************************************************//
- for (n = 0; n < nmax; n++) {
- Ha[fl][n] = D1_mlxl[fl][n + 1];
- Hb[fl][n] = D1_mlxl[fl][n + 1];
- }
- //*****************************************************//
- // Iteration from the second layer to the last one (L) //
- //*****************************************************//
- for (l = fl + 1; l < L; l++) {
- //************************************************************//
- //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L //
- //************************************************************//
- z1 = x[l]*m[l];
- z2 = x[l - 1]*m[l];
- //Calculate D1 and D3 for z1
- calcD1D3(z1, nmax, D1_mlxl[l], D3_mlxl[l]);
- //Calculate D1 and D3 for z2
- calcD1D3(z2, nmax, D1_mlxlM1[l], D3_mlxlM1[l]);
- //*********************************************//
- //Calculate Q, Ha and Hb in the layers fl+1..L //
- //*********************************************//
- // Upward recurrence for Q - equations (19a) and (19b)
- Num = exp(-2.0*(z1.imag() - z2.imag()))*std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
- Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
- Q[l][0] = Num/Denom;
- for (n = 1; n <= nmax; n++) {
- Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]);
- Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]);
- Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom;
- }
- // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
- for (n = 1; n <= nmax; n++) {
- //Ha
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
- G1 = -D1_mlxlM1[l][n];
- G2 = -D3_mlxlM1[l][n];
- } else {
- G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]);
- G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]);
- }
- Temp = Q[l][n]*G1;
- Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]);
- Denom = G2 - Temp;
- Ha[l][n - 1] = Num/Denom;
- //Hb
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
- G1 = Hb[l - 1][n - 1];
- G2 = Hb[l - 1][n - 1];
- } else {
- G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]);
- G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]);
- }
- Temp = Q[l][n]*G1;
- Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]);
- Denom = (G2- Temp);
- Hb[l][n - 1] = (Num/ Denom);
- }
- }
- //**************************************//
- //Calculate D1, D3, Psi and Zeta for XL //
- //**************************************//
- // Calculate D1XL and D3XL
- calcD1D3(x[L - 1], nmax, D1XL, D3XL);
- // Calculate PsiXL and ZetaXL
- calcPsiZeta(x[L - 1], nmax, D1XL, D3XL, PsiXL, ZetaXL);
- //*********************************************************************//
- // Finally, we calculate the scattering coefficients (an and bn) and //
- // the angular functions (Pi and Tau). Note that for these arrays the //
- // first layer is 0 (zero), in future versions all arrays will follow //
- // this convention to save memory. (13 Nov, 2014) //
- //*********************************************************************//
- for (n = 0; n < nmax; n++) {
- //********************************************************************//
- //Expressions for calculating an and bn coefficients are not valid if //
- //there is only one PEC layer (ie, for a simple PEC sphere). //
- //********************************************************************//
- if (pl < (L - 1)) {
- an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- } else {
- an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
- }
- }
- return nmax;
- }
- //**********************************************************************************//
- // This function calculates the actual scattering parameters and amplitudes //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send -1 //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // nmax: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only use it if you know what you are doing, otherwise //
- // set this parameter to -1 and the function will calculate it //
- // //
- // Output parameters: //
- // Qext: Efficiency factor for extinction //
- // Qsca: Efficiency factor for scattering //
- // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
- // Qbk: Efficiency factor for backscattering //
- // Qpr: Efficiency factor for the radiation pressure //
- // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
- // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
- // S1, S2: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
- int nTheta, std::vector<double> Theta, int nmax,
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
- std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
- int i, n, t;
- std::vector<std::complex<double> > an, bn;
- std::complex<double> Qbktmp;
- // Calculate scattering coefficients
- nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn);
- std::vector<double> Pi, Tau;
- Pi.resize(nmax);
- Tau.resize(nmax);
- double x2 = x[L - 1]*x[L - 1];
- // Initialize the scattering parameters
- *Qext = 0;
- *Qsca = 0;
- *Qabs = 0;
- *Qbk = 0;
- Qbktmp = std::complex<double>(0.0, 0.0);
- *Qpr = 0;
- *g = 0;
- *Albedo = 0;
- // Initialize the scattering amplitudes
- for (t = 0; t < nTheta; t++) {
- S1[t] = std::complex<double>(0.0, 0.0);
- S2[t] = std::complex<double>(0.0, 0.0);
- }
- // By using downward recurrence we avoid loss of precision due to float rounding errors
- // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
- // http://en.wikipedia.org/wiki/Loss_of_significance
- for (i = nmax - 2; i >= 0; i--) {
- n = i + 1;
- // Equation (27)
- *Qext += (n + n + 1)*(an[i].real() + bn[i].real());
- // Equation (28)
- *Qsca += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
- // Equation (29) TODO We must check carefully this equation. If we
- // remove the typecast to double then the result changes. Which is
- // the correct one??? Ovidio (2014/12/10) With cast ratio will
- // give double, without cast (n + n + 1)/(n*(n + 1)) will be
- // rounded to integer. Tig (2015/02/24)
- *Qpr += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
- // Equation (33)
- Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
- //****************************************************//
- // Calculate the scattering amplitudes (S1 and S2) //
- // Equations (25a) - (25b) //
- //****************************************************//
- for (t = 0; t < nTheta; t++) {
- calcPiTau(nmax, Theta[t], Pi, Tau);
- S1[t] += calc_S1(n, an[i], bn[i], Pi[i], Tau[i]);
- S2[t] += calc_S2(n, an[i], bn[i], Pi[i], Tau[i]);
- }
- }
- *Qext = 2*(*Qext)/x2; // Equation (27)
- *Qsca = 2*(*Qsca)/x2; // Equation (28)
- *Qpr = *Qext - 4*(*Qpr)/x2; // Equation (29)
- *Qabs = *Qext - *Qsca; // Equation (30)
- *Albedo = *Qsca / *Qext; // Equation (31)
- *g = (*Qext - *Qpr) / *Qsca; // Equation (32)
- *Qbk = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
- return nmax;
- }
- //**********************************************************************************//
- // This function is just a wrapper to call the full 'nMie' function with fewer //
- // parameters, it is here mainly for compatibility with older versions of the //
- // program. Also, you can use it if you neither have a PEC layer nor want to define //
- // any limit for the maximum number of terms. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // //
- // Output parameters: //
- // Qext: Efficiency factor for extinction //
- // Qsca: Efficiency factor for scattering //
- // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
- // Qbk: Efficiency factor for backscattering //
- // Qpr: Efficiency factor for the radiation pressure //
- // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
- // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
- // S1, S2: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
- int nTheta, std::vector<double> Theta,
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
- std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
- return nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
- }
- //**********************************************************************************//
- // This function is just a wrapper to call the full 'nMie' function with fewer //
- // parameters, it is useful if you want to include a PEC layer but not a limit //
- // for the maximum number of terms. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send -1 //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // //
- // Output parameters: //
- // Qext: Efficiency factor for extinction //
- // Qsca: Efficiency factor for scattering //
- // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
- // Qbk: Efficiency factor for backscattering //
- // Qpr: Efficiency factor for the radiation pressure //
- // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
- // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
- // S1, S2: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
- int nTheta, std::vector<double> Theta,
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
- std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
- return nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
- }
- //**********************************************************************************//
- // This function is just a wrapper to call the full 'nMie' function with fewer //
- // parameters, it is useful if you want to include a limit for the maximum number //
- // of terms but not a PEC layer. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // nmax: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only use it if you know what you are doing, otherwise //
- // set this parameter to -1 and the function will calculate it //
- // //
- // Output parameters: //
- // Qext: Efficiency factor for extinction //
- // Qsca: Efficiency factor for scattering //
- // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
- // Qbk: Efficiency factor for backscattering //
- // Qpr: Efficiency factor for the radiation pressure //
- // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
- // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
- // S1, S2: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
- int nTheta, std::vector<double> Theta, int nmax,
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
- std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
- return nMie(L, -1, x, m, nTheta, Theta, nmax, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
- }
- //**********************************************************************************//
- // This function calculates complex electric and magnetic field in the surroundings //
- // and inside (TODO) the particle. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send 0 (zero) //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nmax: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only use it if you know what you are doing, otherwise //
- // set this parameter to 0 (zero) and the function will calculate it. //
- // ncoord: Number of coordinate points //
- // Coords: Array containing all coordinates where the complex electric and //
- // magnetic fields will be calculated //
- // //
- // Output parameters: //
- // E, H: Complex electric and magnetic field at the provided coordinates //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- int nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax, int ncoord, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp, std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
- int i, c;
- double Rho, Phi, Theta;
- std::vector<std::complex<double> > an, bn;
- // This array contains the fields in spherical coordinates
- std::vector<std::complex<double> > Es, Hs;
- Es.resize(3);
- Hs.resize(3);
- // Calculate scattering coefficients
- nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn);
- std::vector<double> Pi, Tau;
- Pi.resize(nmax);
- Tau.resize(nmax);
- for (c = 0; c < ncoord; c++) {
- // Convert to spherical coordinates
- Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
- // Avoid convergence problems due to Rho too small
- if (Rho < 1e-5) {
- Rho = 1e-5;
- }
- //If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
- if (Rho == 0.0) {
- Theta = 0.0;
- } else {
- Theta = acos(Zp[c]/Rho);
- }
- //If Xp=Yp=0 then Phi is undefined. Just set it to zero to zero to avoid problems
- if ((Xp[c] == 0.0) and (Yp[c] == 0.0)) {
- Phi = 0.0;
- } else {
- Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
- }
- calcPiTau(nmax, Theta, Pi, Tau);
- //*******************************************************//
- // external scattering field = incident + scattered //
- // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
- // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
- //*******************************************************//
- // Firstly the easiest case: the field outside the particle
- if (Rho >= x[L - 1]) {
- fieldExt(nmax, Rho, Phi, Theta, Pi, Tau, an, bn, Es, Hs);
- } else {
- // TODO, for now just set all the fields to zero
- for (i = 0; i < 3; i++) {
- Es[i] = std::complex<double>(0.0, 0.0);
- Hs[i] = std::complex<double>(0.0, 0.0);
- }
- }
- //Now, convert the fields back to cartesian coordinates
- E[c][0] = std::sin(Theta)*std::cos(Phi)*Es[0] + std::cos(Theta)*std::cos(Phi)*Es[1] - std::sin(Phi)*Es[2];
- E[c][1] = std::sin(Theta)*std::sin(Phi)*Es[0] + std::cos(Theta)*std::sin(Phi)*Es[1] + std::cos(Phi)*Es[2];
- E[c][2] = std::cos(Theta)*Es[0] - std::sin(Theta)*Es[1];
- H[c][0] = std::sin(Theta)*std::cos(Phi)*Hs[0] + std::cos(Theta)*std::cos(Phi)*Hs[1] - std::sin(Phi)*Hs[2];
- H[c][1] = std::sin(Theta)*std::sin(Phi)*Hs[0] + std::cos(Theta)*std::sin(Phi)*Hs[1] + std::cos(Phi)*Hs[2];
- H[c][2] = std::cos(Theta)*Hs[0] - std::sin(Theta)*Hs[1];
- }
- return nmax;
- }
|