123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- #ifndef SRC_NMIE_NMIE_H_
- #define SRC_NMIE_NMIE_H_
- ///
- /// @file nmie-wrapper.h
- /// @author Ladutenko Konstantin <kostyfisik at gmail (.) com>
- /// @date Tue Sep 3 00:40:47 2013
- /// @copyright 2013 Ladutenko Konstantin
- ///
- /// nmie-wrapper is free software: you can redistribute it and/or modify
- /// it under the terms of the GNU General Public License as published by
- /// the Free Software Foundation, either version 3 of the License, or
- /// (at your option) any later version.
- ///
- /// nmie-wrapper is distributed in the hope that it will be useful,
- /// but WITHOUT ANY WARRANTY; without even the implied warranty of
- /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- /// GNU General Public License for more details.
- ///
- /// You should have received a copy of the GNU General Public License
- /// along with nmie-wrapper. If not, see <http://www.gnu.org/licenses/>.
- ///
- /// nmie-wrapper uses nmie.c from scattnlay by Ovidio Pena
- /// <ovidio@bytesfall.com> as a linked library. He has an additional condition to
- /// his library:
- // The only additional condition is that we expect that all publications //
- // describing work using this software , or all commercial products //
- // using it, cite the following reference: //
- // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, //
- // vol. 180, Nov. 2009, pp. 2348-2354. //
- ///
- /// @brief Wrapper class around nMie function for ease of use
- ///
- ///
- #include <array>
- #include <complex>
- #include <cstdlib>
- #include <iostream>
- #include <vector>
- #ifndef NDEBUG
- # define ASSERT(condition, message) \
- do { \
- if (! (condition)) { \
- std::cerr << "Assertion `" #condition "` failed in " << __FILE__ \
- << " line " << __LINE__ << ": " << message << std::endl; \
- std::exit(EXIT_FAILURE); \
- } \
- } while (false)
- #else
- # define ASSERT(condition, message) do { } while (false)
- #endif
- namespace nmie {
- int nMie_wrapper(int L, const std::vector<double>& x, const std::vector<std::complex<double> >& m, int nTheta, const std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2);
- int nField(const int L, const int pl, const std::vector<double>& x, const std::vector<std::complex<double> >& m, const int nmax, const int ncoord, const std::vector<double>& Xp, const std::vector<double>& Yp, const std::vector<double>& Zp, std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H);
- class MultiLayerMie {
- // Will throw for any error!
- // SP stands for size parameter units.
- public:
- void GetFailed();
- long iformat = 0;
- bool output = true;
- void prn(double var) {
- do {
- if (!output) break;
- ++iformat;
- printf("%23.13e",var);
- if (iformat%4 == 0) printf("\n");
- } while (false);
- }
- // Set parameters in applied units
- void SetWavelength(double wavelength) {wavelength_ = wavelength;};
- // It is possible to set only a multilayer target to run calculaitons.
- // For many runs it can be convenient to separate target and coating layers.
- // Per layer
- void AddTargetLayer(double layer_width, std::complex<double> layer_index);
- void AddCoatingLayer(double layer_width, std::complex<double> layer_index);
- // For all layers
- void SetTargetWidth(std::vector<double> width);
- void SetTargetIndex(std::vector< std::complex<double> > index);
- void SetTargetPEC(double radius);
- void SetCoatingWidth(std::vector<double> width);
- void SetCoatingIndex(std::vector< std::complex<double> > index);
- void SetFieldPoints(std::vector< std::array<double,3> > coords);
- //Set parameters in size parameter units
- void SetWidthSP(const std::vector<double>& width);
- void SetIndexSP(const std::vector< std::complex<double> >& index);
- void SetFieldPointsSP(const std::vector< std::vector<double> >& coords_sp);
- // Set common parameters
- void SetAnglesForPattern(double from_angle, double to_angle, int samples);
- void SetAngles(const std::vector<double>& angles);
- std::vector<double> GetAngles();
- void SetPEC(int layer_position = 0); // By default set PEC layer to be the first one
-
- void SetMaxTermsNumber(int nmax);
- int GetMaxTermsUsed() {return nmax_used_;};
-
- void ClearTarget();
- void ClearCoating();
- void ClearLayers();
- void ClearAllDesign(); //Layers + SP + index_
- // Applied units requests
- double GetTotalRadius();
- double GetTargetRadius();
- double GetCoatingWidth();
- std::vector<double> GetTargetLayersWidth();
- std::vector< std::complex<double> > GetTargetLayersIndex();
- std::vector<double> GetCoatingLayersWidth();
- std::vector< std::complex<double> > GetCoatingLayersIndex();
- std::vector< std::vector<double> > GetFieldPoints();
- std::vector<std::vector< std::complex<double> > > GetFieldE(); // {X[], Y[], Z[]}
- std::vector<std::vector< std::complex<double> > > GetFieldH();
- std::vector< std::vector<double> > GetSpectra(double from_WL, double to_WL,
- int samples); // ext, sca, abs, bk
- double GetRCSext();
- double GetRCSsca();
- double GetRCSabs();
- double GetRCSbk();
- std::vector<double> GetPatternEk();
- std::vector<double> GetPatternHk();
- std::vector<double> GetPatternUnpolarized();
-
- // Size parameter units
- std::vector<double> GetLayerWidthSP();
- // Same as to get target and coating index
- std::vector< std::complex<double> > GetLayerIndex();
- std::vector< std::array<double,3> > GetFieldPointsSP();
- // Do we need normalize field to size parameter?
- /* std::vector<std::vector<std::complex<double> > > GetFieldESP(); */
- /* std::vector<std::vector<std::complex<double> > > GetFieldHSP(); */
- std::vector< std::array<double,5> > GetSpectraSP(double from_SP, double to_SP,
- int samples); // WL,ext, sca, abs, bk
- double GetQext();
- double GetQsca();
- double GetQabs();
- double GetQbk();
- double GetQpr();
- std::vector<double> GetQsca_channel();
- std::vector<double> GetQabs_channel();
- std::vector<double> GetQsca_channel_normalized();
- std::vector<double> GetQabs_channel_normalized();
- std::vector<std::complex<double> > GetAn(){return an_;};
- std::vector<std::complex<double> > GetBn(){return bn_;};
- double GetAsymmetryFactor();
- double GetAlbedo();
- std::vector<std::complex<double> > GetS1();
- std::vector<std::complex<double> > GetS2();
- std::vector<double> GetPatternEkSP();
- std::vector<double> GetPatternHkSP();
- std::vector<double> GetPatternUnpolarizedSP();
-
- // Run calculation
- void RunMieCalculations();
- void RunFieldCalculations();
- // Output results (data file + python script to plot it with matplotlib)
- void PlotSpectra();
- void PlotSpectraSP();
- void PlotField();
- void PlotFieldSP();
- void PlotPattern();
- void PlotPatternSP();
- private:
- void ConvertToSP();
- void GenerateSizeParameter();
- void GenerateIndex();
- void InitMieCalculations();
- void Nstop();
- void Nmax(int first_layer);
- void sbesjh(std::complex<double> z, std::vector<std::complex<double> >& jn,
- std::vector<std::complex<double> >& jnp, std::vector<std::complex<double> >& h1n,
- std::vector<std::complex<double> >& h1np);
- void sphericalBessel(std::complex<double> z, std::vector<std::complex<double> >& bj,
- std::vector<std::complex<double> >& by, std::vector<std::complex<double> >& bd);
- std::complex<double> calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1);
- std::complex<double> calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1);
- std::complex<double> calc_S1(int n, std::complex<double> an, std::complex<double> bn,
- double Pi, double Tau);
- std::complex<double> calc_S2(int n, std::complex<double> an, std::complex<double> bn,
- double Pi, double Tau);
- void calcPsiZeta(double x,
- std::vector<std::complex<double> > D1,
- std::vector<std::complex<double> > D3,
- std::vector<std::complex<double> >& Psi,
- std::vector<std::complex<double> >& Zeta);
- std::complex<double> calcD1confra(int N, const std::complex<double> z);
- void calcD1D3(std::complex<double> z,
- std::vector<std::complex<double> >& D1,
- std::vector<std::complex<double> >& D3);
- void calcSinglePiTau(const double& costheta, std::vector<double>& Pi,
- std::vector<double>& Tau);
- void calcAllPiTau( std::vector< std::vector<double> >& Pi,
- std::vector< std::vector<double> >& Tau);
- void ScattCoeffs(std::vector<std::complex<double> >& an, std::vector<std::complex<double> >& bn);
- void ScattCoeffsLayerd();
- void ScattCoeffsLayerdInit();
- void fieldExt(const double Rho, const double Phi, const double Theta, const std::vector<double>& Pi, const std::vector<double>& Tau, std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H);
-
- bool isMieCalculated_ = false;
- double wavelength_ = 1.0;
- double total_radius_ = 0.0;
- /// Width and index for each layer of the structure
- std::vector<double> target_width_, coating_width_;
- std::vector< std::complex<double> > target_index_, coating_index_;
- /// Size parameters for all layers
- std::vector<double> size_parameter_;
- /// Complex index values for each layers.
- std::vector< std::complex<double> > index_;
- /// Scattering angles for RCS pattern in radians
- std::vector<double> theta_;
- // Should be -1 if there is no PEC.
- int PEC_layer_position_ = -1;
- // Set nmax_ manualy with SetMaxTermsNumber(int nmax) or in ScattCoeffs(..)
- // with Nmax(int first_layer);
- int nmax_ = -1;
- int nmax_used_ = -1;
- int nmax_preset_ = -1;
- // Scattering coefficients
- std::vector<std::complex<double> > an_, bn_;
- std::vector< std::vector<double> > coords_sp_;
- // TODO: check if l index is reversed will lead to performance
- // boost, if $a^(L+1)_n$ stored in al_n_[n][0], $a^(L)_n$ in
- // al_n_[n][1] and so on...
- // at the moment order is forward!
- std::vector< std::vector<std::complex<double> > > al_n_, bl_n_, cl_n_, dl_n_;
- /// Store result
- double Qsca_ = 0.0, Qext_ = 0.0, Qabs_ = 0.0, Qbk_ = 0.0, Qpr_ = 0.0, asymmetry_factor_ = 0.0, albedo_ = 0.0;
- std::vector<std::vector< std::complex<double> > > E_field_, H_field_; // {X[], Y[], Z[]}
- // Mie efficinecy from each multipole channel.
- std::vector<double> Qsca_ch_, Qext_ch_, Qabs_ch_, Qbk_ch_, Qpr_ch_;
- std::vector<double> Qsca_ch_norm_, Qext_ch_norm_, Qabs_ch_norm_, Qbk_ch_norm_, Qpr_ch_norm_;
- std::vector<std::complex<double> > S1_, S2_;
- //Used constants
- const double PI_=3.14159265358979323846;
- // light speed [m s-1]
- double const cc_ = 2.99792458e8;
- // assume non-magnetic (MU=MU0=const) [N A-2]
- double const mu_ = 4.0*PI_*1.0e-7;
- //Temporary variables
- std::vector<std::complex<double> > PsiZeta_;
- }; // end of class MultiLayerMie
- } // end of namespace nmie
- #endif // SRC_NMIE_NMIE_H_
|