field-SiAgSi.py 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160
  1. #!/usr/bin/env python
  2. # -*- coding: UTF-8 -*-
  3. #
  4. # Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
  5. #
  6. # This file is part of python-scattnlay
  7. #
  8. # This program is free software: you can redistribute it and/or modify
  9. # it under the terms of the GNU General Public License as published by
  10. # the Free Software Foundation, either version 3 of the License, or
  11. # (at your option) any later version.
  12. #
  13. # This program is distributed in the hope that it will be useful,
  14. # but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. # GNU General Public License for more details.
  17. #
  18. # The only additional remark is that we expect that all publications
  19. # describing work using this software, or all commercial products
  20. # using it, cite the following reference:
  21. # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
  22. # a multilayered sphere," Computer Physics Communications,
  23. # vol. 180, Nov. 2009, pp. 2348-2354.
  24. #
  25. # You should have received a copy of the GNU General Public License
  26. # along with this program. If not, see <http://www.gnu.org/licenses/>.
  27. # This test case calculates the electric field in the
  28. # E-k plane, for an spherical Si-Ag-Si nanoparticle. Core radius is 17.74 nm,
  29. # inner layer 23.31nm, outer layer 22.95nm. Working wavelength is 800nm, we use
  30. # silicon epsilon=13.64+i0.047, silver epsilon= -28.05+i1.525
  31. import scattnlay
  32. from scattnlay import fieldnlay
  33. from scattnlay import scattnlay
  34. import numpy as np
  35. epsilon_Si = 13.64 + 0.047j
  36. epsilon_Ag = -28.05 + 1.525j
  37. # epsilon_Si = 2.0 + 0.047j
  38. # epsilon_Ag = -2.0 + 1.525j
  39. index_Si = np.sqrt(epsilon_Si)
  40. index_Ag = np.sqrt(epsilon_Ag)
  41. # # Values for 800 nm, taken from http://refractiveindex.info/
  42. # index_Si = 3.69410 + 0.0065435j
  43. # index_Ag = 0.18599 + 4.9886j
  44. WL=800 #nm
  45. core_width = 17.74 #nm Si
  46. inner_width = 23.31 #nm Ag
  47. outer_width = 22.95 #nm Si
  48. core_r = core_width
  49. inner_r = core_r+inner_width
  50. outer_r = inner_r+outer_width
  51. # n1 = 1.53413
  52. # n2 = 0.565838 + 7.23262j
  53. nm = 1.0
  54. x = np.ones((1, 3), dtype = np.float64)
  55. x[0, 0] = 2.0*np.pi*core_r/WL
  56. x[0, 1] = 2.0*np.pi*inner_r/WL
  57. x[0, 2] = 2.0*np.pi*outer_r/WL
  58. m = np.ones((1, 3), dtype = np.complex128)
  59. m[0, 0] = index_Si/nm
  60. m[0, 1] = index_Ag/nm
  61. m[0, 2] = index_Si/nm
  62. print "x =", x
  63. print "m =", m
  64. npts = 281
  65. scan = np.linspace(-2.0*x[0, 2], 2.0*x[0, 2], npts)
  66. coordX, coordZ = np.meshgrid(scan, scan)
  67. coordX.resize(npts*npts)
  68. coordZ.resize(npts*npts)
  69. coordY = np.zeros(npts*npts, dtype = np.float64)
  70. coord = np.vstack((coordX, coordY, coordZ)).transpose()
  71. terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m)
  72. terms, E, H = fieldnlay(x, m, coord)
  73. print("Qabs = "+str(Qabs));
  74. Er = np.absolute(E)
  75. # |E|/|Eo|
  76. Eh = np.sqrt(Er[0, :, 0]**2 + Er[0, :, 1]**2 + Er[0, :, 2]**2)
  77. result = np.vstack((coordX, coordY, coordZ, Eh)).transpose()
  78. try:
  79. import matplotlib.pyplot as plt
  80. from matplotlib import cm
  81. from matplotlib.colors import LogNorm
  82. min_tick = 0.0
  83. max_tick = 1.0
  84. edata = np.resize(Eh, (npts, npts)).T
  85. fig = plt.figure()
  86. ax = fig.add_subplot(111)
  87. # Rescale to better show the axes
  88. scale_x = np.linspace(min(coordX)*WL/2.0/np.pi/nm, max(coordX)*WL/2.0/np.pi/nm, npts)
  89. scale_z = np.linspace(min(coordZ)*WL/2.0/np.pi/nm, max(coordZ)*WL/2.0/np.pi/nm, npts)
  90. # Define scale ticks
  91. # min_tick = min(min_tick, np.amin(edata))
  92. max_tick = max(max_tick, np.amax(edata))
  93. # scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
  94. scale_ticks = np.linspace(min_tick, max_tick, 12)
  95. # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
  96. cax = ax.imshow(edata, interpolation = 'nearest', cmap = cm.jet,
  97. origin = 'lower', vmin = min_tick, vmax = max_tick,
  98. extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
  99. #,norm = LogNorm()
  100. )
  101. # Add colorbar
  102. cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
  103. cbar.ax.set_yticklabels(['%5.3g' % (a) for a in scale_ticks]) # vertically oriented colorbar
  104. pos = list(cbar.ax.get_position().bounds)
  105. fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
  106. plt.xlabel('Z, nm')
  107. plt.ylabel('X, nm')
  108. # This part draws the nanoshell
  109. from matplotlib import patches
  110. s1 = patches.Arc((0, 0), 2.0*core_r, 2.0*core_r, angle=0.0, zorder=2,
  111. theta1=0.0, theta2=360.0, linewidth=1, color='black')
  112. ax.add_patch(s1)
  113. s2 = patches.Arc((0, 0), 2.0*inner_r, 2.0*inner_r, angle=0.0, zorder=2,
  114. theta1=0.0, theta2=360.0, linewidth=1, color='black')
  115. ax.add_patch(s2)
  116. s3 = patches.Arc((0, 0), 2.0*outer_r, 2.0*outer_r, angle=0.0, zorder=2,
  117. theta1=0.0, theta2=360.0, linewidth=1, color='black')
  118. ax.add_patch(s3)
  119. # End of drawing
  120. plt.savefig("SiAgSi.svg")
  121. plt.draw()
  122. plt.show()
  123. plt.clf()
  124. plt.close()
  125. finally:
  126. np.savetxt("field.txt", result, fmt = "%.5f")
  127. print result