#!/usr/bin/env python # -*- coding: UTF-8 -*- # # Copyright (C) 2009-2015 Ovidio Peña Rodríguez # Copyright (C) 2013-2015 Konstantin Ladutenko # # This file is part of python-scattnlay # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # The only additional remark is that we expect that all publications # describing work using this software, or all commercial products # using it, cite the following reference: # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by # a multilayered sphere," Computer Physics Communications, # vol. 180, Nov. 2009, pp. 2348-2354. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # This test case calculates the electric field in the # E-k plane, for an spherical Si-Ag-Si nanoparticle. Core radius is 17.74 nm, # inner layer 23.31nm, outer layer 22.95nm. Working wavelength is 800nm, we use # silicon epsilon=13.64+i0.047, silver epsilon= -28.05+i1.525 import scattnlay from scattnlay import fieldnlay from scattnlay import scattnlay from fieldplot import fieldplot import numpy as np import cmath epsilon_Si = 13.64 + 0.047j epsilon_Ag = -28.05 + 1.525j # epsilon_Si = 2.0 + 0.047j # epsilon_Ag = -2.0 + 1.525j # air = 1 # epsilon_Si = air*2 # epsilon_Ag = air*2 index_Si = np.sqrt(epsilon_Si) index_Ag = np.sqrt(epsilon_Ag) print(index_Si) print(index_Ag) # # Values for 800 nm, taken from http://refractiveindex.info/ # index_Si = 3.69410 + 0.0065435j # index_Ag = 0.18599 + 4.9886j WL=800 #nm core_width = 17.74 #nm Si inner_width = 23.31 #nm Ag outer_width = 22.95 #nm Si core_r = core_width inner_r = core_r+inner_width outer_r = inner_r+outer_width # n1 = 1.53413 # n2 = 0.565838 + 7.23262j nm = 1.0 # WL=354 #nm # core_r = WL/20.0 # epsilon_Ag = -2.0 + 0.28j # index_Ag = np.sqrt(epsilon_Ag) # x = 2.0*np.pi*np.array([core_r/3., core_r/2., core_r], dtype = np.float64)/WL # m = np.array((index_Ag, index_Ag, index_Ag), dtype = np.complex128)/nm x = 2.0*np.pi*np.array([core_r, inner_r, outer_r], dtype = np.float64)/WL m = np.array((index_Si, index_Ag, index_Si), dtype = np.complex128)/nm print("x =", x) print("m =", m) npts = 501 factor=2.2 flow_total = 21 #crossplane='XZ' #crossplane='YZ' #crossplane='XY' crossplane='XYZ' # Options to plot: Eabs, Habs, Pabs, angleEx, angleHy field_to_plot='Eabs' #field_to_plot='angleEx' comment='SiAgSi-absorber-flow' WL_units='nm' import matplotlib.pyplot as plt fig, axs = plt.subplots(1,1)#, sharey=True, sharex=True) fig.tight_layout() fieldplot(fig, axs, x,m, WL, comment, WL_units, crossplane, field_to_plot, npts, factor, flow_total, subplot_label=' ', outline_width=1.5, draw_shell=True) #fieldplot(x,m, WL, comment, WL_units, crossplane, field_to_plot, npts, factor, flow_total) # for ax in axs: # ax.locator_params(axis='x',nbins=5) # ax.locator_params(axis='y',nbins=5) fig.subplots_adjust(hspace=0.3, wspace=-0.1) plt.savefig(comment+"-R"+str(int(round(x[-1]*WL/2.0/np.pi)))+"-"+crossplane+"-" +field_to_plot+".pdf",pad_inches=0.02, bbox_inches='tight') plt.draw() # plt.show() plt.clf() plt.close()