#!/usr/bin/env python # -*- coding: UTF-8 -*- # # Copyright (C) 2009-2019 Ovidio Peña Rodríguez # Copyright (C) 2013-2019 Konstantin Ladutenko # # This file is part of scattnlay # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # The only additional remark is that we expect that all publications # describing work using this software, or all commercial products # using it, cite at least one of the following references: # [1] O. Peña and U. Pal, "Scattering of electromagnetic radiation by # a multilayered sphere," Computer Physics Communications, # vol. 180, Nov. 2009, pp. 2348-2354. # [2] K. Ladutenko, U. Pal, A. Rivera, and O. Peña-Rodríguez, "Mie # calculation of electromagnetic near-field for a multilayered # sphere," Computer Physics Communications, vol. 214, May 2017, # pp. 225-230. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . import numpy as np def scattcoeffs(x, m, nmax=-1, pl=-1, mp=False): """ scattcoeffs(x, m[, nmax, pl, mp]) Calculate the scattering coefficients required to calculate both the near- and far-field parameters. x: Size parameters (1D or 2D ndarray) m: Relative refractive indices (1D or 2D ndarray) nmax: Maximum number of multipolar expansion terms to be used for the calculations. Only use it if you know what you are doing, otherwise set this parameter to -1 and the function will calculate it. pl: Index of PEC layer. If there is none just send -1. mp: Use multiple (True) or double (False) precision. Returns: (terms, an, bn) with terms: Number of multipolar expansion terms used for the calculations an, bn: Complex scattering coefficients """ if mp: from scattnlay_mp import scattcoeffs as scattcoeffs_ else: from scattnlay_dp import scattcoeffs as scattcoeffs_ if len(m.shape) != 1 and len(m.shape) != 2: raise ValueError('The relative refractive index (m) should be a 1-D or 2-D NumPy array.') if len(x.shape) == 1: if len(m.shape) == 1: return scattcoeffs_(x, m, nmax=nmax, pl=pl) else: raise ValueError('The number of of dimensions for the relative refractive index (m) and for the size parameter (x) must be equal.') elif len(x.shape) != 2: raise ValueError('The size parameter (x) should be a 1-D or 2-D NumPy array.') # Repeat the same m for all wavelengths if len(m.shape) == 1: m = np.repeat(m[np.newaxis, :], x.shape[0], axis=0) if nmax == -1: nstore = 0 else: nstore = nmax terms = np.zeros((x.shape[0]), dtype=int) an = np.zeros((0, nstore), dtype=complex) bn = np.zeros((0, nstore), dtype=complex) for i, xi in enumerate(x): terms[i], a, b = scattcoeffs_(xi, m[i], nmax=nmax, pl=pl) if terms[i] > nstore: nstore = terms[i] an.resize((an.shape[0], nstore)) bn.resize((bn.shape[0], nstore)) an = np.vstack((an, a)) bn = np.vstack((bn, b)) return terms, an, bn #scattcoeffs() def expancoeffs(x, m, nmax=-1, pl=-1, mp=False): """ expancoeffs(x, m[, nmax, pl, mp]) Calculate the scattering coefficients required to calculate both the near- and far-field parameters. x: Size parameters (1D or 2D ndarray) m: Relative refractive indices (1D or 2D ndarray) nmax: Maximum number of multipolar expansion terms to be used for the calculations. Only use it if you know what you are doing, otherwise set this parameter to -1 and the function will calculate it. pl: Index of PEC layer. If there is none just send -1. mp: Use multiple (True) or double (False) precision. Returns: (terms, an, bn, cn, dn) with terms: Number of multipolar expansion terms used for the calculations an, bn, cn, dn: Complex expansion coefficients of each layer """ if mp: from scattnlay_mp import expancoeffs as expancoeffs_ else: from scattnlay_dp import expancoeffs as expancoeffs_ if len(m.shape) != 1 and len(m.shape) != 2: raise ValueError('The relative refractive index (m) should be a 1-D or 2-D NumPy array.') if len(x.shape) == 1: if len(m.shape) == 1: return expancoeffs_(x, m, nmax=nmax, pl=pl) else: raise ValueError('The number of of dimensions for the relative refractive index (m) and for the size parameter (x) must be equal.') elif len(x.shape) != 2: raise ValueError('The size parameter (x) should be a 1-D or 2-D NumPy array.') # Repeat the same m for all wavelengths if len(m.shape) == 1: m = np.repeat(m[np.newaxis, :], x.shape[0], axis=0) if nmax == -1: nstore = 0 else: nstore = nmax terms = np.zeros((x.shape[0]), dtype=int) an = np.zeros((0, x.shape[1], nstore), dtype=complex) bn = np.zeros((0, x.shape[1], nstore), dtype=complex) cn = np.zeros((0, x.shape[1], nstore), dtype=complex) dn = np.zeros((0, x.shape[1], nstore), dtype=complex) for i, xi in enumerate(x): terms[i], a, b, c, d = expancoeffs_(xi, m[i], nmax=nmax, pl=pl) if terms[i] > nstore: nstore = terms[i] an.resize((an.shape[0], an.shape[1], nstore)) bn.resize((bn.shape[0], bn.shape[1], nstore)) cn.resize((cn.shape[0], cn.shape[1], nstore)) dn.resize((dn.shape[0], dn.shape[1], nstore)) an = np.vstack((an, a)) bn = np.vstack((bn, b)) cn = np.vstack((cn, c)) dn = np.vstack((dn, d)) return terms, an, bn, cn, dn #expancoeffs() def scattnlay(x, m, theta=np.zeros(0, dtype=float), nmax=-1, pl=-1, mp=False): """ scattnlay(x, m[, theta, nmax, pl, mp]) Calculate the actual scattering parameters and amplitudes. x: Size parameters (1D or 2D ndarray) m: Relative refractive indices (1D or 2D ndarray) theta: Scattering angles where the scattering amplitudes will be calculated (optional, 1D ndarray) nmax: Maximum number of multipolar expansion terms to be used for the calculations. Only use it if you know what you are doing. pl: Index of PEC layer. If there is none just send -1. mp: Use multiple (True) or double (False) precision. Returns: (terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2) with terms: Number of multipolar expansion terms used for the calculations Qext: Efficiency factor for extinction Qsca: Efficiency factor for scattering Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) Qbk: Efficiency factor for backscattering Qpr: Efficiency factor for the radiation pressure g: Asymmetry factor (g = (Qext-Qpr)/Qsca) Albedo: Single scattering albedo (Albedo = Qsca/Qext) S1, S2: Complex scattering amplitudes """ if mp: from scattnlay_mp import scattnlay as scattnlay_ else: from scattnlay_dp import scattnlay as scattnlay_ if len(m.shape) != 1 and len(m.shape) != 2: raise ValueError('The relative refractive index (m) should be a 1-D or 2-D NumPy array.') if len(x.shape) == 1: if len(m.shape) == 1: return scattnlay_(x, m, theta, nmax=nmax, pl=pl) else: raise ValueError('The number of of dimensions for the relative refractive index (m) and for the size parameter (x) must be equal.') elif len(x.shape) != 2: raise ValueError('The size parameter (x) should be a 1-D or 2-D NumPy array.') if len(theta.shape) != 1: raise ValueError('The scattering angles (theta) should be a 1-D NumPy array.') # Repeat the same m for all wavelengths if len(m.shape) == 1: m = np.repeat(m[np.newaxis, :], x.shape[0], axis=0) terms = np.zeros((x.shape[0]), dtype=int) Qext = np.zeros((x.shape[0]), dtype=float) Qsca = np.zeros((x.shape[0]), dtype=float) Qabs = np.zeros((x.shape[0]), dtype=float) Qbk = np.zeros((x.shape[0]), dtype=float) Qpr = np.zeros((x.shape[0]), dtype=float) g = np.zeros((x.shape[0]), dtype=float) Albedo = np.zeros((x.shape[0]), dtype=float) S1 = np.zeros((x.shape[0], theta.shape[0]), dtype=complex) S2 = np.zeros((x.shape[0], theta.shape[0]), dtype=complex) for i, xi in enumerate(x): terms[i], Qext[i], Qsca[i], Qabs[i], Qbk[i], Qpr[i], g[i], Albedo[i], S1[i], S2[i] = scattnlay_(xi, m[i], theta, nmax=nmax, pl=pl) return terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 #scattnlay() def fieldnlay(x, m, xp, yp, zp, nmax=-1, pl=-1, mp=False): """ fieldnlay(x, m, xp, yp, zp[, nmax, pl, mp]) Calculate the actual scattering parameters and amplitudes. x: Size parameters (1D or 2D ndarray) m: Relative refractive indices (1D or 2D ndarray) xp: Array containing all X coordinates to calculate the complex electric and magnetic fields (1D* ndarray) yp: Array containing all Y coordinates to calculate the complex electric and magnetic fields (1D* ndarray) zp: Array containing all Z coordinates to calculate the complex electric and magnetic fields (1D* ndarray) nmax: Maximum number of multipolar expansion terms to be used for the calculations. Only use it if you know what you are doing. pl: Index of PEC layer. If there is none just send -1. mp: Use multiple (True) or double (False) precision. Returns: (terms, E, H) with terms: Number of multipolar expansion terms used for the calculations E, H: Complex electric and magnetic field at the provided coordinates *Note: We assume that the coordinates are referred to the first wavelength (or structure) and correct it for the following ones """ if mp: from scattnlay_mp import fieldnlay as fieldnlay_ else: from scattnlay_dp import fieldnlay as fieldnlay_ if len(m.shape) != 1 and len(m.shape) != 2: raise ValueError('The relative refractive index (m) should be a 1-D or 2-D NumPy array.') if len(x.shape) == 1: if len(m.shape) == 1: return fieldnlay_(x, m, xp, yp, zp, nmax=nmax, pl=pl) else: raise ValueError('The number of of dimensions for the relative refractive index (m) and for the size parameter (x) must be equal.') elif len(x.shape) != 2: raise ValueError('The size parameter (x) should be a 1-D or 2-D NumPy array.') # Repeat the same m for all wavelengths if len(m.shape) == 1: m = np.repeat(m[np.newaxis, :], x.shape[0], axis=0) terms = np.zeros((x.shape[0]), dtype=int) E = np.zeros((x.shape[0], xp.shape[0], 3), dtype=complex) H = np.zeros((x.shape[0], xp.shape[0], 3), dtype=complex) for i, xi in enumerate(x): # (2020/05/12) We assume that the coordinates are referred to the first wavelength # (or structure) and correct it for the following ones terms[i], E[i], H[i] = fieldnlay_(xi, m[i], xp*xi[-1]/x[0, -1], yp*xi[-1]/x[0, -1], zp*xi[-1]/x[0, -1], nmax=nmax, pl=pl) return terms, E, H #fieldnlay()