#!/usr/bin/env python # -*- coding: UTF-8 -*- # # Copyright (C) 2009-2015 Ovidio Peña Rodríguez # # This file is part of python-scattnlay # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # The only additional remark is that we expect that all publications # describing work using this software, or all commercial products # using it, cite the following reference: # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by # a multilayered sphere," Computer Physics Communications, # vol. 180, Nov. 2009, pp. 2348-2354. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # This is a test against the program n-mie (version 3a) for the test case # distributed by them (extended for x up to 100) # n-mie is based in the algorithm described in: # Wu Z.P., Wang Y.P. # Electromagnetic scattering for multilayered spheres: # recursive algorithms # Radio Science 1991. V. 26. P. 1393-1401. # Voshchinnikov N.V., Mathis J.S. # Calculating Cross Sections of Composite Interstellar Grains # Astrophys. J. 1999. V. 526. #1. # The test consist in 5 layers with the following parameters # m1=1.8 i1.7 # m2=0.8 i0.7 # m3=1.2 i0.09 # m4=2.8 i0.2 # m5=1.5 i0.4 # v1/Vt=0.1 # v2/Vt=0.26 # v3/Vt=0.044 # v4/Vt=0.3666 from scattnlay import scattcoeffs import numpy as np #import example size = np.arange(0.25, 100.25, 0.25) x = np.vstack(( 0.1**(1.0/3.0)*size, 0.36**(1.0/3.0)*size, 0.404**(1.0/3.0)*size, 0.7706**(1.0/3.0)*size, size)).transpose() m = np.array((1.8 + 1.7j, 0.8 + 0.7j, 1.2 + 0.09j, 2.8 + 0.2j, 1.5 + 0.4j), dtype = np.complex128) # for i in range(300): # terms, an, bn = scattcoeffs(x, m, 105) nmax=105 an2 = np.zeros((len(size),nmax), dtype = np.complex128) bn2 = np.zeros((len(size),nmax), dtype = np.complex128) for _ in range(300): for i in range(len(size)): terms1, an2[i,:], bn2[i,:] = scattcoeffs(x[i,:], m, nmax=nmax) # print(an1[:3], bn1[:3]) # print(an2) # print(an) # print(terms1) # result = np.vstack((x[:, 4], an[:, 0].real, an[:, 0].imag, an[:, 1].real, an[:, 1].imag, an[:, 2].real, an[:, 2].imag, # bn[:, 0].real, bn[:, 0].imag, bn[:, 1].real, bn[:, 1].imag, bn[:, 2].real, bn[:, 2].imag)).transpose() # try: # import matplotlib.pyplot as plt # plt.figure(1) # for i in range(3): # plt.subplot(310 + i + 1) # plt.plot(x[:, 4], an[:, i].real, label = "Re(a$_%i$)" % (i + 1)) # plt.plot(x[:, 4], bn[:, i].real, label = "Re(b$_%i$)" % (i + 1)) # plt.plot(x[:, 4], an[:, i].imag, label = "Im(a$_%i$)" % (i + 1)) # plt.plot(x[:, 4], bn[:, i].imag, label = "Im(b$_%i$)" % (i + 1)) # plt.ylabel('n = %i' % (i + 1)) # plt.legend() # plt.xlabel('X') # plt.show() # finally: # np.savetxt("scattcoeffs.txt", result, fmt = "%.5f") # print( result[0,:])