//**********************************************************************************// // Copyright (C) 2009-2013 Ovidio Pena // // // // This file is part of scattnlay // // // // This program is free software: you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation, either version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License for more details. // // // // The only additional remark is that we expect that all publications // // describing work using this software, or all commercial products // // using it, cite the following reference: // // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // // a multilayered sphere," Computer Physics Communications, // // vol. 180, Nov. 2009, pp. 2348-2354. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // //**********************************************************************************// #include #include #include #include #include #include #include #include #include #include #include #include "ucomplex.h" #include "nmie.h" #include "nmie-wrapper.h" //#define MAXLAYERS 1100 const int MAXLAYERS = 1100; //#define MAXTHETA 800 const int MAXTHETA = 800; //#define PI 3.14159 const double PI=3.14159265358979323846; //***********************************************************************************// // This is the main function of 'scattnlay', here we read the parameters as // // arguments passed to the program which should be executed with the following // // syntaxis: // // ./scattnlay -l Layers x1 m1.r m1.i [x2 m2.r m2.i ...] [-t ti tf nt] [-c comment] // // // // When all the parameters were correctly passed we setup the integer L (the // // number of layers) and the arrays x and m, containing the size parameters and // // refractive indexes of the layers, respectively and call the function nMie. // // If the calculation is successful the results are printed with the following // // format: // // // // * If no comment was passed: // // 'Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo' // // // // * If a comment was passed: // // 'comment, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo' // //***********************************************************************************// int main(int argc, char *argv[]) { try { char comment[200]; std::string comment_std; int has_comment = 0; int i, j, L; double *x, *Theta; std::vector x_std, Theta_std; complex *m, *S1, *S2; std::vector > m_std, S1_std, S2_std; double Qext, Qabs, Qsca, Qbk, Qpr, g, Albedo; double ti = 0.0, tf = 90.0; int nt = 0; if (argc < 5) { printf("Insufficient parameters.\n"); printf("Usage: %s -l Layers x1 m1.r m1.i [x2 m2.r m2.i ...] [-t ti tf nt] [-c comment]\n", argv[0]); return -1; } strcpy(comment, ""); for (i = 1; i < argc; i++) { if (strcmp(argv[i], "-l") == 0) { i++; L = atoi(argv[i]); x = (double *) malloc(L*sizeof(double)); x_std.resize(L); m = (complex *) malloc(L*sizeof(complex)); m_std.resize(L); if (argc < 3*(L + 1)) { printf("Insufficient parameters.\nUsage: %s -l Layers x1 m1.r m1.i [x2 m2.r m2.i ...] [-t ti tf nt] [-c comment]\n", argv[0]); return -1; } else { for (j = 0; j < L; j++) { i++; x[j] = atof(argv[i]); x_std[j] = x[j]; i++; m[j].r = atof(argv[i]); i++; m[j].i = atof(argv[i]); m_std[j] = std::complex(m[j].r, m[j].i); } } } else if (strcmp(argv[i], "-t") == 0) { i++; ti = atof(argv[i]); i++; tf = atof(argv[i]); i++; nt = atoi(argv[i]); Theta = (double *) malloc(nt*sizeof(double)); Theta_std.resize(nt); S1 = (complex *) malloc(nt*sizeof(complex)); S2 = (complex *) malloc(nt*sizeof(complex)); S1_std.resize(nt); S2_std.resize(nt); } else if (strcmp(argv[i], "-c") == 0) { i++; strcpy(comment, argv[i]); comment_std = std::string(comment); has_comment = 1; } else { i++; } } if (nt < 0) { printf("Error reading Theta.\n"); return -1; } else if (nt == 1) { Theta[0] = ti*PI/180.0; Theta_std[0] = Theta[0]; } else { for (i = 0; i < nt; i++) { Theta[i] = (ti + (double)i*(tf - ti)/(nt - 1))*PI/180.0; Theta_std[i] = Theta[i]; } } // printf("Debug run!\n"); nMie(L, x, m, nt, Theta, &Qext, &Qsca, &Qabs, &Qbk, &Qpr, &g, &Albedo, S1, S2); std::vector old_result({Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo}); // if (has_comment) { // printf("%6s, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e\n", comment, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo); // } else { // printf("%+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e\n", Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo); // } // if (nt > 0) { // printf(" Theta, S1.r, S1.i, S2.r, S2.i\n"); // for (i = 0; i < nt; i++) { // printf("%6.2f, %+.5e, %+.5e, %+.5e, %+.5e\n", Theta[i]*180.0/PI, S1[i].r, S1[i].i, S2[i].r, S2[i].i); // } // } ///////////////////////////////////////////////////////////////////////// // After conversion nMie_std( x, m, Theta, S1, S2, L, x_std, m_std, nt, Theta_std, &Qext, &Qsca, &Qabs, &Qbk, &Qpr, &g, &Albedo, S1_std, S2_std); std::vector new_result({Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo}); // if (has_comment) { // printf("%6s, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e **After\n", comment, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo); // } else { // printf("%+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e **After\n", Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo); // } // if (nt > 0) { // printf(" Theta, S1.r, S1.i, S2.r, S2.i **After\n"); // for (i = 0; i < nt; i++) { // printf("%6.2f, %+.5e, %+.5e, %+.5e, %+.5e **After\n", Theta[i]*180.0/PI, S1[i].r, S1[i].i, S2[i].r, S2[i].i); // } // } for (int i =0; i < old_result.size(); ++i) { double diff = new_result[i] - old_result[i]; // printf("%g ", diff); if (std::abs(diff) > 1e-16) printf(" ********* WARNING!!! Final diff = %g ********* \n", diff); } // std::vector diff_result(old_result.size(), 0.0); // std::transform(new_result.begin(), new_result.end(), old_result.begin(), // std::back_inserter(diff_result), std::minus()); // std::cout << "diff: " << diff_result << std::endl; } catch( const std::invalid_argument& ia ) { // Will catch if multi_layer_mie fails or other errors. std::cerr << "Invalid argument: " << ia.what() << std::endl; return -1; } return 0; }