//**********************************************************************************// // Copyright (C) 2009-2015 Ovidio Pena // // // // This file is part of scattnlay // // // // This program is free software: you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation, either version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License for more details. // // // // The only additional remark is that we expect that all publications // // describing work using this software, or all commercial products // // using it, cite the following reference: // // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // // a multilayered sphere," Computer Physics Communications, // // vol. 180, Nov. 2009, pp. 2348-2354. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // //**********************************************************************************// //**********************************************************************************// // This library implements the algorithm for a multilayered sphere described by: // // [1] W. Yang, "Improved recursive algorithm for light scattering by a // // multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. // // // // You can find the description of all the used equations in: // // [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // // a multilayered sphere," Computer Physics Communications, // // vol. 180, Nov. 2009, pp. 2348-2354. // // // // Hereinafter all equations numbers refer to [2] // //**********************************************************************************// #include #include #include #include "ucomplex.h" #include "nmie.h" // TODO should be replaced with std::round() or std::lround() #define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5)) complex C_ZERO = {0.0, 0.0}; complex C_ONE = {1.0, 0.0}; complex C_I = {0.0, 1.0}; int compare(std::string operation, complex *a, std::vector< std::complex > b) { for (int i = 0; i < b.size(); ++i) { //if (i > 50) continue; double diff_r = std::abs((a[i].r - b[i].real())/a[i].r); double diff_i = std::abs((a[i].i - b[i].imag())/a[i].i); double epsilon= 1e-16; if (diff_r > epsilon ||diff_i > epsilon) { printf("\n*** WARNING!! Non-zero diff!!! ***\n"); printf("Op: %s at i=%i, diff_r=%g, diff_i=%g, a_r=%g, a_i = %g\n", operation.c_str(), i, diff_r, diff_i, a[i].r, a[i].i); } double factor = 1.0; if ((diff_r > epsilon * factor && a[i].r/a[0].r > epsilon) || (diff_i > epsilon*factor && a[i].i/a[0].i > epsilon)) { printf("\n******** ERROR!! Non-zero diff!!! ********\n"); printf("Op: %s at i=%i, diff_r=%g, diff_i=%g, a_r=%g, a_i = %g\n", operation.c_str(), i, diff_r, diff_i, a[i].r, a[i].i); } } return 0; } int firstLayer(int L, int pl) { if (pl >= 0) { return pl; } else { return 0; } } // Calculate Nstop - equation (17) int Nstop(double xL) { int result; if (xL <= 8) { result = std::lround(xL + 4*pow(xL, 1/3) + 1); } else if (xL <= 4200) { result = std::lround(xL + 4.05*pow(xL, 1/3) + 2); } else { result = std::lround(xL + 4*pow(xL, 1/3) + 2); } return result; } int Nmax(int L, int fl, int pl, double x[], complex m[]) { int i, result, ri, riM1; result = Nstop(x[L - 1]); for (i = fl; i < L; i++) { if (i > pl) { ri = round(Cabs(RCmul(x[i], m[i]))); } else { ri = 0; } if (result < ri) { result = ri; } if ((i > fl) && ((i - 1) > pl)) { riM1 = round(Cabs(RCmul(x[i - 1], m[i]))); } else { riM1 = 0; } if (result < riM1) { result = riM1; } } return result + 15; } //**********************************************************************************// int Nmax_std(int L, int fl, int pl, std::vector x, std::vector > m) { int i, result, ri, riM1; result = Nstop(x[L - 1]); for (i = fl; i < L; i++) { if (i > pl) { ri = std::lround(std::abs(x[i]*m[i])); } else { ri = 0; } if (result < ri) { result = ri; } if ((i > fl) && ((i - 1) > pl)) { riM1 = std::lround(std::abs(x[i - 1]* m[i])); } else { riM1 = 0; } if (result < riM1) { result = riM1; } } return result + 15; } //**********************************************************************************// // This function calculates the spherical Bessel functions (jn and hn) for a given // // value of r. // // // // Input parameters: // // r: Real argument to evaluate jn and hn // // n_max: Maximum number of terms to calculate jn and hn // // // // Output parameters: // // jn, hn: Spherical Bessel functions (double) // //**********************************************************************************// void sphericalBessel(double r, int n_max, double **j, double **h) { int n; (*j)[0] = sin(r)/r; (*j)[1] = sin(r)/r/r - cos(r)/r; (*h)[0] = -cos(r)/r; (*h)[1] = -cos(r)/r/r - sin(r)/r; for (n = 2; n < n_max; n++) { (*j)[n] = (n + n + 1)*(*j)[n - 1]/r - (*j)[n - 2]; (*h)[n] = (n + n + 1)*(*h)[n - 1]/r - (*h)[n - 2]; } } //**********************************************************************************// // This function calculates the spherical Bessel functions (jn and hn) for a given // // value of z. // // // // Input parameters: // // z: Real argument to evaluate jn and hn // // n_max: Maximum number of terms to calculate jn and hn // // // // Output parameters: // // jn, hn: Spherical Bessel functions (complex) // //**********************************************************************************// void CsphericalBessel(complex z, int n_max, complex **j, complex **h) { int n; (*j)[0] = Cdiv(Csin(z), z); (*j)[1] = Csub(Cdiv(Cdiv(Csin(z), z), z), Cdiv(Ccos(z), z)); (*h)[0] = Csub(C_ZERO, Cdiv(Ccos(z), z)); (*h)[1] = Csub(C_ZERO, Cadd(Cdiv(Cdiv(Ccos(z), z), z), Cdiv(Csin(z), z))); for (n = 2; n < n_max; n++) { (*j)[n] = Csub(RCmul(n + n + 1, Cdiv((*j)[n - 1], z)), (*j)[n - 2]); (*h)[n] = Csub(RCmul(n + n + 1, Cdiv((*h)[n - 1], z)), (*h)[n - 2]); } } // Calculate an - equation (5) complex calc_an(int n, double XL, complex Ha, complex mL, complex PsiXL, complex ZetaXL, complex PsiXLM1, complex ZetaXLM1) { complex Num = Csub(Cmul(Cadd(Cdiv(Ha, mL), Complex(n/XL, 0)), PsiXL), PsiXLM1); complex Denom = Csub(Cmul(Cadd(Cdiv(Ha, mL), Complex(n/XL, 0)), ZetaXL), ZetaXLM1); return Cdiv(Num, Denom); } ///////////////////////////////////////////// std::complex calc_an_std(int n, double XL, std::complex Ha, std::complex mL, std::complex PsiXL, std::complex ZetaXL, std::complex PsiXLM1, std::complex ZetaXLM1) { std::complex Num = (( (Ha/mL) + std::complex(n/XL, 0) ) * PsiXL) - PsiXLM1; std::complex Denom = (( (Ha/mL) + std::complex(n/XL, 0) ) * ZetaXL) - ZetaXLM1; return Num/Denom; } // Calculate bn - equation (6) complex calc_bn(int n, double XL, complex Hb, complex mL, complex PsiXL, complex ZetaXL, complex PsiXLM1, complex ZetaXLM1) { complex Num = Csub(Cmul(Cadd(Cmul(Hb, mL), Complex(n/XL, 0)), PsiXL), PsiXLM1); complex Denom = Csub(Cmul(Cadd(Cmul(Hb, mL), Complex(n/XL, 0)), ZetaXL), ZetaXLM1); return Cdiv(Num, Denom); } // Calculate bn - equation (6) std::complex calc_bn_std(int n, double XL, std::complex Hb, std::complex mL, std::complex PsiXL, std::complex ZetaXL, std::complex PsiXLM1, std::complex ZetaXLM1) { std::complex Num = (( (Hb*mL) + std::complex(n/XL,0) ) * PsiXL) - PsiXLM1; std::complex Denom = (( (Hb*mL) + std::complex(n/XL,0) ) * ZetaXL) - ZetaXLM1; return Num/Denom; } // Calculates S1_n - equation (25a) complex calc_S1_n(int n, complex an, complex bn, double Pin, double Taun) { return RCmul((double)(n + n + 1)/(double)(n*n + n), Cadd(RCmul(Pin, an), RCmul(Taun, bn))); } ////////////////////// std::complex calc_S1_n_std(int n, std::complex an, std::complex bn, double Pin, double Taun) { return (double)(n + n + 1)/(double)(n*n + n) * ((Pin*an) + (Taun*bn)); } // Calculates S2_n - equation (25b) (it's the same as (25a), just switches Pin and Taun) complex calc_S2_n(int n, complex an, complex bn, double Pin, double Taun) { return calc_S1_n(n, an, bn, Taun, Pin); } ////////////////////// std::complex calc_S2_n_std(int n, std::complex an, std::complex bn, double Pin, double Taun) { return calc_S1_n_std(n, an, bn, Taun, Pin); } //**********************************************************************************// // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a // // given value of z. // // // // Input parameters: // // z: Complex argument to evaluate Psi and Zeta // // n_max: Maximum number of terms to calculate Psi and Zeta // // // // Output parameters: // // Psi, Zeta: Riccati-Bessel functions // //**********************************************************************************// void calcPsiZeta(complex z, int n_max, complex *D1, complex *D3, complex **Psi, complex **Zeta) { int n; complex cn; //Upward recurrence for Psi and Zeta - equations (20a) - (21b) (*Psi)[0] = Complex(sin(z.r), 0); (*Zeta)[0] = Complex(sin(z.r), -cos(z.r)); for (n = 1; n <= n_max; n++) { cn = Complex(n, 0); (*Psi)[n] = Cmul((*Psi)[n - 1], Csub(Cdiv(cn, z), D1[n - 1])); (*Zeta)[n] = Cmul((*Zeta)[n - 1], Csub(Cdiv(cn, z), D3[n - 1])); } } //**********************************************************************************// void calcPsiZeta_std(std::complex z, int n_max, std::vector< std::complex > D1, std::vector< std::complex > D3, std::vector< std::complex > &Psi, std::vector< std::complex > &Zeta) { int n; std::complex cn; //Upward recurrence for Psi and Zeta - equations (20a) - (21b) Psi[0] = std::complex(sin(z.real()), 0); Zeta[0] = std::complex(sin(z.real()), -cos(z.real())); for (n = 1; n <= n_max; n++) { cn = std::complex(n, 0); Psi[n] = Psi[n-1] * ( (cn/z) - D1[n-1] ); Zeta[n] = Zeta[n-1] * ( (cn/z) - D3[n-1] ); } } //**********************************************************************************// // This function calculates the logarithmic derivatives of the Riccati-Bessel // // functions (D1 and D3) for a given value of z. // // // // Input parameters: // // z: Complex argument to evaluate D1 and D3 // // n_max: Maximum number of terms to calculate D1 and D3 // // // // Output parameters: // // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions // //**********************************************************************************// void calcD1D3(complex z, int n_max, complex **D1, complex **D3) { int n; complex cn; complex *PsiZeta = (complex *) malloc((n_max + 1)*sizeof(complex)); // Downward recurrence for D1 - equations (16a) and (16b) (*D1)[n_max] = C_ZERO; for (n = n_max; n > 0; n--) { cn = Complex(n, 0); (*D1)[n - 1] = Csub(Cdiv(cn, z), Cdiv(C_ONE, Cadd((*D1)[n], Cdiv(cn, z)))); } // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d) PsiZeta[0] = RCmul(0.5, Csub(C_ONE, Cmul(Complex(cos(2*z.r), sin(2*z.r)), Complex(exp(-2*z.i), 0)))); (*D3)[0] = C_I; for (n = 1; n <= n_max; n++) { cn = Complex(n, 0); PsiZeta[n] = Cmul(PsiZeta[n - 1], Cmul(Csub(Cdiv(cn, z), (*D1)[n - 1]), Csub(Cdiv(cn, z), (*D3)[n - 1]))); (*D3)[n] = Cadd((*D1)[n], Cdiv(C_I, PsiZeta[n])); } free(PsiZeta); } //**********************************************************************************// void calcD1D3_std(std::complex z, int n_max, std::vector< std::complex > &D1, std::vector< std::complex > &D3) { int n; std::complex cn; //complex *PsiZeta = (complex *) malloc((n_max + 1)*sizeof(complex)); std::vector< std::complex > PsiZeta; PsiZeta.resize(n_max + 1); // Downward recurrence for D1 - equations (16a) and (16b) D1[n_max] = std::complex(0.0, 0.0); for (n = n_max; n > 0; n--) { cn = std::complex(n, 0.0); D1[n - 1] = cn/z - 1.0/(D1[n] + (cn/z)); } // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d) PsiZeta[0] = 0.5 * (1.0 - (std::complex(cos(2*z.real()), sin(2*z.real())) * std::complex(exp(-2*z.imag()), 0))); D3[0] = std::complex(0.0, 1.0); for (n = 1; n <= n_max; n++) { cn = std::complex(n, 0.0); PsiZeta[n] = PsiZeta[n-1] * (((cn/ z) - D1[n - 1]) * ((cn/ z)- D3[n - 1])); D3[n] = D1[n]+ (std::complex(0.0, 1.0)/ PsiZeta[n]); } // free(PsiZeta); } //**********************************************************************************// // This function calculates Pi and Tau for all values of Theta. // // // // Input parameters: // // n_max: Maximum number of terms to calculate Pi and Tau // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // // // Output parameters: // // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) // //**********************************************************************************// void calcPiTau(int n_max, int nTheta, double Theta[], double ***Pi, double ***Tau) { int n, t; for (n = 0; n < n_max; n++) { //****************************************************// // Equations (26a) - (26c) // //****************************************************// for (t = 0; t < nTheta; t++) { if (n == 0) { // Initialize Pi and Tau (*Pi)[n][t] = 1.0; (*Tau)[n][t] = (n + 1)*cos(Theta[t]); } else { // Calculate the actual values (*Pi)[n][t] = ((n == 1) ? ((n + n + 1)*cos(Theta[t])*(*Pi)[n - 1][t]/n) : (((n + n + 1)*cos(Theta[t])*(*Pi)[n - 1][t] - (n + 1)*(*Pi)[n - 2][t])/n)); (*Tau)[n][t] = (n + 1)*cos(Theta[t])*(*Pi)[n][t] - (n + 2)*(*Pi)[n - 1][t]; } } } } //**********************************************************************************// void calcPiTau_std(int n_max, int nTheta, std::vector Theta, std::vector< std::vector > &Pi, std::vector< std::vector > &Tau) { int n, t; for (n = 0; n < n_max; n++) { //****************************************************// // Equations (26a) - (26c) // //****************************************************// for (t = 0; t < nTheta; t++) { if (n == 0) { // Initialize Pi and Tau Pi[n][t] = 1.0; Tau[n][t] = (n + 1)*cos(Theta[t]); } else { // Calculate the actual values Pi[n][t] = ((n == 1) ? ((n + n + 1)*cos(Theta[t])*Pi[n - 1][t]/n) : (((n + n + 1)*cos(Theta[t])*Pi[n - 1][t] - (n + 1)*Pi[n - 2][t])/n)); Tau[n][t] = (n + 1)*cos(Theta[t])*Pi[n][t] - (n + 2)*Pi[n - 1][t]; } } } } //**********************************************************************************// // This function calculates the scattering coefficients required to calculate // // both the near- and far-field parameters. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // n_max: Maximum number of multipolar expansion terms to be used for the // // calculations. Only used if you know what you are doing, otherwise set // // this parameter to -1 and the function will calculate it. // // // // Output parameters: // // an, bn: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int ScattCoeff(int L, int pl, double x[], complex m[], int n_max, complex **an, complex **bn){ //************************************************************************// // Calculate the index of the first layer. It can be either 0 (default) // // or the index of the outermost PEC layer. In the latter case all layers // // below the PEC are discarded. // //************************************************************************// int fl = firstLayer(L, pl); if (n_max <= 0) { n_max = Nmax(L, fl, pl, x, m); } complex z1, z2, cn; complex Num, Denom; complex G1, G2; complex Temp; double Tmp; int n, l, t; //**************************************************************************// // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which // // means that index = layer number - 1 or index = n - 1. The only exception // // are the arrays for representing D1, D3 and Q because they need a value // // for the index 0 (zero), hence it is important to consider this shift // // between different arrays. The change was done to optimize memory usage. // //**************************************************************************// // Allocate memory to the arrays complex **D1_mlxl = (complex **) malloc(L*sizeof(complex *)); complex **D1_mlxlM1 = (complex **) malloc(L*sizeof(complex *)); complex **D3_mlxl = (complex **) malloc(L*sizeof(complex *)); complex **D3_mlxlM1 = (complex **) malloc(L*sizeof(complex *)); complex **Q = (complex **) malloc(L*sizeof(complex *)); complex **Ha = (complex **) malloc(L*sizeof(complex *)); complex **Hb = (complex **) malloc(L*sizeof(complex *)); for (l = 0; l < L; l++) { D1_mlxl[l] = (complex *) malloc((n_max + 1)*sizeof(complex)); D1_mlxlM1[l] = (complex *) malloc((n_max + 1)*sizeof(complex)); D3_mlxl[l] = (complex *) malloc((n_max + 1)*sizeof(complex)); D3_mlxlM1[l] = (complex *) malloc((n_max + 1)*sizeof(complex)); Q[l] = (complex *) malloc((n_max + 1)*sizeof(complex)); Ha[l] = (complex *) malloc(n_max*sizeof(complex)); Hb[l] = (complex *) malloc(n_max*sizeof(complex)); } (*an) = (complex *) malloc(n_max*sizeof(complex)); (*bn) = (complex *) malloc(n_max*sizeof(complex)); complex *D1XL = (complex *) malloc((n_max + 1)*sizeof(complex)); complex *D3XL = (complex *) malloc((n_max + 1)*sizeof(complex)); complex *PsiXL = (complex *) malloc((n_max + 1)*sizeof(complex)); complex *ZetaXL = (complex *) malloc((n_max + 1)*sizeof(complex)); //*************************************************// // Calculate D1 and D3 for z1 in the first layer // //*************************************************// if (fl == pl) { // PEC layer for (n = 0; n <= n_max; n++) { D1_mlxl[fl][n] = Complex(0, -1); D3_mlxl[fl][n] = C_I; } } else { // Regular layer z1 = RCmul(x[fl], m[fl]); // Calculate D1 and D3 calcD1D3(z1, n_max, &(D1_mlxl[fl]), &(D3_mlxl[fl])); } //******************************************************************// // Calculate Ha and Hb in the first layer - equations (7a) and (8a) // //******************************************************************// for (n = 0; n < n_max; n++) { Ha[fl][n] = D1_mlxl[fl][n + 1]; Hb[fl][n] = D1_mlxl[fl][n + 1]; } //*****************************************************// // Iteration from the second layer to the last one (L) // //*****************************************************// for (l = fl + 1; l < L; l++) { //************************************************************// //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L // //************************************************************// z1 = RCmul(x[l], m[l]); z2 = RCmul(x[l - 1], m[l]); //Calculate D1 and D3 for z1 calcD1D3(z1, n_max, &(D1_mlxl[l]), &(D3_mlxl[l])); //Calculate D1 and D3 for z2 calcD1D3(z2, n_max, &(D1_mlxlM1[l]), &(D3_mlxlM1[l])); //*********************************************// //Calculate Q, Ha and Hb in the layers fl+1..L // //*********************************************// // Upward recurrence for Q - equations (19a) and (19b) Num = RCmul(exp(-2*(z1.i - z2.i)), Complex(cos(-2*z2.r) - exp(-2*z2.i), sin(-2*z2.r))); Denom = Complex(cos(-2*z1.r) - exp(-2*z1.i), sin(-2*z1.r)); Q[l][0] = Cdiv(Num, Denom); for (n = 1; n <= n_max; n++) { cn = Complex(n, 0); Num = Cmul(Cadd(Cmul(z1, D1_mlxl[l][n]), cn), Csub(cn, Cmul(z1, D3_mlxl[l][n - 1]))); Denom = Cmul(Cadd(Cmul(z2, D1_mlxlM1[l][n]), cn), Csub(cn, Cmul(z2, D3_mlxlM1[l][n - 1]))); Q[l][n] = Cdiv(Cmul(RCmul((x[l - 1]*x[l - 1])/(x[l]*x[l]), Q[l][n - 1]), Num), Denom); } // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15) for (n = 1; n <= n_max; n++) { //Ha if ((l - 1) == pl) { // The layer below the current one is a PEC layer G1 = RCmul(-1.0, D1_mlxlM1[l][n]); G2 = RCmul(-1.0, D3_mlxlM1[l][n]); } else { G1 = Csub(Cmul(m[l], Ha[l - 1][n - 1]), Cmul(m[l - 1], D1_mlxlM1[l][n])); G2 = Csub(Cmul(m[l], Ha[l - 1][n - 1]), Cmul(m[l - 1], D3_mlxlM1[l][n])); } Temp = Cmul(Q[l][n], G1); Num = Csub(Cmul(G2, D1_mlxl[l][n]), Cmul(Temp, D3_mlxl[l][n])); Denom = Csub(G2, Temp); Ha[l][n - 1] = Cdiv(Num, Denom); //Hb if ((l - 1) == pl) { // The layer below the current one is a PEC layer G1 = Hb[l - 1][n - 1]; G2 = Hb[l - 1][n - 1]; } else { G1 = Csub(Cmul(m[l - 1], Hb[l - 1][n - 1]), Cmul(m[l], D1_mlxlM1[l][n])); G2 = Csub(Cmul(m[l - 1], Hb[l - 1][n - 1]), Cmul(m[l], D3_mlxlM1[l][n])); } Temp = Cmul(Q[l][n], G1); Num = Csub(Cmul(G2, D1_mlxl[l][n]), Cmul(Temp, D3_mlxl[l][n])); Denom = Csub(G2, Temp); Hb[l][n - 1] = Cdiv(Num, Denom); } } //**************************************// //Calculate D1, D3, Psi and Zeta for XL // //**************************************// z1 = Complex(x[L - 1], 0); // Calculate D1XL and D3XL calcD1D3(z1, n_max, &D1XL, &D3XL); // Calculate PsiXL and ZetaXL calcPsiZeta(z1, n_max, D1XL, D3XL, &PsiXL, &ZetaXL); //*********************************************************************// // Finally, we calculate the scattering coefficients (an and bn) and // // the angular functions (Pi and Tau). Note that for these arrays the // // first layer is 0 (zero), in future versions all arrays will follow // // this convention to save memory. (13 Nov, 2014) // //*********************************************************************// for (n = 0; n < n_max; n++) { //********************************************************************// //Expressions for calculating an and bn coefficients are not valid if // //there is only one PEC layer (ie, for a simple PEC sphere). // //********************************************************************// if (pl < (L - 1)) { (*an)[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); (*bn)[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); } else { (*an)[n] = calc_an(n + 1, x[L - 1], C_ZERO, C_ONE, PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); (*bn)[n] = Cdiv(PsiXL[n + 1], ZetaXL[n + 1]); } } // Free the memory used for the arrays for (l = 0; l < L; l++) { free(D1_mlxl[l]); free(D1_mlxlM1[l]); free(D3_mlxl[l]); free(D3_mlxlM1[l]); free(Q[l]); free(Ha[l]); free(Hb[l]); } free(D1_mlxl); free(D1_mlxlM1); free(D3_mlxl); free(D3_mlxlM1); free(Q); free(Ha); free(Hb); free(D1XL); free(D3XL); free(PsiXL); free(ZetaXL); return n_max; } //**********************************************************************************// //**********************************************************************************// //**********************************************************************************// int ScattCoeff_std(double x[], complex m[], int L, int pl, std::vector x_std, std::vector > m_std, int n_max, std::vector< std::complex > &an_std, std::vector< std::complex > &bn_std){ //************************************************************************// // Calculate the index of the first layer. It can be either 0 (default) // // or the index of the outermost PEC layer. In the latter case all layers // // below the PEC are discarded. // //************************************************************************// //TODO: Why? // int fl = firstLayer(L, pl); // instead of int fl = (pl > 0) ? pl : 0; // fl - first layer, pl - pec layer. if (n_max <= 0) { int tmp_n_max = Nmax(L, fl, pl, x, m); n_max = Nmax_std(L, fl, pl, x_std, m_std); if (n_max != tmp_n_max) printf("n_max mismatch 2\n"); } // complex z1, z2, cn; // complex Num, Denom; // complex G1, G2; // complex Temp; std::complex z1, z2, cn; std::complex Num, Denom; std::complex G1, G2; std::complex Temp; double Tmp; int n, l, t; //**************************************************************************// // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which // // means that index = layer number - 1 or index = n - 1. The only exception // // are the arrays for representing D1, D3 and Q because they need a value // // for the index 0 (zero), hence it is important to consider this shift // // between different arrays. The change was done to optimize memory usage. // //**************************************************************************// // Allocate memory to the arrays //complex **D1_mlxl = (complex **) malloc(L*sizeof(complex *)); //complex **D1_mlxlM1 = (complex **) malloc(L*sizeof(complex *)); std::vector< std::vector< std::complex > > D1_mlxl; D1_mlxl.resize(L); std::vector< std::vector< std::complex > >D1_mlxlM1; D1_mlxlM1.resize(L); // complex **D3_mlxl = (complex **) malloc(L*sizeof(complex *)); // complex **D3_mlxlM1 = (complex **) malloc(L*sizeof(complex *)); std::vector< std::vector< std::complex > > D3_mlxl; D3_mlxl.resize(L); std::vector< std::vector< std::complex > > D3_mlxlM1; D3_mlxlM1.resize(L); //complex **Q = (complex **) malloc(L*sizeof(complex *)); std::vector< std::vector< std::complex > > Q; Q.resize(L); //complex **Ha = (complex **) malloc(L*sizeof(complex *)); std::vector< std::vector< std::complex > > Ha; Ha.resize(L); //complex **Hb = (complex **) malloc(L*sizeof(complex *)); std::vector< std::vector< std::complex > > Hb; Hb.resize(L); for (l = 0; l < L; l++) { // D1_mlxl[l] = (complex *) malloc((n_max + 1)*sizeof(complex)); // D1_mlxlM1[l] = (complex *) malloc((n_max + 1)*sizeof(complex)); D1_mlxl[l].resize(n_max +1); D1_mlxlM1[l].resize(n_max +1); // D3_mlxl[l] = (complex *) malloc((n_max + 1)*sizeof(complex)); // D3_mlxlM1[l] = (complex *) malloc((n_max + 1)*sizeof(complex)); D3_mlxl[l].resize(n_max +1); D3_mlxlM1[l].resize(n_max +1); //Q[l] = (complex *) malloc((n_max + 1)*sizeof(complex)); Q[l].resize(n_max + 1); // Ha[l] = (complex *) malloc(n_max*sizeof(complex)); // Hb[l] = (complex *) malloc(n_max*sizeof(complex)); Ha[l].resize(n_max); Hb[l].resize(n_max); } // (*an) = (complex *) malloc(n_max*sizeof(complex)); // (*bn) = (complex *) malloc(n_max*sizeof(complex)); an_std.resize(n_max); bn_std.resize(n_max); // complex *D1XL = (complex *) malloc((n_max + 1)*sizeof(complex)); // complex *D3XL = (complex *) malloc((n_max + 1)*sizeof(complex)); std::vector< std::complex > D1XL; D1XL.resize(n_max+1); std::vector< std::complex > D3XL; D3XL.resize(n_max+1); // complex *PsiXL = (complex *) malloc((n_max + 1)*sizeof(complex)); // complex *ZetaXL = (complex *) malloc((n_max + 1)*sizeof(complex)); std::vector< std::complex > PsiXL; PsiXL.resize(n_max+1); std::vector< std::complex > ZetaXL; ZetaXL.resize(n_max+1); //*************************************************// // Calculate D1 and D3 for z1 in the first layer // //*************************************************// if (fl == pl) { // PEC layer for (n = 0; n <= n_max; n++) { D1_mlxl[fl][n] = std::complex(0, -1); D3_mlxl[fl][n] = std::complex(0, 1); } } else { // Regular layer z1 = x_std[fl]* m_std[fl]; // Calculate D1 and D3 calcD1D3_std(z1, n_max, D1_mlxl[fl], D3_mlxl[fl]); } //******************************************************************// // Calculate Ha and Hb in the first layer - equations (7a) and (8a) // //******************************************************************// for (n = 0; n < n_max; n++) { Ha[fl][n] = D1_mlxl[fl][n + 1]; Hb[fl][n] = D1_mlxl[fl][n + 1]; } //*****************************************************// // Iteration from the second layer to the last one (L) // //*****************************************************// for (l = fl + 1; l < L; l++) { //************************************************************// //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L // //************************************************************// z1 = x_std[l] * m_std[l]; z2 = x_std[l - 1] * m_std[l]; //Calculate D1 and D3 for z1 calcD1D3_std(z1, n_max, D1_mlxl[l], D3_mlxl[l]); //Calculate D1 and D3 for z2 calcD1D3_std(z2, n_max, D1_mlxlM1[l], D3_mlxlM1[l]); //*********************************************// //Calculate Q, Ha and Hb in the layers fl+1..L // //*********************************************// // Upward recurrence for Q - equations (19a) and (19b) //Num = RCmul(exp(-2*(z1.i - z2.i)), Complex(cos(-2*z2.r) - exp(-2*z2.i), sin(-2*z2.r))); Num = exp( -2.0 * ( z1.imag() - z2.imag() ) ) * std::complex(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real())); Denom = std::complex(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real())); Q[l][0] = Num/Denom; for (n = 1; n <= n_max; n++) { cn = std::complex(n, 0); Num = ( (z1*D1_mlxl[l][n]) + cn) * (cn - (z1*D3_mlxl[l][n - 1]) ); Denom = ( (z2*D1_mlxlM1[l][n]) + cn) * (cn- (z2* D3_mlxlM1[l][n - 1]) ); Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1]) * Num)/Denom; } // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15) for (n = 1; n <= n_max; n++) { //Ha if ((l - 1) == pl) { // The layer below the current one is a PEC layer G1 = -1.0 * D1_mlxlM1[l][n]; G2 = -1.0 * D3_mlxlM1[l][n]; } else { G1 = (m_std[l] * Ha[l - 1][n - 1]) - (m_std[l - 1] * D1_mlxlM1[l][n]); G2 = (m_std[l] * Ha[l - 1][n - 1]) - (m_std[l - 1] * D3_mlxlM1[l][n]); } Temp = Q[l][n] * G1; Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]); Denom = G2 - Temp; Ha[l][n - 1] = Num / Denom; //Hb if ((l - 1) == pl) { // The layer below the current one is a PEC layer G1 = Hb[l - 1][n - 1]; G2 = Hb[l - 1][n - 1]; } else { G1 = (m_std[l - 1] * Hb[l - 1][n - 1]) - (m_std[l] * D1_mlxlM1[l][n]); G2 = (m_std[l - 1] * Hb[l - 1][n - 1]) - (m_std[l] * D3_mlxlM1[l][n]); } Temp = Q[l][n] * G1; Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]); Denom = (G2- Temp); Hb[l][n - 1] = (Num/ Denom); } } //**************************************// //Calculate D1, D3, Psi and Zeta for XL // //**************************************// z1 = std::complex(x_std[L - 1], 0); // Calculate D1XL and D3XL calcD1D3_std(z1, n_max, D1XL, D3XL); // Calculate PsiXL and ZetaXL calcPsiZeta_std(z1, n_max, D1XL, D3XL, PsiXL, ZetaXL); //*********************************************************************// // Finally, we calculate the scattering coefficients (an and bn) and // // the angular functions (Pi and Tau). Note that for these arrays the // // first layer is 0 (zero), in future versions all arrays will follow // // this convention to save memory. (13 Nov, 2014) // //*********************************************************************// for (n = 0; n < n_max; n++) { //********************************************************************// //Expressions for calculating an and bn coefficients are not valid if // //there is only one PEC layer (ie, for a simple PEC sphere). // //********************************************************************// if (pl < (L - 1)) { an_std[n] = calc_an_std(n + 1, x_std[L-1], Ha[L-1][n], m_std[L-1], PsiXL[n + 1], ZetaXL[n+1], PsiXL[n], ZetaXL[n]); bn_std[n] = calc_bn_std(n + 1, x_std[L-1], Hb[L-1][n], m_std[L-1], PsiXL[n+1], ZetaXL[n+1], PsiXL[n], ZetaXL[n]); } else { an_std[n] = calc_an_std(n+1, x_std[L-1], std::complex(0.0,0.0), std::complex(1.0,0.0), PsiXL[n+1], ZetaXL[n+1], PsiXL[n], ZetaXL[n]); bn_std[n] = PsiXL[n+1] / ZetaXL[n+1]; } } return n_max; } //**********************************************************************************// // This function is just a wrapper to call the function 'nMieScatt' with fewer // // parameters, it is here mainly for compatibility with older versions of the // // program. Also, you can use it if you neither have a PEC layer nor want to define // // any limit for the maximum number of terms. // //**********************************************************************************// int nMie(int L, double x[], complex m[], int nTheta, double Theta[], double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, complex S1[], complex S2[]) { return nMieScatt(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2); } int nMie_std(double x[], complex m[], double Theta[], complex S1[], complex S2[], int L, std::vector &x_std, std::vector > &m_std, int nTheta, std::vector &Theta_std, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector< std::complex > &S1_std, std::vector< std::complex > &S2_std) { return nMieScatt_std(x, m, Theta, S1, S2, L, -1, x_std, m_std, nTheta, Theta_std, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1_std, S2_std); } //**********************************************************************************// // This function is just a wrapper to call the function 'nMieScatt' with fewer // // parameters, it is useful if you want to include a PEC layer but not a limit // // for the maximum number of terms. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nMiePEC(int L, int pl, double x[], complex m[], int nTheta, double Theta[], double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, complex S1[], complex S2[]) { return nMieScatt(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2); } //**********************************************************************************// // This function is just a wrapper to call the function 'nMieScatt' with fewer // // parameters, it is useful if you want to include a limit for the maximum number // // of terms but not a PEC layer. // // // // Input parameters: // // L: Number of layers // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // n_max: Maximum number of multipolar expansion terms to be used for the // // calculations. Only used if you know what you are doing, otherwise set // // this parameter to -1 and the function will calculate it // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nMieMax(int L, double x[], complex m[], int nTheta, double Theta[], int n_max, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, complex S1[], complex S2[]) { return nMieScatt(L, -1, x, m, nTheta, Theta, n_max, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2); } //**********************************************************************************// // This function calculates the actual scattering parameters and amplitudes // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // n_max: Maximum number of multipolar expansion terms to be used for the // // calculations. Only used if you know what you are doing, otherwise set // // this parameter to -1 and the function will calculate it // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nMieScatt(int L, int pl, double x[], complex m[], int nTheta, double Theta[], int n_max, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, complex S1[], complex S2[]) { int i, n, t; double **Pi, **Tau; complex *an, *bn; complex Qbktmp; n_max = ScattCoeff(L, pl, x, m, n_max, &an, &bn); Pi = (double **) malloc(n_max*sizeof(double *)); Tau = (double **) malloc(n_max*sizeof(double *)); for (n = 0; n < n_max; n++) { Pi[n] = (double *) malloc(nTheta*sizeof(double)); Tau[n] = (double *) malloc(nTheta*sizeof(double)); } calcPiTau(n_max, nTheta, Theta, &Pi, &Tau); double x2 = x[L - 1]*x[L - 1]; // Initialize the scattering parameters *Qext = 0; *Qsca = 0; *Qabs = 0; *Qbk = 0; Qbktmp = C_ZERO; *Qpr = 0; *g = 0; *Albedo = 0; // Initialize the scattering amplitudes for (t = 0; t < nTheta; t++) { S1[t] = C_ZERO; S2[t] = C_ZERO; } // By using downward recurrence we avoid loss of precision due to float rounding errors // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html // http://en.wikipedia.org/wiki/Loss_of_significance for (i = n_max - 2; i >= 0; i--) { n = i + 1; // Equation (27) *Qext = *Qext + (double)(n + n + 1)*(an[i].r + bn[i].r); // Equation (28) *Qsca = *Qsca + (double)(n + n + 1)*(an[i].r*an[i].r + an[i].i*an[i].i + bn[i].r*bn[i].r + bn[i].i*bn[i].i); // Equation (29) *Qpr = *Qpr + ((n*(n + 2)/(n + 1))*((Cadd(Cmul(an[i], Conjg(an[n])), Cmul(bn[i], Conjg(bn[n])))).r) + ((double)(n + n + 1)/(n*(n + 1)))*(Cmul(an[i], Conjg(bn[i])).r)); // Equation (33) Qbktmp = Cadd(Qbktmp, RCmul((double)((n + n + 1)*(1 - 2*(n % 2))), Csub(an[i], bn[i]))); //****************************************************// // Calculate the scattering amplitudes (S1 and S2) // // Equations (25a) - (25b) // //****************************************************// for (t = 0; t < nTheta; t++) { S1[t] = Cadd(S1[t], calc_S1_n(n, an[i], bn[i], Pi[i][t], Tau[i][t])); S2[t] = Cadd(S2[t], calc_S2_n(n, an[i], bn[i], Pi[i][t], Tau[i][t])); } } *Qext = 2*(*Qext)/x2; // Equation (27) *Qsca = 2*(*Qsca)/x2; // Equation (28) *Qpr = *Qext - 4*(*Qpr)/x2; // Equation (29) *Qabs = *Qext - *Qsca; // Equation (30) *Albedo = *Qsca / *Qext; // Equation (31) *g = (*Qext - *Qpr) / *Qsca; // Equation (32) *Qbk = (Qbktmp.r*Qbktmp.r + Qbktmp.i*Qbktmp.i)/x2; // Equation (33) // Free the memory used for the arrays for (n = 0; n < n_max; n++) { free(Pi[n]); free(Tau[n]); } free(Pi); free(Tau); free(an); free(bn); return n_max; } int nMieScatt_std(double x[], complex m[], double Theta[], complex S1[], complex S2[], int L, int pl, std::vector &x_std, std::vector > &m_std, int nTheta, std::vector &Theta_std, int n_max, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector< std::complex > &S1_std, std::vector< std::complex > &S2_std) { int i, n, t; // double **Pi, **Tau; std::vector< std::vector > Pi_std, Tau_std; complex *an, *bn; std::vector< std::complex > an_std, bn_std; //complex Qbktmp; std::complex Qbktmp; { int tmp_n_max = ScattCoeff(L, pl, x, m, n_max, &an, &bn); n_max = ScattCoeff_std(x, m, L, pl, x_std, m_std, n_max, an_std, bn_std); if (n_max != tmp_n_max) printf("n_max mismatch\n"); compare("an vs an_std: ", an, an_std); compare("bn vs bn_std: ", an, an_std); } // Pi = (double **) malloc(n_max*sizeof(double *)); // Tau = (double **) malloc(n_max*sizeof(double *)); std::vector< std::vector > Pi; Pi.resize(n_max); std::vector< std::vector > Tau; Tau.resize(n_max); for (n = 0; n < n_max; n++) { // Pi[n] = (double *) malloc(nTheta*sizeof(double)); // Tau[n] = (double *) malloc(nTheta*sizeof(double)); Pi[n].resize(nTheta); Tau[n].resize(nTheta); } calcPiTau_std(n_max, nTheta, Theta_std, Pi, Tau); double x2 = x[L - 1]*x[L - 1]; // Initialize the scattering parameters *Qext = 0; *Qsca = 0; *Qabs = 0; *Qbk = 0; Qbktmp = std::complex(0.0, 0.0); *Qpr = 0; *g = 0; *Albedo = 0; // Initialize the scattering amplitudes for (t = 0; t < nTheta; t++) { S1_std[t] = std::complex(0.0, 0.0); S2_std[t] = std::complex(0.0, 0.0); } // By using downward recurrence we avoid loss of precision due to float rounding errors // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html // http://en.wikipedia.org/wiki/Loss_of_significance for (i = n_max - 2; i >= 0; i--) { n = i + 1; // Equation (27) *Qext = *Qext + (double)(n + n + 1)*(an_std[i].real() + bn_std[i].real()); // Equation (28) *Qsca = *Qsca + (double)(n + n + 1)*(an_std[i].real()*an_std[i].real() + an_std[i].imag()*an_std[i].imag() + bn_std[i].real()*bn_std[i].real() + bn_std[i].imag()*bn_std[i].imag()); // Equation (29) // Qpr = *Qpr + ((n*(n + 2)/(n + 1))*((Cadd(Cmul(an[i], Conjg(an[n])), Cmul(bn[i], Conjg(bn[n])))).r) + ((double)(n + n + 1)/(n*(n + 1)))*(Cmul(an[i], Conjg(bn[i])).r)); *Qpr = *Qpr + ( (n*(n + 2)/(n + 1)) *( ( (an_std[i]*std::conj(an_std[n])) + (bn_std[i]*std::conj(bn_std[n])) ).real() ) + ((double)(n + n + 1)/(n*(n + 1))) *( (an_std[i] * std::conj(bn_std[i]) ).real() ) ); // Equation (33) Qbktmp = Qbktmp + ((double)((n + n + 1)*(1 - 2*(n % 2))) * (an_std[i]- bn_std[i])); //****************************************************// // Calculate the scattering amplitudes (S1 and S2) // // Equations (25a) - (25b) // //****************************************************// for (t = 0; t < nTheta; t++) { S1_std[t] = S1_std[t] + calc_S1_n_std(n, an_std[i], bn_std[i], Pi[i][t], Tau[i][t]); S2_std[t] = S2_std[t] + calc_S2_n_std(n, an_std[i], bn_std[i], Pi[i][t], Tau[i][t]); } } *Qext = 2*(*Qext)/x2; // Equation (27) *Qsca = 2*(*Qsca)/x2; // Equation (28) *Qpr = *Qext - 4*(*Qpr)/x2; // Equation (29) *Qabs = *Qext - *Qsca; // Equation (30) *Albedo = *Qsca / *Qext; // Equation (31) *g = (*Qext - *Qpr) / *Qsca; // Equation (32) *Qbk = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33) // Free the memory used for the arrays // for (n = 0; n < n_max; n++) { // free(Pi[n]); // free(Tau[n]); // } // free(Pi); // free(Tau); free(an); free(bn); return n_max; } //**********************************************************************************// // This function calculates complex electric and magnetic field in the surroundings // // and inside (TODO) the particle. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send 0 (zero) // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // n_max: Maximum number of multipolar expansion terms to be used for the // // calculations. Only used if you know what you are doing, otherwise set // // this parameter to 0 (zero) and the function will calculate it. // // nCoords: Number of coordinate points // // Coords: Array containing all coordinates where the complex electric and // // magnetic fields will be calculated // // // // Output parameters: // // E, H: Complex electric and magnetic field at the provided coordinates // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nMieField(int L, int pl, double x[], complex m[], int n_max, int nCoords, double Xp[], double Yp[], double Zp[], complex E[], complex H[]){ int i, n, c; double **Pi, **Tau; complex *an, *bn; double *Rho = (double *) malloc(nCoords*sizeof(double)); double *Phi = (double *) malloc(nCoords*sizeof(double)); double *Theta = (double *) malloc(nCoords*sizeof(double)); for (c = 0; c < nCoords; c++) { Rho[c] = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]); if (Rho[c] < 1e-3) { Rho[c] = 1e-3; } Phi[c] = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c])); Theta[c] = acos(Xp[c]/Rho[c]); } n_max = ScattCoeff(L, pl, x, m, n_max, &an, &bn); Pi = (double **) malloc(n_max*sizeof(double *)); Tau = (double **) malloc(n_max*sizeof(double *)); for (n = 0; n < n_max; n++) { Pi[n] = (double *) malloc(nCoords*sizeof(double)); Tau[n] = (double *) malloc(nCoords*sizeof(double)); } calcPiTau(n_max, nCoords, Theta, &Pi, &Tau); double x2 = x[L - 1]*x[L - 1]; // Initialize the fields for (c = 0; c < nCoords; c++) { E[c] = C_ZERO; H[c] = C_ZERO; } //*******************************************************// // external scattering field = incident + scattered // // BH p.92 (4.37), 94 (4.45), 95 (4.50) // // assume: medium is non-absorbing; refim = 0; Uabs = 0 // //*******************************************************// // Firstly the easiest case, we want the field outside the particle if (Rho[c] >= x[L - 1]) { } // for (i = 1; i < (n_max - 1); i++) { // n = i - 1; /* // Equation (27) *Qext = *Qext + (double)(n + n + 1)*(an[i].r + bn[i].r); // Equation (28) *Qsca = *Qsca + (double)(n + n + 1)*(an[i].r*an[i].r + an[i].i*an[i].i + bn[i].r*bn[i].r + bn[i].i*bn[i].i); // Equation (29) *Qpr = *Qpr + ((n*(n + 2)/(n + 1))*((Cadd(Cmul(an[i], Conjg(an[n])), Cmul(bn[i], Conjg(bn[n])))).r) + ((double)(n + n + 1)/(n*(n + 1)))*(Cmul(an[i], Conjg(bn[i])).r)); // Equation (33) Qbktmp = Cadd(Qbktmp, RCmul((double)((n + n + 1)*(1 - 2*(n % 2))), Csub(an[i], bn[i]))); */ //****************************************************// // Calculate the scattering amplitudes (S1 and S2) // // Equations (25a) - (25b) // //****************************************************// /* for (t = 0; t < nTheta; t++) { S1[t] = Cadd(S1[t], calc_S1_n(n, an[i], bn[i], Pi[i][t], Tau[i][t])); S2[t] = Cadd(S2[t], calc_S2_n(n, an[i], bn[i], Pi[i][t], Tau[i][t])); }*/ // } // Free the memory used for the arrays for (n = 0; n < n_max; n++) { free(Pi[n]); free(Tau[n]); } free(Pi); free(Tau); free(an); free(bn); free(Rho); free(Phi); free(Theta); return n_max; }