/// /// @file nmie-wrapper.cc /// @author Ladutenko Konstantin /// @date Tue Sep 3 00:38:27 2013 /// @copyright 2013 Ladutenko Konstantin /// /// nmie-wrapper is free software: you can redistribute it and/or modify /// it under the terms of the GNU General Public License as published by /// the Free Software Foundation, either version 3 of the License, or /// (at your option) any later version. /// /// nmie-wrapper is distributed in the hope that it will be useful, /// but WITHOUT ANY WARRANTY; without even the implied warranty of /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the /// GNU General Public License for more details. /// /// You should have received a copy of the GNU General Public License /// along with nmie-wrapper. If not, see . /// /// nmie-wrapper uses nmie.c from scattnlay by Ovidio Pena /// as a linked library. He has an additional condition to /// his library: // The only additional condition is that we expect that all publications // // describing work using this software , or all commercial products // // using it, cite the following reference: // // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // // a multilayered sphere," Computer Physics Communications, // // vol. 180, Nov. 2009, pp. 2348-2354. // /// /// @brief Wrapper class around nMie function for ease of use /// #include "nmie-wrapper.h" //#include "nmie.h" #include #include #include #include #include #include namespace nmie { //helpers template inline T pow2(const T value) {return value*value;} #define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5)) // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // //emulate C call. int nMie_wrapper(int L, std::vector x, std::vector > m, int nTheta, std::vector Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector >& S1, std::vector >& S2) { if (x.size() != L || m.size() != L) throw std::invalid_argument("Declared number of layers do not fit x and m!"); if (Theta.size() != nTheta) throw std::invalid_argument("Declared number of sample for Theta is not correct!"); try { MultiLayerMie multi_layer_mie; multi_layer_mie.SetWidthSP(x); multi_layer_mie.SetIndexSP(m); multi_layer_mie.SetAngles(Theta); multi_layer_mie.RunMieCalculations(); *Qext = multi_layer_mie.GetQext(); *Qsca = multi_layer_mie.GetQsca(); *Qabs = multi_layer_mie.GetQabs(); *Qbk = multi_layer_mie.GetQbk(); *Qpr = multi_layer_mie.GetQpr(); *g = multi_layer_mie.GetAsymmetryFactor(); *Albedo = multi_layer_mie.GetAlbedo(); S1 = multi_layer_mie.GetS1(); S2 = multi_layer_mie.GetS2(); } catch( const std::invalid_argument& ia ) { // Will catch if multi_layer_mie fails or other errors. std::cerr << "Invalid argument: " << ia.what() << std::endl; return -1; } return 0; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // double MultiLayerMie::GetQext() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result reques!"); return Qext_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // double MultiLayerMie::GetQabs() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result reques!"); return Qabs_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // double MultiLayerMie::GetQsca() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result reques!"); return Qsca_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // double MultiLayerMie::GetQbk() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result reques!"); return Qbk_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // double MultiLayerMie::GetQpr() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result reques!"); return Qpr_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // double MultiLayerMie::GetAsymmetryFactor() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result reques!"); return asymmetry_factor_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // double MultiLayerMie::GetAlbedo() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result reques!"); return albedo_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // std::vector > MultiLayerMie::GetS1() { return S1_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // std::vector > MultiLayerMie::GetS2() { return S2_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::SetAngles(std::vector angles) { isMieCalculated_ = false; theta_.clear(); for (auto value : angles) theta_.push_back(value); } // end of SetAngles() // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::SetWidthSP(std::vector size_parameter) { isMieCalculated_ = false; size_parameter_.clear(); double prev_size_parameter = 0.0; for (auto layer_size_parameter : size_parameter) { if (layer_size_parameter <= 0.0) throw std::invalid_argument("Size parameter should be positive!"); if (prev_size_parameter > layer_size_parameter) throw std::invalid_argument ("Size parameter for next layer should be larger than the previous one!"); prev_size_parameter = layer_size_parameter; size_parameter_.push_back(layer_size_parameter); } } // end of void MultiLayerMie::SetWidthSP(...); // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::SetIndexSP(std::vector< std::complex > index) { isMieCalculated_ = false; index_.clear(); for (auto value : index) index_.push_back(value); } // end of void MultiLayerMie::SetIndexSP(...); // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::SetPEC(int layer_position) { if (layer_position < 0) throw std::invalid_argument("Error! Layers are numbered from 0!"); PEC_layer_position_ = layer_position; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::SetMaxTermsNumber(int nmax) { nmax_ = nmax; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::GenerateSizeParameter() { size_parameter_.clear(); double radius = 0.0; for (auto width : target_width_) { radius += width; size_parameter_.push_back(2*PI*radius / wavelength_); } for (auto width : coating_width_) { radius += width; size_parameter_.push_back(2*PI*radius / wavelength_); } total_radius_ = radius; } // end of void MultiLayerMie::GenerateSizeParameter(); // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // double MultiLayerMie::GetTotalRadius() { if (total_radius_ == 0) GenerateSizeParameter(); return total_radius_; } // end of double MultiLayerMie::GetTotalRadius(); // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // std::vector< std::array > MultiLayerMie::GetSpectra(double from_WL, double to_WL, int samples) { std::vector< std::array > spectra; double step_WL = (to_WL - from_WL)/ static_cast(samples); double wavelength_backup = wavelength_; long fails = 0; for (double WL = from_WL; WL < to_WL; WL += step_WL) { double Qext, Qsca, Qabs, Qbk; wavelength_ = WL; try { RunMieCalculations(); } catch( const std::invalid_argument& ia ) { fails++; continue; } //printf("%3.1f ",WL); spectra.push_back({wavelength_, Qext, Qsca, Qabs, Qbk}); } // end of for each WL in spectra printf("fails %li\n",fails); wavelength_ = wavelength_backup; return spectra; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // Calculate Nstop - equation (17) // void MultiLayerMie::Nstop() { const double& xL = size_parameter_.back(); if (xL <= 8) { nmax_ = round(xL + 4*pow(xL, 1/3) + 1); } else if (xL <= 4200) { nmax_ = round(xL + 4.05*pow(xL, 1/3) + 2); } else { nmax_ = round(xL + 4*pow(xL, 1/3) + 2); } } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::Nmax(int first_layer) { int ri, riM1; const std::vector& x = size_parameter_; const std::vector >& m = index_; const int& pl = PEC_layer_position_; Nstop(); // Set initial nmax_ value for (int i = first_layer; i < x.size(); i++) { if (i > PEC_layer_position_) ri = round(std::abs(x[i]*m[i])); else ri = 0; nmax_ = std::max(nmax_, ri); // first layer is pec, if pec is present if ((i > first_layer) && ((i - 1) > PEC_layer_position_)) riM1 = round(std::abs(x[i - 1]* m[i])); else riM1 = 0; nmax_ = std::max(nmax_, riM1); } nmax_ += 15; // Final nmax_ value } //**********************************************************************************// // This function calculates the spherical Bessel (jn) and Hankel (h1n) functions // // and their derivatives for a given complex value z. See pag. 87 B&H. // // // // Input parameters: // // z: Real argument to evaluate jn and h1n // // nmax_: Maximum number of terms to calculate jn and h1n // // // // Output parameters: // // jn, h1n: Spherical Bessel and Hankel functions // // jnp, h1np: Derivatives of the spherical Bessel and Hankel functions // // // // The implementation follows the algorithm by I.J. Thompson and A.R. Barnett, // // Comp. Phys. Comm. 47 (1987) 245-257. // // // // Complex spherical Bessel functions from n=0..nmax_-1 for z in the upper half // // plane (Im(z) > -3). // // // // j[n] = j/n(z) Regular solution: j[0]=sin(z)/z // // j'[n] = d[j/n(z)]/dz // // h1[n] = h[0]/n(z) Irregular Hankel function: // // h1'[n] = d[h[0]/n(z)]/dz h1[0] = j0(z) + i*y0(z) // // = (sin(z)-i*cos(z))/z // // = -i*exp(i*z)/z // // Using complex CF1, and trigonometric forms for n=0 solutions. // //**********************************************************************************// void MultiLayerMie::sbesjh(std::complex z, std::vector >& jn, std::vector >& jnp, std::vector >& h1n, std::vector >& h1np) { const int limit = 20000; const double accur = 1.0e-12; const double tm30 = 1e-30; double absc; std::complex zi, w; std::complex pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb; absc = std::abs(std::real(z)) + std::abs(std::imag(z)); if ((absc < accur) || (std::imag(z) < -3.0)) { throw std::invalid_argument("TODO add error description for condition if ((absc < accur) || (std::imag(z) < -3.0))"); } zi = 1.0/z; w = zi + zi; pl = double(nmax_)*zi; f = pl + zi; b = f + f + zi; d = 0.0; c = f; for (int n = 0; n < limit; n++) { d = b - d; c = b - 1.0/c; absc = std::abs(std::real(d)) + std::abs(std::imag(d)); if (absc < tm30) { d = tm30; } absc = std::abs(std::real(c)) + std::abs(std::imag(c)); if (absc < tm30) { c = tm30; } d = 1.0/d; del = d*c; f = f*del; b += w; absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0)); if (absc < accur) { // We have obtained the desired accuracy break; } } if (absc > accur) { throw std::invalid_argument("We were not able to obtain the desired accuracy"); } jn[nmax_ - 1] = tm30; jnp[nmax_ - 1] = f*jn[nmax_ - 1]; // Downward recursion to n=0 (N.B. Coulomb Functions) for (int n = nmax_ - 2; n >= 0; n--) { jn[n] = pl*jn[n + 1] + jnp[n + 1]; jnp[n] = pl*jn[n] - jn[n + 1]; pl = pl - zi; } // Calculate the n=0 Bessel Functions jn0 = zi*std::sin(z); h1n[0] = std::exp(std::complex(0.0, 1.0)*z)*zi*(-std::complex(0.0, 1.0)); h1np[0] = h1n[0]*(std::complex(0.0, 1.0) - zi); // Rescale j[n], j'[n], converting to spherical Bessel functions. // Recur h1[n], h1'[n] as spherical Bessel functions. w = 1.0/jn[0]; pl = zi; for (int n = 0; n < nmax_; n++) { jn[n] = jn0*(w*jn[n]); jnp[n] = jn0*(w*jnp[n]) - zi*jn[n]; if (n != 0) { h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1]; // check if hankel is increasing (upward stable) if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) { jndb = z; h1nldb = h1n[n]; h1nbdb = h1n[n - 1]; } pl += zi; h1np[n] = -(pl*h1n[n]) + h1n[n - 1]; } } } //**********************************************************************************// // This function calculates the spherical Bessel functions (bj and by) and the // // logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H. // // // // Input parameters: // // z: Complex argument to evaluate bj, by and bd // // nmax_: Maximum number of terms to calculate bj, by and bd // // // // Output parameters: // // bj, by: Spherical Bessel functions // // bd: Logarithmic derivative // //**********************************************************************************// void MultiLayerMie::sphericalBessel(std::complex z, std::vector >& bj, std::vector >& by, std::vector >& bd) { std::vector > jn(nmax_), jnp(nmax_), h1n(nmax_), h1np(nmax_); sbesjh(z, jn, jnp, h1n, h1np); for (int n = 0; n < nmax_; n++) { bj[n] = jn[n]; by[n] = (h1n[n] - jn[n])/std::complex(0.0, 1.0); bd[n] = jnp[n]/jn[n] + 1.0/z; } } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // Calculate an - equation (5) std::complex MultiLayerMie::calc_an(int n, double XL, std::complex Ha, std::complex mL, std::complex PsiXL, std::complex ZetaXL, std::complex PsiXLM1, std::complex ZetaXLM1) { std::complex Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1; std::complex Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1; return Num/Denom; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // Calculate bn - equation (6) std::complex MultiLayerMie::calc_bn(int n, double XL, std::complex Hb, std::complex mL, std::complex PsiXL, std::complex ZetaXL, std::complex PsiXLM1, std::complex ZetaXLM1) { std::complex Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1; std::complex Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1; return Num/Denom; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // Calculates S1 - equation (25a) std::complex MultiLayerMie::calc_S1(int n, std::complex an, std::complex bn, double Pi, double Tau) { return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n); } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau) std::complex MultiLayerMie::calc_S2(int n, std::complex an, std::complex bn, double Pi, double Tau) { return calc_S1(n, an, bn, Tau, Pi); } //**********************************************************************************// // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a // // real argument (x). // // Equations (20a) - (21b) // // // // Input parameters: // // x: Real argument to evaluate Psi and Zeta // // nmax: Maximum number of terms to calculate Psi and Zeta // // // // Output parameters: // // Psi, Zeta: Riccati-Bessel functions // //**********************************************************************************// void MultiLayerMie::calcPsiZeta(double x, std::vector > D1, std::vector > D3, std::vector >& Psi, std::vector >& Zeta) { //Upward recurrence for Psi and Zeta - equations (20a) - (21b) Psi[0] = std::complex(sin(x), 0); Zeta[0] = std::complex(sin(x), -cos(x)); for (int n = 1; n <= nmax_; n++) { Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]); Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]); } } //**********************************************************************************// // This function calculates the logarithmic derivatives of the Riccati-Bessel // // functions (D1 and D3) for a complex argument (z). // // Equations (16a), (16b) and (18a) - (18d) // // // // Input parameters: // // z: Complex argument to evaluate D1 and D3 // // nmax_: Maximum number of terms to calculate D1 and D3 // // // // Output parameters: // // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions // //**********************************************************************************// void MultiLayerMie::calcD1D3(std::complex z, std::vector >& D1, std::vector >& D3) { // Downward recurrence for D1 - equations (16a) and (16b) D1[nmax_] = std::complex(0.0, 0.0); for (int n = nmax_; n > 0; n--) { D1[n - 1] = double(n)/z - 1.0/(D1[n] + double(n)/z); } // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d) PsiZeta_[0] = 0.5*(1.0 - std::complex(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag())); D3[0] = std::complex(0.0, 1.0); for (int n = 1; n <= nmax_; n++) { PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast(n)/z - D1[n - 1])*(static_cast(n)/z- D3[n - 1]); D3[n] = D1[n] + std::complex(0.0, 1.0)/PsiZeta_[n]; } } //**********************************************************************************// // This function calculates Pi and Tau for all values of Theta. // // Equations (26a) - (26c) // // // // Input parameters: // // nmax_: Maximum number of terms to calculate Pi and Tau // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // // // Output parameters: // // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) // //**********************************************************************************// void MultiLayerMie::calcPiTau(std::vector< std::vector >& Pi, std::vector< std::vector >& Tau) { //****************************************************// // Equations (26a) - (26c) // //****************************************************// std::vector costheta(theta_.size(), 0.0); for (int t = 0; t < theta_.size(); t++) { costheta[t] = cos(theta_[t]); } for (int n = 0; n < nmax_; n++) { for (int t = 0; t < theta_.size(); t++) { if (n == 0) { // Initialize Pi and Tau Pi[n][t] = 1.0; Tau[n][t] = (n + 1)*costheta[t]; } else { // Calculate the actual values Pi[n][t] = ((n == 1) ? ((n + n + 1)*costheta[t]*Pi[n - 1][t]/n) : (((n + n + 1)*costheta[t]*Pi[n - 1][t] - (n + 1)*Pi[n - 2][t])/n)); Tau[n][t] = (n + 1)*costheta[t]*Pi[n][t] - (n + 2)*Pi[n - 1][t]; } } } } //**********************************************************************************// // This function calculates the scattering coefficients required to calculate // // both the near- and far-field parameters. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to -1 and the function will calculate it. // // // // Output parameters: // // an, bn: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// void MultiLayerMie::ScattCoeffs(std::vector >& an, std::vector >& bn) { //************************************************************************// // Calculate the index of the first layer. It can be either 0 (default) // // or the index of the outermost PEC layer. In the latter case all layers // // below the PEC are discarded. // //************************************************************************// const std::vector& x = size_parameter_; const std::vector >& m = index_; const int& pl = PEC_layer_position_; const int L = index_.size(); // TODO, is it possible for PEC to have a zero index? If yes than is should be: // int fl = (pl > -1) ? pl : 0; int fl = (pl > 0) ? pl : 0; if (nmax_ <= 0) Nmax(fl); std::complex z1, z2; //**************************************************************************// // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which // // means that index = layer number - 1 or index = n - 1. The only exception // // are the arrays for representing D1, D3 and Q because they need a value // // for the index 0 (zero), hence it is important to consider this shift // // between different arrays. The change was done to optimize memory usage. // //**************************************************************************// // Allocate memory to the arrays std::vector > > D1_mlxl(L), D1_mlxlM1(L), D3_mlxl(L), D3_mlxlM1(L), Q(L), Ha(L), Hb(L); for (int l = 0; l < L; l++) { D1_mlxl[l].resize(nmax_ + 1); D1_mlxlM1[l].resize(nmax_ + 1); D3_mlxl[l].resize(nmax_ + 1); D3_mlxlM1[l].resize(nmax_ + 1); Q[l].resize(nmax_ + 1); Ha[l].resize(nmax_); Hb[l].resize(nmax_); } an.resize(nmax_); bn.resize(nmax_); PsiZeta_.resize(nmax_ + 1); std::vector > D1XL(nmax_ + 1), D3XL(nmax_ + 1), PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1); //*************************************************// // Calculate D1 and D3 for z1 in the first layer // //*************************************************// if (fl == pl) { // PEC layer for (int n = 0; n <= nmax_; n++) { D1_mlxl[fl][n] = std::complex(0.0, -1.0); D3_mlxl[fl][n] = std::complex(0.0, 1.0); } } else { // Regular layer z1 = x[fl]* m[fl]; // Calculate D1 and D3 calcD1D3(z1, D1_mlxl[fl], D3_mlxl[fl]); } //******************************************************************// // Calculate Ha and Hb in the first layer - equations (7a) and (8a) // //******************************************************************// for (int n = 0; n < nmax_; n++) { Ha[fl][n] = D1_mlxl[fl][n + 1]; Hb[fl][n] = D1_mlxl[fl][n + 1]; } //*****************************************************// // Iteration from the second layer to the last one (L) // //*****************************************************// for (int l = fl + 1; l < L; l++) { //************************************************************// //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L // //************************************************************// z1 = x[l]*m[l]; z2 = x[l - 1]*m[l]; //Calculate D1 and D3 for z1 calcD1D3(z1, D1_mlxl[l], D3_mlxl[l]); //Calculate D1 and D3 for z2 calcD1D3(z2, D1_mlxlM1[l], D3_mlxlM1[l]); //*********************************************// //Calculate Q, Ha and Hb in the layers fl+1..L // //*********************************************// // Upward recurrence for Q - equations (19a) and (19b) std::complex Num, Denom; Num = exp(-2.0*(z1.imag() - z2.imag())) * std::complex(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real())); Denom = std::complex(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real())); Q[l][0] = Num/Denom; for (int n = 1; n <= nmax_; n++) { std::complex Num, Denom; Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]); Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]); Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom; } // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15) for (int n = 1; n <= nmax_; n++) { std::complex G1, G2; //Ha if ((l - 1) == pl) { // The layer below the current one is a PEC layer G1 = -D1_mlxlM1[l][n]; G2 = -D3_mlxlM1[l][n]; } else { G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]); G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]); } std::complex Temp, Num, Denom; Temp = Q[l][n]*G1; Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]); Denom = G2 - Temp; Ha[l][n - 1] = Num/Denom; //Hb if ((l - 1) == pl) { // The layer below the current one is a PEC layer G1 = Hb[l - 1][n - 1]; G2 = Hb[l - 1][n - 1]; } else { G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]); G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]); } Temp = Q[l][n]*G1; Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]); Denom = (G2- Temp); Hb[l][n - 1] = (Num/ Denom); } } //**************************************// //Calculate D1, D3, Psi and Zeta for XL // //**************************************// // Calculate D1XL and D3XL calcD1D3(x[L - 1], D1XL, D3XL); // Calculate PsiXL and ZetaXL calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL); //*********************************************************************// // Finally, we calculate the scattering coefficients (an and bn) and // // the angular functions (Pi and Tau). Note that for these arrays the // // first layer is 0 (zero), in future versions all arrays will follow // // this convention to save memory. (13 Nov, 2014) // //*********************************************************************// for (int n = 0; n < nmax_; n++) { //********************************************************************// //Expressions for calculating an and bn coefficients are not valid if // //there is only one PEC layer (ie, for a simple PEC sphere). // //********************************************************************// if (pl < (L - 1)) { an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); } else { an[n] = calc_an(n + 1, x[L - 1], std::complex(0.0, 0.0), std::complex(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); bn[n] = PsiXL[n + 1]/ZetaXL[n + 1]; } } } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::InitMieCalculations() { // Initialize the scattering parameters Qext_ = 0; Qsca_ = 0; Qabs_ = 0; Qbk_ = 0; Qpr_ = 0; asymmetry_factor_ = 0; albedo_ = 0; // Initialize the scattering amplitudes std::vector > tmp1(theta_.size(),std::complex(0.0, 0.0)); S1_.swap(tmp1); S2_ = S1_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // //**********************************************************************************// // This function calculates the actual scattering parameters and amplitudes // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // nmax_: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to -1 and the function will calculate it // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// void MultiLayerMie::RunMieCalculations() { if (size_parameter_.size() != index_.size()) throw std::invalid_argument("Each size parameter should have only one index!"); std::vector > an, bn; std::complex Qbktmp(0.0, 0.0); const std::vector& x = size_parameter_; const std::vector >& m = index_; // Calculate scattering coefficients ScattCoeffs(an, bn); // std::vector< std::vector > Pi(nmax_), Tau(nmax_); std::vector< std::vector > Pi, Tau; Pi.resize(nmax_); Tau.resize(nmax_); for (int i =0; i< nmax_; ++i) { Pi[i].resize(theta_.size()); Tau[i].resize(theta_.size()); } calcPiTau(Pi, Tau); InitMieCalculations(); // By using downward recurrence we avoid loss of precision due to float rounding errors // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html // http://en.wikipedia.org/wiki/Loss_of_significance for (int i = nmax_ - 2; i >= 0; i--) { int n = i + 1; // Equation (27) Qext_ += (n + n + 1)*(an[i].real() + bn[i].real()); // Equation (28) Qsca_ += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag()); // Equation (29) TODO We must check carefully this equation. If we // remove the typecast to double then the result changes. Which is // the correct one??? Ovidio (2014/12/10) With cast ratio will // give double, without cast (n + n + 1)/(n*(n + 1)) will be // rounded to integer. Tig (2015/02/24) Qpr_ += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real()); // Equation (33) Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]); // Calculate the scattering amplitudes (S1 and S2) // // Equations (25a) - (25b) // for (int t = 0; t < theta_.size(); t++) { S1_[t] += calc_S1(n, an[i], bn[i], Pi[i][t], Tau[i][t]); S2_[t] += calc_S2(n, an[i], bn[i], Pi[i][t], Tau[i][t]); } } double x2 = pow2(x.back()); Qext_ = 2*(Qext_)/x2; // Equation (27) Qsca_ = 2*(Qsca_)/x2; // Equation (28) Qpr_ = Qext_ - 4*(Qpr_)/x2; // Equation (29) Qabs_ = Qext_ - Qsca_; // Equation (30) albedo_ = Qsca_ / Qext_; // Equation (31) asymmetry_factor_ = (Qext_ - Qpr_) / Qsca_; // Equation (32) Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33) isMieCalculated_ = true; //return nmax; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // external scattering field = incident + scattered // BH p.92 (4.37), 94 (4.45), 95 (4.50) // assume: medium is non-absorbing; refim = 0; Uabs = 0 void MultiLayerMie::fieldExt(double Rho, double Phi, double Theta, std::vector Pi, std::vector Tau, std::vector > an, std::vector > bn, std::vector >& E, std::vector >& H) { double rn = 0.0; std::complex zn, xxip, encap; std::vector > vm3o1n, vm3e1n, vn3o1n, vn3e1n; vm3o1n.resize(3); vm3e1n.resize(3); vn3o1n.resize(3); vn3e1n.resize(3); std::vector > Ei, Hi, Es, Hs; Ei.resize(3); Hi.resize(3); Es.resize(3); Hs.resize(3); for (int i = 0; i < 3; i++) { Ei[i] = std::complex(0.0, 0.0); Hi[i] = std::complex(0.0, 0.0); Es[i] = std::complex(0.0, 0.0); Hs[i] = std::complex(0.0, 0.0); } std::vector > bj, by, bd; bj.resize(nmax_); by.resize(nmax_); bd.resize(nmax_); // Calculate spherical Bessel and Hankel functions sphericalBessel(Rho, bj, by, bd); for (int n = 0; n < nmax_; n++) { rn = double(n + 1); zn = bj[n] + std::complex(0.0, 1.0)*by[n]; xxip = Rho*(bj[n] + std::complex(0.0, 1.0)*by[n]) - rn*zn; vm3o1n[0] = std::complex(0.0, 0.0); vm3o1n[1] = std::cos(Phi)*Pi[n]*zn; vm3o1n[2] = -(std::sin(Phi)*Tau[n]*zn); vm3e1n[0] = std::complex(0.0, 0.0); vm3e1n[1] = -(std::sin(Phi)*Pi[n]*zn); vm3e1n[2] = -(std::cos(Phi)*Tau[n]*zn); vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho; vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho; vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho; vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho; vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho; vn3e1n[2] = -(std::sin(Phi)*Pi[n]*xxip/Rho); // scattered field: BH p.94 (4.45) encap = std::pow(std::complex(0.0, 1.0), rn)*(2.0*rn + 1.0)/(rn*(rn + 1.0)); for (int i = 0; i < 3; i++) { Es[i] = Es[i] + encap*(std::complex(0.0, 1.0)*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]); Hs[i] = Hs[i] + encap*(std::complex(0.0, 1.0)*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]); } } // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38) // basis unit vectors = er, etheta, ephi std::complex eifac = std::exp(std::complex(0.0, 1.0)*Rho*std::cos(Theta)); Ei[0] = eifac*std::sin(Theta)*std::cos(Phi); Ei[1] = eifac*std::cos(Theta)*std::cos(Phi); Ei[2] = -(eifac*std::sin(Phi)); // magnetic field double hffact = 1.0/(cc*mu); for (int i = 0; i < 3; i++) { Hs[i] = hffact*Hs[i]; } // incident H field: BH p.26 (2.43), p.89 (4.21) std::complex hffacta = hffact; std::complex hifac = eifac*hffacta; Hi[0] = hifac*std::sin(Theta)*std::sin(Phi); Hi[1] = hifac*std::cos(Theta)*std::sin(Phi); Hi[2] = hifac*std::cos(Phi); for (int i = 0; i < 3; i++) { // electric field E [V m-1] = EF*E0 E[i] = Ei[i] + Es[i]; H[i] = Hi[i] + Hs[i]; } } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // //**********************************************************************************// // This function calculates complex electric and magnetic field in the surroundings // // and inside (TODO) the particle. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send 0 (zero) // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to 0 (zero) and the function will calculate it. // // ncoord: Number of coordinate points // // Coords: Array containing all coordinates where the complex electric and // // magnetic fields will be calculated // // // // Output parameters: // // E, H: Complex electric and magnetic field at the provided coordinates // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// // int MultiLayerMie::nField(int L, int pl, std::vector x, std::vector > m, int nmax, // int ncoord, std::vector Xp, std::vector Yp, std::vector Zp, // std::vector > >& E, std::vector > >& H) { // double Rho, Phi, Theta; // std::vector > an, bn; // // This array contains the fields in spherical coordinates // std::vector > Es, Hs; // Es.resize(3); // Hs.resize(3); // // Calculate scattering coefficients // ScattCoeffs(L, pl, an, bn); // std::vector Pi, Tau; // Pi.resize(nmax_); // Tau.resize(nmax_); // for (int c = 0; c < ncoord; c++) { // // Convert to spherical coordinates // Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]); // if (Rho < 1e-3) { // // Avoid convergence problems // Rho = 1e-3; // } // Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c])); // Theta = acos(Xp[c]/Rho); // calcPiTau(Theta, Pi, Tau); // //*******************************************************// // // external scattering field = incident + scattered // // // BH p.92 (4.37), 94 (4.45), 95 (4.50) // // // assume: medium is non-absorbing; refim = 0; Uabs = 0 // // //*******************************************************// // // Firstly the easiest case: the field outside the particle // if (Rho >= x[L - 1]) { // fieldExt(Rho, Phi, Theta, Pi, Tau, an, bn, Es, Hs); // } else { // // TODO, for now just set all the fields to zero // for (int i = 0; i < 3; i++) { // Es[i] = std::complex(0.0, 0.0); // Hs[i] = std::complex(0.0, 0.0); // } // } // //Now, convert the fields back to cartesian coordinates // E[c][0] = std::sin(Theta)*std::cos(Phi)*Es[0] + std::cos(Theta)*std::cos(Phi)*Es[1] - std::sin(Phi)*Es[2]; // E[c][1] = std::sin(Theta)*std::sin(Phi)*Es[0] + std::cos(Theta)*std::sin(Phi)*Es[1] + std::cos(Phi)*Es[2]; // E[c][2] = std::cos(Theta)*Es[0] - std::sin(Theta)*Es[1]; // H[c][0] = std::sin(Theta)*std::cos(Phi)*Hs[0] + std::cos(Theta)*std::cos(Phi)*Hs[1] - std::sin(Phi)*Hs[2]; // H[c][1] = std::sin(Theta)*std::sin(Phi)*Hs[0] + std::cos(Theta)*std::sin(Phi)*Hs[1] + std::cos(Phi)*Hs[2]; // H[c][2] = std::cos(Theta)*Hs[0] - std::sin(Theta)*Hs[1]; // } // return nmax; // } // end of int nField() } // end of namespace nmie