//**********************************************************************************// // Copyright (C) 2009-2015 Ovidio Pena // // // // This file is part of scattnlay // // // // This program is free software: you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation, either version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License for more details. // // // // The only additional remark is that we expect that all publications // // describing work using this software, or all commercial products // // using it, cite the following reference: // // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // // a multilayered sphere," Computer Physics Communications, // // vol. 180, Nov. 2009, pp. 2348-2354. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // //**********************************************************************************// //**********************************************************************************// // This library implements the algorithm for a multilayered sphere described by: // // [1] W. Yang, "Improved recursive algorithm for light scattering by a // // multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. // // // // You can find the description of all the used equations in: // // [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // // a multilayered sphere," Computer Physics Communications, // // vol. 180, Nov. 2009, pp. 2348-2354. // // // // Hereinafter all equations numbers refer to [2] // //**********************************************************************************// #include #include #include #include "nmie.h" #define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5)) const double PI=3.14159265358979323846; // light speed [m s-1] double const cc = 2.99792458e8; // assume non-magnetic (MU=MU0=const) [N A-2] double const mu = 4.0*PI*1.0e-7; // Calculate Nstop - equation (17) int Nstop(double xL) { int result; if (xL <= 8) { result = round(xL + 4*pow(xL, 1.0/3.0) + 1); } else if (xL <= 4200) { result = round(xL + 4.05*pow(xL, 1.0/3.0) + 2); } else { result = round(xL + 4*pow(xL, 1.0/3.0) + 2); } return result; } //**********************************************************************************// int Nmax(int L, int fl, int pl, std::vector x, std::vector > m) { int i, result, ri, riM1; result = Nstop(x[L - 1]); for (i = fl; i < L; i++) { if (i > pl) { ri = round(std::abs(x[i]*m[i])); } else { ri = 0; } if (result < ri) { result = ri; } if ((i > fl) && ((i - 1) > pl)) { riM1 = round(std::abs(x[i - 1]* m[i])); } else { riM1 = 0; } if (result < riM1) { result = riM1; } } return result + 15; } //**********************************************************************************// // This function calculates the spherical Bessel (jn) and Hankel (h1n) functions // // and their derivatives for a given complex value z. See pag. 87 B&H. // // // // Input parameters: // // z: Real argument to evaluate jn and h1n // // nmax: Maximum number of terms to calculate jn and h1n // // // // Output parameters: // // jn, h1n: Spherical Bessel and Hankel functions // // jnp, h1np: Derivatives of the spherical Bessel and Hankel functions // // // // The implementation follows the algorithm by I.J. Thompson and A.R. Barnett, // // Comp. Phys. Comm. 47 (1987) 245-257. // // // // Complex spherical Bessel functions from n=0..nmax-1 for z in the upper half // // plane (Im(z) > -3). // // // // j[n] = j/n(z) Regular solution: j[0]=sin(z)/z // // j'[n] = d[j/n(z)]/dz // // h1[n] = h[0]/n(z) Irregular Hankel function: // // h1'[n] = d[h[0]/n(z)]/dz h1[0] = j0(z) + i*y0(z) // // = (sin(z)-i*cos(z))/z // // = -i*exp(i*z)/z // // Using complex CF1, and trigonometric forms for n=0 solutions. // //**********************************************************************************// int sbesjh(std::complex z, int nmax, std::vector >& jn, std::vector >& jnp, std::vector >& h1n, std::vector >& h1np) { const int limit = 20000; double const accur = 1.0e-12; double const tm30 = 1e-30; int n; double absc; std::complex zi, w; std::complex pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb; absc = std::abs(std::real(z)) + std::abs(std::imag(z)); if ((absc < accur) || (std::imag(z) < -3.0)) { return -1; } zi = 1.0/z; w = zi + zi; pl = double(nmax)*zi; f = pl + zi; b = f + f + zi; d = 0.0; c = f; for (n = 0; n < limit; n++) { d = b - d; c = b - 1.0/c; absc = std::abs(std::real(d)) + std::abs(std::imag(d)); if (absc < tm30) { d = tm30; } absc = std::abs(std::real(c)) + std::abs(std::imag(c)); if (absc < tm30) { c = tm30; } d = 1.0/d; del = d*c; f = f*del; b += w; absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0)); if (absc < accur) { // We have obtained the desired accuracy break; } } if (absc > accur) { // We were not able to obtain the desired accuracy return -2; } jn[nmax - 1] = tm30; jnp[nmax - 1] = f*jn[nmax - 1]; // Downward recursion to n=0 (N.B. Coulomb Functions) for (n = nmax - 2; n >= 0; n--) { jn[n] = pl*jn[n + 1] + jnp[n + 1]; jnp[n] = pl*jn[n] - jn[n + 1]; pl = pl - zi; } // Calculate the n=0 Bessel Functions jn0 = zi*std::sin(z); h1n[0] = std::exp(std::complex(0.0, 1.0)*z)*zi*(-std::complex(0.0, 1.0)); h1np[0] = h1n[0]*(std::complex(0.0, 1.0) - zi); // Rescale j[n], j'[n], converting to spherical Bessel functions. // Recur h1[n], h1'[n] as spherical Bessel functions. w = 1.0/jn[0]; pl = zi; for (n = 0; n < nmax; n++) { jn[n] = jn0*(w*jn[n]); jnp[n] = jn0*(w*jnp[n]) - zi*jn[n]; if (n != 0) { h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1]; // check if hankel is increasing (upward stable) if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) { jndb = z; h1nldb = h1n[n]; h1nbdb = h1n[n - 1]; } pl += zi; h1np[n] = -(pl*h1n[n]) + h1n[n - 1]; } } // success return 0; } //**********************************************************************************// // This function calculates the spherical Bessel functions (bj and by) and the // // logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H. // // // // Input parameters: // // z: Complex argument to evaluate bj, by and bd // // nmax: Maximum number of terms to calculate bj, by and bd // // // // Output parameters: // // bj, by: Spherical Bessel functions // // bd: Logarithmic derivative // //**********************************************************************************// void sphericalBessel(std::complex z, int nmax, std::vector >& bj, std::vector >& by, std::vector >& bd) { std::vector > jn, jnp, h1n, h1np; jn.resize(nmax); jnp.resize(nmax); h1n.resize(nmax); h1np.resize(nmax); // TODO verify that the function succeeds int ifail = sbesjh(z, nmax, jn, jnp, h1n, h1np); for (int n = 0; n < nmax; n++) { bj[n] = jn[n]; by[n] = (h1n[n] - jn[n])/std::complex(0.0, 1.0); bd[n] = jnp[n]/jn[n] + 1.0/z; } } // external scattering field = incident + scattered // BH p.92 (4.37), 94 (4.45), 95 (4.50) // assume: medium is non-absorbing; refim = 0; Uabs = 0 void fieldExt(int nmax, double Rho, double Phi, double Theta, std::vector Pi, std::vector Tau, std::vector > an, std::vector > bn, std::vector >& E, std::vector >& H) { int i, n, n1; double rn; std::complex ci, zn, xxip, encap; std::vector > vm3o1n, vm3e1n, vn3o1n, vn3e1n; vm3o1n.resize(3); vm3e1n.resize(3); vn3o1n.resize(3); vn3e1n.resize(3); std::vector > Ei, Hi, Es, Hs; Ei.resize(3); Hi.resize(3); Es.resize(3); Hs.resize(3); for (i = 0; i < 3; i++) { Ei[i] = std::complex(0.0, 0.0); Hi[i] = std::complex(0.0, 0.0); Es[i] = std::complex(0.0, 0.0); Hs[i] = std::complex(0.0, 0.0); } std::vector > bj, by, bd; bj.resize(nmax+1); by.resize(nmax+1); bd.resize(nmax+1); // Calculate spherical Bessel and Hankel functions sphericalBessel(Rho, nmax, bj, by, bd); ci = std::complex(0.0, 1.0); for (n = 0; n < nmax; n++) { n1 = n + 1; rn = double(n + 1); zn = bj[n1] + ci*by[n1]; xxip = Rho*(bj[n] + ci*by[n]) - rn*zn; vm3o1n[0] = std::complex(0.0, 0.0); vm3o1n[1] = std::cos(Phi)*Pi[n]*zn; vm3o1n[2] = -std::sin(Phi)*Tau[n]*zn; vm3e1n[0] = std::complex(0.0, 0.0); vm3e1n[1] = -std::sin(Phi)*Pi[n]*zn; vm3e1n[2] = -std::cos(Phi)*Tau[n]*zn; vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho; vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho; vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho; vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho; vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho; vn3e1n[2] = -std::sin(Phi)*Pi[n]*xxip/Rho; // scattered field: BH p.94 (4.45) encap = std::pow(ci, rn)*(2.0*rn + 1.0)/(rn*rn + rn); for (i = 0; i < 3; i++) { Es[i] = Es[i] + encap*(ci*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]); Hs[i] = Hs[i] + encap*(ci*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]); } } // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38) // basis unit vectors = er, etheta, ephi std::complex eifac = std::exp(std::complex(0.0, Rho*std::cos(Theta))); Ei[0] = eifac*std::sin(Theta)*std::cos(Phi); Ei[1] = eifac*std::cos(Theta)*std::cos(Phi); Ei[2] = -eifac*std::sin(Phi); // magnetic field double hffact = 1.0/(cc*mu); for (i = 0; i < 3; i++) { Hs[i] = hffact*Hs[i]; } // incident H field: BH p.26 (2.43), p.89 (4.21) std::complex hffacta = hffact; std::complex hifac = eifac*hffacta; Hi[0] = hifac*std::sin(Theta)*std::sin(Phi); Hi[1] = hifac*std::cos(Theta)*std::sin(Phi); Hi[2] = hifac*std::cos(Phi); for (i = 0; i < 3; i++) { // electric field E [V m-1] = EF*E0 E[i] = Ei[i] + Es[i]; H[i] = Hi[i] + Hs[i]; } } // Calculate an - equation (5) std::complex calc_an(int n, double XL, std::complex Ha, std::complex mL, std::complex PsiXL, std::complex ZetaXL, std::complex PsiXLM1, std::complex ZetaXLM1) { std::complex Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1; std::complex Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1; return Num/Denom; } // Calculate bn - equation (6) std::complex calc_bn(int n, double XL, std::complex Hb, std::complex mL, std::complex PsiXL, std::complex ZetaXL, std::complex PsiXLM1, std::complex ZetaXLM1) { std::complex Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1; std::complex Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1; return Num/Denom; } // Calculates S1 - equation (25a) std::complex calc_S1(int n, std::complex an, std::complex bn, double Pi, double Tau) { return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n); } // Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau) std::complex calc_S2(int n, std::complex an, std::complex bn, double Pi, double Tau) { return calc_S1(n, an, bn, Tau, Pi); } //**********************************************************************************// // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a // // real argument (x). // // Equations (20a) - (21b) // // // // Input parameters: // // x: Real argument to evaluate Psi and Zeta // // nmax: Maximum number of terms to calculate Psi and Zeta // // // // Output parameters: // // Psi, Zeta: Riccati-Bessel functions // //**********************************************************************************// void calcPsiZeta(double x, int nmax, std::vector > D1, std::vector > D3, std::vector >& Psi, std::vector >& Zeta) { int n; //Upward recurrence for Psi and Zeta - equations (20a) - (21b) Psi[0] = std::complex(sin(x), 0); Zeta[0] = std::complex(sin(x), -cos(x)); for (n = 1; n <= nmax; n++) { Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]); Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]); } } //**********************************************************************************// // This function calculates the logarithmic derivatives of the Riccati-Bessel // // functions (D1 and D3) for a complex argument (z). // // Equations (16a), (16b) and (18a) - (18d) // // // // Input parameters: // // z: Complex argument to evaluate D1 and D3 // // nmax: Maximum number of terms to calculate D1 and D3 // // // // Output parameters: // // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions // //**********************************************************************************// void calcD1D3(std::complex z, int nmax, std::vector >& D1, std::vector >& D3) { int n; std::complex nz, PsiZeta; // Downward recurrence for D1 - equations (16a) and (16b) D1[nmax] = std::complex(0.0, 0.0); for (n = nmax; n > 0; n--) { nz = double(n)/z; D1[n - 1] = nz - 1.0/(D1[n] + nz); } // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d) PsiZeta = 0.5*(1.0 - std::complex(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag())); D3[0] = std::complex(0.0, 1.0); for (n = 1; n <= nmax; n++) { nz = double(n)/z; PsiZeta = PsiZeta*(nz - D1[n - 1])*(nz - D3[n - 1]); D3[n] = D1[n] + std::complex(0.0, 1.0)/PsiZeta; } } //**********************************************************************************// // This function calculates Pi and Tau for all values of Theta. // // Equations (26a) - (26c) // // // // Input parameters: // // nmax: Maximum number of terms to calculate Pi and Tau // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // // // Output parameters: // // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) // //**********************************************************************************// void calcPiTau(int nmax, double Theta, std::vector& Pi, std::vector& Tau) { int n; //****************************************************// // Equations (26a) - (26c) // //****************************************************// // Initialize Pi and Tau Pi[0] = 1.0; Tau[0] = cos(Theta); // Calculate the actual values if (nmax > 1) { Pi[1] = 3*Tau[0]*Pi[0]; Tau[1] = 2*Tau[0]*Pi[1] - 3*Pi[0]; for (n = 2; n < nmax; n++) { Pi[n] = ((n + n + 1)*Tau[0]*Pi[n - 1] - (n + 1)*Pi[n - 2])/n; Tau[n] = (n + 1)*Tau[0]*Pi[n] - (n + 2)*Pi[n - 1]; } } } //**********************************************************************************// // This function calculates the scattering coefficients required to calculate // // both the near- and far-field parameters. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to -1 and the function will calculate it. // // // // Output parameters: // // an, bn: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int ScattCoeffs(int L, int pl, std::vector x, std::vector > m, int nmax, std::vector >& an, std::vector >& bn) { //************************************************************************// // Calculate the index of the first layer. It can be either 0 (default) // // or the index of the outermost PEC layer. In the latter case all layers // // below the PEC are discarded. // //************************************************************************// int fl = (pl > 0) ? pl : 0; if (nmax <= 0) { nmax = Nmax(L, fl, pl, x, m); } std::complex z1, z2; std::complex Num, Denom; std::complex G1, G2; std::complex Temp; int n, l; //**************************************************************************// // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which // // means that index = layer number - 1 or index = n - 1. The only exception // // are the arrays for representing D1, D3 and Q because they need a value // // for the index 0 (zero), hence it is important to consider this shift // // between different arrays. The change was done to optimize memory usage. // //**************************************************************************// // Allocate memory to the arrays std::vector > > D1_mlxl, D1_mlxlM1; D1_mlxl.resize(L); D1_mlxlM1.resize(L); std::vector > > D3_mlxl, D3_mlxlM1; D3_mlxl.resize(L); D3_mlxlM1.resize(L); std::vector > > Q; Q.resize(L); std::vector > > Ha, Hb; Ha.resize(L); Hb.resize(L); for (l = 0; l < L; l++) { D1_mlxl[l].resize(nmax + 1); D1_mlxlM1[l].resize(nmax + 1); D3_mlxl[l].resize(nmax + 1); D3_mlxlM1[l].resize(nmax + 1); Q[l].resize(nmax + 1); Ha[l].resize(nmax); Hb[l].resize(nmax); } an.resize(nmax); bn.resize(nmax); std::vector > D1XL, D3XL; D1XL.resize(nmax + 1); D3XL.resize(nmax + 1); std::vector > PsiXL, ZetaXL; PsiXL.resize(nmax + 1); ZetaXL.resize(nmax + 1); //*************************************************// // Calculate D1 and D3 for z1 in the first layer // //*************************************************// if (fl == pl) { // PEC layer for (n = 0; n <= nmax; n++) { D1_mlxl[fl][n] = std::complex(0.0, -1.0); D3_mlxl[fl][n] = std::complex(0.0, 1.0); } } else { // Regular layer z1 = x[fl]* m[fl]; // Calculate D1 and D3 calcD1D3(z1, nmax, D1_mlxl[fl], D3_mlxl[fl]); } //******************************************************************// // Calculate Ha and Hb in the first layer - equations (7a) and (8a) // //******************************************************************// for (n = 0; n < nmax; n++) { Ha[fl][n] = D1_mlxl[fl][n + 1]; Hb[fl][n] = D1_mlxl[fl][n + 1]; } //*****************************************************// // Iteration from the second layer to the last one (L) // //*****************************************************// for (l = fl + 1; l < L; l++) { //************************************************************// //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L // //************************************************************// z1 = x[l]*m[l]; z2 = x[l - 1]*m[l]; //Calculate D1 and D3 for z1 calcD1D3(z1, nmax, D1_mlxl[l], D3_mlxl[l]); //Calculate D1 and D3 for z2 calcD1D3(z2, nmax, D1_mlxlM1[l], D3_mlxlM1[l]); //*********************************************// //Calculate Q, Ha and Hb in the layers fl+1..L // //*********************************************// // Upward recurrence for Q - equations (19a) and (19b) Num = exp(-2.0*(z1.imag() - z2.imag()))*std::complex(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real())); Denom = std::complex(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real())); Q[l][0] = Num/Denom; for (n = 1; n <= nmax; n++) { Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]); Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]); Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom; } // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15) for (n = 1; n <= nmax; n++) { //Ha if ((l - 1) == pl) { // The layer below the current one is a PEC layer G1 = -D1_mlxlM1[l][n]; G2 = -D3_mlxlM1[l][n]; } else { G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]); G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]); } Temp = Q[l][n]*G1; Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]); Denom = G2 - Temp; Ha[l][n - 1] = Num/Denom; //Hb if ((l - 1) == pl) { // The layer below the current one is a PEC layer G1 = Hb[l - 1][n - 1]; G2 = Hb[l - 1][n - 1]; } else { G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]); G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]); } Temp = Q[l][n]*G1; Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]); Denom = (G2- Temp); Hb[l][n - 1] = (Num/ Denom); } } //**************************************// //Calculate D1, D3, Psi and Zeta for XL // //**************************************// // Calculate D1XL and D3XL calcD1D3(x[L - 1], nmax, D1XL, D3XL); // Calculate PsiXL and ZetaXL calcPsiZeta(x[L - 1], nmax, D1XL, D3XL, PsiXL, ZetaXL); //*********************************************************************// // Finally, we calculate the scattering coefficients (an and bn) and // // the angular functions (Pi and Tau). Note that for these arrays the // // first layer is 0 (zero), in future versions all arrays will follow // // this convention to save memory. (13 Nov, 2014) // //*********************************************************************// for (n = 0; n < nmax; n++) { //********************************************************************// //Expressions for calculating an and bn coefficients are not valid if // //there is only one PEC layer (ie, for a simple PEC sphere). // //********************************************************************// if (pl < (L - 1)) { an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); } else { an[n] = calc_an(n + 1, x[L - 1], std::complex(0.0, 0.0), std::complex(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); bn[n] = PsiXL[n + 1]/ZetaXL[n + 1]; } } return nmax; } //**********************************************************************************// // This function calculates the actual scattering parameters and amplitudes // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to -1 and the function will calculate it // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nMie(int L, int pl, std::vector x, std::vector > m, int nTheta, std::vector Theta, int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector >& S1, std::vector >& S2) { int i, n, t; std::vector > an, bn; std::complex Qbktmp; // Calculate scattering coefficients nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn); std::vector Pi, Tau; Pi.resize(nmax); Tau.resize(nmax); double x2 = x[L - 1]*x[L - 1]; // Initialize the scattering parameters *Qext = 0; *Qsca = 0; *Qabs = 0; *Qbk = 0; Qbktmp = std::complex(0.0, 0.0); *Qpr = 0; *g = 0; *Albedo = 0; // Initialize the scattering amplitudes for (t = 0; t < nTheta; t++) { S1[t] = std::complex(0.0, 0.0); S2[t] = std::complex(0.0, 0.0); } // By using downward recurrence we avoid loss of precision due to float rounding errors // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html // http://en.wikipedia.org/wiki/Loss_of_significance for (i = nmax - 2; i >= 0; i--) { n = i + 1; // Equation (27) *Qext += (n + n + 1)*(an[i].real() + bn[i].real()); // Equation (28) *Qsca += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag()); // Equation (29) TODO We must check carefully this equation. If we // remove the typecast to double then the result changes. Which is // the correct one??? Ovidio (2014/12/10) With cast ratio will // give double, without cast (n + n + 1)/(n*(n + 1)) will be // rounded to integer. Tig (2015/02/24) *Qpr += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real()); // Equation (33) Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]); //****************************************************// // Calculate the scattering amplitudes (S1 and S2) // // Equations (25a) - (25b) // //****************************************************// for (t = 0; t < nTheta; t++) { calcPiTau(nmax, Theta[t], Pi, Tau); S1[t] += calc_S1(n, an[i], bn[i], Pi[i], Tau[i]); S2[t] += calc_S2(n, an[i], bn[i], Pi[i], Tau[i]); } } *Qext = 2*(*Qext)/x2; // Equation (27) *Qsca = 2*(*Qsca)/x2; // Equation (28) *Qpr = *Qext - 4*(*Qpr)/x2; // Equation (29) *Qabs = *Qext - *Qsca; // Equation (30) *Albedo = *Qsca / *Qext; // Equation (31) *g = (*Qext - *Qpr) / *Qsca; // Equation (32) *Qbk = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33) return nmax; } //**********************************************************************************// // This function is just a wrapper to call the full 'nMie' function with fewer // // parameters, it is here mainly for compatibility with older versions of the // // program. Also, you can use it if you neither have a PEC layer nor want to define // // any limit for the maximum number of terms. // // // // Input parameters: // // L: Number of layers // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nMie(int L, std::vector x, std::vector > m, int nTheta, std::vector Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector >& S1, std::vector >& S2) { return nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2); } //**********************************************************************************// // This function is just a wrapper to call the full 'nMie' function with fewer // // parameters, it is useful if you want to include a PEC layer but not a limit // // for the maximum number of terms. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nMie(int L, int pl, std::vector x, std::vector > m, int nTheta, std::vector Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector >& S1, std::vector >& S2) { return nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2); } //**********************************************************************************// // This function is just a wrapper to call the full 'nMie' function with fewer // // parameters, it is useful if you want to include a limit for the maximum number // // of terms but not a PEC layer. // // // // Input parameters: // // L: Number of layers // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to -1 and the function will calculate it // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nMie(int L, std::vector x, std::vector > m, int nTheta, std::vector Theta, int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector >& S1, std::vector >& S2) { return nMie(L, -1, x, m, nTheta, Theta, nmax, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2); } //**********************************************************************************// // This function calculates complex electric and magnetic field in the surroundings // // and inside (TODO) the particle. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send 0 (zero) // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to 0 (zero) and the function will calculate it. // // ncoord: Number of coordinate points // // Coords: Array containing all coordinates where the complex electric and // // magnetic fields will be calculated // // // // Output parameters: // // E, H: Complex electric and magnetic field at the provided coordinates // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nField(int L, int pl, std::vector x, std::vector > m, int nmax, int ncoord, std::vector Xp, std::vector Yp, std::vector Zp, std::vector > >& E, std::vector > >& H) { int i, c; double Rho, Phi, Theta; std::vector > an, bn; // This array contains the fields in spherical coordinates std::vector > Es, Hs; Es.resize(3); Hs.resize(3); // Calculate scattering coefficients nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn); std::vector Pi, Tau; Pi.resize(nmax); Tau.resize(nmax); for (c = 0; c < ncoord; c++) { // Convert to spherical coordinates Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]); // Avoid convergence problems due to Rho too small if (Rho < 1e-5) { Rho = 1e-5; } //If Rho=0 then Theta is undefined. Just set it to zero to avoid problems if (Rho == 0.0) { Theta = 0.0; } else { Theta = acos(Zp[c]/Rho); } //If Xp=Yp=0 then Phi is undefined. Just set it to zero to zero to avoid problems if ((Xp[c] == 0.0) and (Yp[c] == 0.0)) { Phi = 0.0; } else { Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c])); } calcPiTau(nmax, Theta, Pi, Tau); //*******************************************************// // external scattering field = incident + scattered // // BH p.92 (4.37), 94 (4.45), 95 (4.50) // // assume: medium is non-absorbing; refim = 0; Uabs = 0 // //*******************************************************// // Firstly the easiest case: the field outside the particle if (Rho >= x[L - 1]) { fieldExt(nmax, Rho, Phi, Theta, Pi, Tau, an, bn, Es, Hs); } else { // TODO, for now just set all the fields to zero for (i = 0; i < 3; i++) { Es[i] = std::complex(0.0, 0.0); Hs[i] = std::complex(0.0, 0.0); } } //Now, convert the fields back to cartesian coordinates E[c][0] = std::sin(Theta)*std::cos(Phi)*Es[0] + std::cos(Theta)*std::cos(Phi)*Es[1] - std::sin(Phi)*Es[2]; E[c][1] = std::sin(Theta)*std::sin(Phi)*Es[0] + std::cos(Theta)*std::sin(Phi)*Es[1] + std::cos(Phi)*Es[2]; E[c][2] = std::cos(Theta)*Es[0] - std::sin(Theta)*Es[1]; H[c][0] = std::sin(Theta)*std::cos(Phi)*Hs[0] + std::cos(Theta)*std::cos(Phi)*Hs[1] - std::sin(Phi)*Hs[2]; H[c][1] = std::sin(Theta)*std::sin(Phi)*Hs[0] + std::cos(Theta)*std::sin(Phi)*Hs[1] + std::cos(Phi)*Hs[2]; H[c][2] = std::cos(Theta)*Hs[0] - std::sin(Theta)*Hs[1]; } return nmax; }