//**********************************************************************************// // Copyright (C) 2009-2013 Ovidio Pena // // // // This file is part of scattnlay // // // // This program is free software: you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation, either version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License for more details. // // // // The only additional remark is that we expect that all publications // // describing work using this software, or all commercial products // // using it, cite the following reference: // // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // // a multilayered sphere," Computer Physics Communications, // // vol. 180, Nov. 2009, pp. 2348-2354. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // //**********************************************************************************// #include #include #include #include #include #include #include #include #include #include #include //sudo aptitude install libgoogle-perftools-dev #include #include "nmie.h" #include "nmie-wrapper.h" timespec diff(timespec start, timespec end); const double PI=3.14159265358979323846; //***********************************************************************************// // This is the main function of 'scattnlay', here we read the parameters as // // arguments passed to the program which should be executed with the following // // syntaxis: // // ./scattnlay -l Layers x1 m1.r m1.i [x2 m2.r m2.i ...] [-t ti tf nt] [-c comment] // // // // When all the parameters were correctly passed we setup the integer L (the // // number of layers) and the arrays x and m, containing the size parameters and // // refractive indexes of the layers, respectively and call the function nMie. // // If the calculation is successful the results are printed with the following // // format: // // // // * If no comment was passed: // // 'Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo' // // // // * If a comment was passed: // // 'comment, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo' // //***********************************************************************************// int main(int argc, char *argv[]) { try { std::vector args; args.assign(argv, argv + argc); std::string error_msg(std::string("Insufficient parameters.\nUsage: ") + args[0] + " -l Layers x1 m1.r m1.i [x2 m2.r m2.i ...] " + "[-t ti tf nt] [-c comment]\n"); enum mode_states {read_L, read_x, read_mr, read_mi, read_ti, read_tf, read_nt, read_comment}; // for (auto arg : args) std::cout<< arg < x, Theta; std::vector > m, S1, S2; double Qext, Qabs, Qsca, Qbk, Qpr, g, Albedo; std::vector > mw, S1w, S2w; double Qextw, Qabsw, Qscaw, Qbkw, Qprw, gw, Albedow; double ti = 0.0, tf = 90.0; int nt = 0; if (argc < 5) throw std::invalid_argument(error_msg); //strcpy(comment, ""); // for (i = 1; i < argc; i++) { int mode = -1; double tmp_mr; for (auto arg : args) { // For each arg in args list we detect the change of the current // read mode or read the arg. The reading args algorithm works // as a finite-state machine. // Detecting new read mode (if it is a valid -key) if (arg == "-l") { mode = read_L; continue; } if (arg == "-t") { if ((mode != read_x) && (mode != read_comment)) throw std::invalid_argument(std::string("Unfinished layer!\n") +error_msg); mode = read_ti; continue; } if (arg == "-c") { if ((mode != read_x) && (mode != read_nt)) throw std::invalid_argument(std::string("Unfinished layer or theta!\n") + error_msg); mode = read_comment; continue; } // Reading data. For invalid date the exception will be thrown // with the std:: and catched in the end. if (mode == read_L) { L = std::stoi(arg); mode = read_x; continue; } if (mode == read_x) { x.push_back(std::stod(arg)); mode = read_mr; continue; } if (mode == read_mr) { tmp_mr = std::stod(arg); mode = read_mi; continue; } if (mode == read_mi) { m.push_back(std::complex( tmp_mr,std::stod(arg) )); mode = read_x; continue; } // if (strcmp(argv[i], "-l") == 0) { // i++; // L = atoi(argv[i]); // x.resize(L); // m.resize(L); // if (argc < 3*(L + 1)) { // throw std::invalid_argument(error_msg); // } else { // for (l = 0; l < L; l++) { // i++; // x[l] = atof(argv[i]); // i++; // m[l] = std::complex(atof(argv[i]), atof(argv[i + 1])); // i++; // } // } if (mode == read_ti) { ti = std::stod(arg); mode = read_tf; continue; } if (mode == read_tf) { tf = std::stod(arg); mode = read_nt; continue; } if (mode == read_nt) { nt = std::stoi(arg); Theta.resize(nt); S1.resize(nt); S2.resize(nt); S1w.resize(nt); S2w.resize(nt); continue; } //} else if (strcmp(argv[i], "-t") == 0) { // i++; // ti = atof(argv[i]); // i++; // tf = atof(argv[i]); // i++; // nt = atoi(argv[i]); // Theta.resize(nt); // S1.resize(nt); // S2.resize(nt); if (mode == read_comment) { comment = arg; has_comment = 1; continue; } // } else if (strcmp(argv[i], "-c") == 0) { // i++; // comment = args[i]; // //strcpy(comment, argv[i]); // has_comment = 1; // } else { i++; } } if ( (x.size() != m.size()) || (L != x.size()) ) throw std::invalid_argument(std::string("Broken structure!\n") +error_msg); if ( (0 == m.size()) || ( 0 == x.size()) ) throw std::invalid_argument(std::string("Empty structure!\n") +error_msg); if (nt < 0) { printf("Error reading Theta.\n"); return -1; } else if (nt == 1) { Theta[0] = ti*PI/180.0; } else { for (i = 0; i < nt; i++) { Theta[i] = (ti + (double)i*(tf - ti)/(nt - 1))*PI/180.0; } } timespec time1, time2; // long cpptime_nsec, best_cpp; // long ctime_nsec, best_c; // long cpptime_sec, ctime_sec; // long repeats = 150; // //HeapProfilerStart("heapprof"); // do { // clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time1); // for (int i = 0; i(ctime_nsec) // /static_cast(cpptime_nsec); // printf("-- C++ time consumed %lg sec\n", (cpptime_nsec/1e9)); // if ( ratio > 0.01 ) { // if ( ctime_sec == 0 && cpptime_sec == 0) { // printf("-- C time consumed %lg sec\n", (ctime_nsec/1e9)); // printf("-- total repeats: %ld\n", repeats); // printf("-- C/C++ time ratio: %Lg\n", ratio); // } else { // printf("==Test is too long!\n"); // } // } // repeats *= 10; // } while (cpptime_nsec < 1e8 && ctime_nsec < 1e8); nMie(L, x, m, nt, Theta, &Qext, &Qsca, &Qabs, &Qbk, &Qpr, &g, &Albedo, S1, S2); nmie::nMie_wrapper(L, x, m, nt, Theta, &Qextw, &Qscaw, &Qabsw, &Qbkw, &Qprw, &gw, &Albedow, S1w, S2w); printf("\n"); if (has_comment) { printf("%6s, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e old\n", comment.c_str(), Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo); printf("%6s, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e wrapper\n", comment.c_str(), Qextw, Qscaw, Qabsw, Qbkw, Qprw, gw, Albedow); } else { printf("%+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e old\n", Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo); printf("%+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e wrapper\n", Qextw, Qscaw, Qabsw, Qbkw, Qprw, gw, Albedow); } if (nt > 0) { printf(" Theta, S1.r, S1.i, S2.r, S2.i\n"); for (i = 0; i < nt; i++) { printf("%6.2f, %+.5e, %+.5e, %+.5e, %+.5e old\n", Theta[i]*180.0/PI, S1[i].real(), S1[i].imag(), S2[i].real(), S2[i].imag()); printf("%6.2f, %+.5e, %+.5e, %+.5e, %+.5e wrapper\n", Theta[i]*180.0/PI, S1w[i].real(), S1w[i].imag(), S2w[i].real(), S2w[i].imag()); } } // Field testing double from_coord = -3.0, to_coord = 3.0; int samples = 11; std::vector range, zero(samples, 0.0); for (int i = 0; i < samples; ++i) range.push_back( from_coord + (to_coord-from_coord)/static_cast(samples) ); std::vector Xp, Yp, Zp; // X line Xp.insert(Xp.end(), range.begin(), range.end()); Yp.insert(Yp.end(), zero.begin(), zero.end()); Zp.insert(Zp.end(), zero.begin(), zero.end()); // Y line Xp.insert(Xp.end(), zero.begin(), zero.end()); Yp.insert(Yp.end(), range.begin(), range.end()); Zp.insert(Zp.end(), zero.begin(), zero.end()); // Z line Xp.insert(Xp.end(), zero.begin(), zero.end()); Yp.insert(Yp.end(), zero.begin(), zero.end()); Zp.insert(Zp.end(), range.begin(), range.end()); int ncoord = Xp.size(); x = {1.1, 2.1}; m = {std::complex(0.05/1.6,1.070), std::complex(0.05/1.46,2.070)}; L = x.size(); int pl = 0; int nmax = 0; std::vector > > E(ncoord), H(ncoord); for (auto& f:E) f.resize(3); for (auto& f:H) f.resize(3); nmax = nField( L, pl, x, m, nmax, ncoord, Xp, Yp, Zp, E, H); double sum_e = 0.0, sum_h = 0.0; for (auto f:E) for (auto c:f) sum_e+=std::abs(c); for (auto f:H) for (auto c:f) sum_h+=std::abs(c); printf ("Field total sum (old) \n\tE =%23.16f\n\tH*377=%23.16f\n", sum_e, sum_h*377.0); nmie::nField( L, pl, x, m, nmax, ncoord, Xp, Yp, Zp, E, H); sum_e = 0.0, sum_h = 0.0; for (auto f:E) for (auto c:f) sum_e+=std::abs(c); for (auto f:H) for (auto c:f) sum_h+=std::abs(c); printf ("Field total sum (wrapper) \n\tE =%23.16f\n\tH*377=%23.16f\n", sum_e, sum_h*377.0); } catch( const std::invalid_argument& ia ) { // Will catch if multi_layer_mie fails or other errors. std::cerr << "Invalid argument: " << ia.what() << std::endl; return -1; } return 0; } timespec diff(timespec start, timespec end) { timespec temp; if ((end.tv_nsec-start.tv_nsec)<0) { temp.tv_sec = end.tv_sec-start.tv_sec-1; temp.tv_nsec = 1000000000+end.tv_nsec-start.tv_nsec; } else { temp.tv_sec = end.tv_sec-start.tv_sec; temp.tv_nsec = end.tv_nsec-start.tv_nsec; } return temp; }