//**********************************************************************************// // Copyright (C) 2009-2016 Ovidio Pena // // Copyright (C) 2013-2016 Konstantin Ladutenko // // // // This file is part of scattnlay // // // // This program is free software: you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation, either version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License for more details. // // // // The only additional remark is that we expect that all publications // // describing work using this software, or all commercial products // // using it, cite the following reference: // // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // // a multilayered sphere," Computer Physics Communications, // // vol. 180, Nov. 2009, pp. 2348-2354. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // //**********************************************************************************// // This program evaluates forces acting on the nanoparticle under irradiaton. #include #include #include #include #include "../src/nmie.hpp" #include "../src/nmie-impl.hpp" #include "../src/nmie-applied.hpp" #include "../src/nmie-applied-impl.hpp" #include "../src/shell-generator.hpp" int main(int argc, char *argv[]) { try { const double pi = 3.1415926535897932384626433832795; nmie::MultiLayerMieApplied multi_layer_mie; // const std::complex epsilon_Si(18.4631066585, 0.6259727805); // const std::complex epsilon_Ag(-8.5014154589, 0.7585845411); // const std::complex index_Si = std::sqrt(epsilon_Si); const std::complex index_Si(1.1,0.0); // const std::complex index_Ag = std::sqrt(epsilon_Ag); double WL=545; //nm //double WL=400; //nm //double outer_width = 67.91; //nm Si double outer_width = 4*2*2; //nm Si auto shift = 0.0; shell_generator::ShellGenerator shell; shell.Init(); shell.Refine(); shell.Refine(); for (int refines=0; refines<1; ++refines) { shell.Refine(); for (int i=0; i<170; ++i) { //outer_width = 40 + 5*i; auto integration_radius = outer_width + 5*i ; //outer_width = 10; //+10*i; //nm Si multi_layer_mie.ClearAllDesign(); multi_layer_mie.AddTargetLayer(outer_width, index_Si); multi_layer_mie.SetWavelength(WL); multi_layer_mie.RunMieCalculation(); double Qsca = multi_layer_mie.GetQsca(); //printf("Qsca = %g\t", Qsca); double scale = 2.0*pi*(integration_radius)/WL*1.00001; //Integration sphere radius. shell.Rescale(scale); // auto points = shell.GetVerticesT(); auto points = shell.GetFaceCentersT(); multi_layer_mie.SetFieldPointsSP(points); multi_layer_mie.RunFieldCalculation(); auto E = nmie::ConvertComplexVectorVector(multi_layer_mie.GetFieldE()); auto H = nmie::ConvertComplexVectorVector(multi_layer_mie.GetFieldH()); // auto Es = nmie::ConvertComplexVectorVector(multi_layer_mie.GetFieldEs()); // auto Hs = nmie::ConvertComplexVectorVector(multi_layer_mie.GetFieldHs()); shell.SetField(E,H); //shell.SetFieldSph(Es,Hs); // auto F = shell.Integrate(); //auto F = shell.IntegrateByFaces(); auto F = shell.IntegrateByComp(); std::cout << "integrate_R:\t" << scale*WL/(2.0*pi); std::cout<<"\tforce:\t" <