//**********************************************************************************// // Copyright (C) 2009-2015 Ovidio Pena // // Copyright (C) 2013-2015 Konstantin Ladutenko // // // // This file is part of scattnlay // // // // This program is free software: you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation, either version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License for more details. // // // // The only additional remark is that we expect that all publications // // describing work using this software, or all commercial products // // using it, cite the following reference: // // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // // a multilayered sphere," Computer Physics Communications, // // vol. 180, Nov. 2009, pp. 2348-2354. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // //**********************************************************************************// #include #include #include #include namespace nmie { // Implementation of Bessel functions from Bohren and Huffman book, pp. 86-87, eq 4.11 // Calculate all orders of function from 0 to nmax (included) for argument rho std::vector< std::complex > bessel_j(int nmax, std::complex rho) { if (nmax < 0) throw std::invalid_argument("Bessel order should be >= 0 (nmie::bessel_j)\n"); std::vector< std::complex > j(nmax+1); j[0] = std::sin(rho)/rho; if (nmax == 0) return j; j[1] = std::sin(rho)/(rho*rho) - std::cos(rho)/rho; if (nmax == 1) return j; for (int i = 2; i < n+1; ++i) { int n = i - 1; j[n+1] = static_cast(2*n+1)/rho*j[n] - j[n-1]; } } // Implementation of Bessel functions from Bohren and Huffman book, pp. 86-87, eq 4.11 // Calculate all orders of function from 0 to nmax (included) for argument rho std::vector< std::complex > bessel_y(int nmax, std::complex rho) { if (nmax < 0) throw std::invalid_argument("Bessel order should be >= 0 (nmie::bessel_j)\n"); std::vector< std::complex > j(nmax+1); j[0] = -std::cos(rho)/rho; if (nmax == 0) return j; j[1] = -std::cos(rho)/(rho*rho) - std::sin(rho)/rho; if (nmax == 1) return j; for (int i = 2; i < n+1; ++i) { int n = i - 1; j[n+1] = static_cast(2*n+1)/rho*j[n] - j[n-1]; } } } // end of namespace nmie