#!/usr/bin/env python3 # -*- coding: UTF-8 -*- # # Copyright (C) 2019-2021 Konstantin Ladutenko # # This file is part of python-scattnlay # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # The only additional remark is that we expect that all publications # describing work using this software, or all commercial products # using it, cite the following reference: # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by # a multilayered sphere," Computer Physics Communications, # vol. 180, Nov. 2009, pp. 2348-2354. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . import sys sys.path.insert(0,'..') # to be able to import scattnlay from the upper dir from scattnlay import scattnlay,scattcoeffs,fieldnlay import matplotlib.pyplot as plt import numpy as np import cmath from_WL = 400 to_WL = 800 WL_points= 100 WLs = np.linspace(from_WL, to_WL, WL_points) index_NP = 1.5+0.3j x = np.ones((1), dtype = np.float64) m = np.ones((1), dtype = np.complex128) core_r = 45000 Qsca_vec = [] core_r_vec = [] an_vec = [] bn_vec = [] for WL in WLs: x[0] = 2.0*np.pi*core_r/WL#/4.0*3.0 m[0] = index_NP terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay( np.array(x), np.array(m), mp=True ) print(np.array([Qsca])) terms, an, bn = scattcoeffs(x, m,24) # Qsca_vec.append(Qsca*np.pi*core_r**2*1e-5) Qsca_vec.append(Qsca)#*np.pi*core_r**2*1e-5) core_r_vec.append(core_r) an_vec.append(np.abs(an)[0]) bn_vec.append(np.abs(bn)[0]) an_vec = np.array(an_vec) bn_vec = np.array(bn_vec) # print(an_vec) fig, axs2 = plt.subplots(1,1)#, sharey=True, sharex=True) axs2.plot(WLs, Qsca_vec, color="black") # axs.set_xlabel("D, nm") # axs.set_ylabel("$Q_{sca}$") # axs2 = axs.twinx() # axs2.plot(np.array(core_r_vec)*2,an_vec[:,0],"b.",lw=0.8, markersize=1.9,label="$a_0$") # axs2.plot(np.array(core_r_vec)*2,bn_vec[:,0],"b-", markersize=1.9,label="$b_0$") # axs2.plot(np.array(core_r_vec)*2,an_vec[:,1],"g.",lw=0.8, markersize=1.9,label="$a_1$") # axs2.plot(np.array(core_r_vec)*2,bn_vec[:,1],"g-", markersize=1.9,label="$b_1$") # axs2.legend(loc="upper right") # axs2.tick_params('y', colors='black') # axs2.set_ylim(0,1) # axs2.set_ylabel("Mie",color="black") plt.savefig("spectra.pdf",pad_inches=0.02, bbox_inches='tight') plt.show() plt.clf() plt.close()