#ifndef SRC_NMIE_HPP_ #define SRC_NMIE_HPP_ //**********************************************************************************// // Copyright (C) 2009-2018 Ovidio Pena <ovidio@bytesfall.com> // // Copyright (C) 2013-2018 Konstantin Ladutenko <kostyfisik@gmail.com> // // // // This file is part of scattnlay // // // // This program is free software: you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation, either version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License for more details. // // // // The only additional remark is that we expect that all publications // // describing work using this software, or all commercial products // // using it, cite at least one of the following references: // // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // // a multilayered sphere," Computer Physics Communications, // // vol. 180, Nov. 2009, pp. 2348-2354. // // [2] K. Ladutenko, U. Pal, A. Rivera, and O. Pena-Rodriguez, "Mie // // calculation of electromagnetic near-field for a multilayered // // sphere," Computer Physics Communications, vol. 214, May 2017, // // pp. 225-230. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see <http://www.gnu.org/licenses/>. // //**********************************************************************************// #define VERSION "2.2" //Compare with Makefile and setup.py #include <array> #include <complex> #include <cstdlib> #include <iostream> #include <vector> #include "nmie-precision.hpp" #ifdef MULTI_PRECISION #include <boost/math/constants/constants.hpp> #endif namespace nmie { int ScattCoeffs(const unsigned int L, const int pl, const std::vector<double> &x, const std::vector<std::complex<double> > &m, const int nmax, std::vector<std::complex<double> > &an, std::vector<std::complex<double> > &bn); int ExpanCoeffs(const unsigned int L, const int pl, const std::vector<double> &x, const std::vector<std::complex<double> > &m, const int nmax, std::vector<std::vector<std::complex<double> > > &an, std::vector<std::vector<std::complex<double> > > &bn, std::vector<std::vector<std::complex<double> > > &cn, std::vector<std::vector<std::complex<double> > > &dn); //helper functions template <typename FloatType> double eval_delta(const int steps, const double from_value, const double to_value); template<class T> inline T pow2(const T value) {return value*value;} template<class T> inline T cabs(const std::complex<T> value) {return nmm::sqrt(pow2(value.real()) + pow2(value.imag()));} template <typename FloatType> int newround(FloatType x) { return x >= 0 ? static_cast<int>(x + 0.5):static_cast<int>(x - 0.5); //return x >= 0 ? (x + 0.5).convert_to<int>():(x - 0.5).convert_to<int>(); } template<typename T> inline std::complex<T> my_exp(const std::complex<T> &x) { using std::exp; // use ADL T const &r = exp(x.real()); return std::polar(r, x.imag()); } // pl, nmax, mode_n, mode_type int nMie(const unsigned int L, const int pl, std::vector<double> &x, std::vector<std::complex<double> > &m, const unsigned int nTheta, std::vector<double> &Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2, int mode_n, int mode_type); // pl and nmax int nMie(const unsigned int L, const int pl, std::vector<double> &x, std::vector<std::complex<double> > &m, const unsigned int nTheta, std::vector<double> &Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2); // no pl and nmax int nMie(const unsigned int L, std::vector<double> &x, std::vector<std::complex<double> > &m, const unsigned int nTheta, std::vector<double> &Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2); // pl int nMie(const unsigned int L, const int pl, std::vector<double> &x, std::vector<std::complex<double> > &m, const unsigned int nTheta, std::vector<double> &Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2); // nmax int nMie(const unsigned int L, std::vector<double> &x, std::vector<std::complex<double> > &m, const unsigned int nTheta, std::vector<double> &Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2); int nField(const unsigned int L, const int pl, const std::vector<double> &x, const std::vector<std::complex<double> > &m, const int nmax, const int mode_n, const int mode_type, const unsigned int ncoord, const std::vector<double> &Xp, const std::vector<double> &Yp, const std::vector<double> &Zp, std::vector<std::vector<std::complex<double> > > &E, std::vector<std::vector<std::complex<double> > > &H); // constants for per mode evaluation enum Modes {kAll = -1, kElectric = 0, kMagnetic = 1}; template <typename FloatType = double> class MultiLayerMie { public: const FloatType PI_=3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420198938095257201065485863278865936153381827968230301952035301852968995773622599413891249721775283479131515574857242454150695950829533116861727855889075098381754637464939319255060400927701671139009848824012858361603563707660104710181942955596198946767837449448255379774726847104047534646208046684259069491293313677028989152104752162056966024058038150193511253382430035587640247496473263914199272604269922796782354781636009341721641219924586315030286182974555706749838505494588586926995690927210797509302955321165344987202755960236480665499119881834797753566369807426542527862551818417574672890977772793800081647060016145249192173217214772350141441973568548161361157352552133475741849468438523323907394143334547762416862518983569485562099219222184272550254256887671790494601653466804988627232791786085784383827967976681454100953883786360950680064225125205117392984896084128488626945604241965285022210661186306744278622039194945047123713786960956364371917287467764657573962413890865832645995813390478027590099465764078951269468398352595709825822620522489407726719478268482601476990902640136394437455305068203496252451749399651431429809190659250937221696461515709858387410597885959772975498930161753928468138268683868942774155991855925245953959431049972524680845987273644695848653836736222626099124608051243884390451244136549762780797715691435997700129616089441694868555848406353422072225828488648158456028506016842739452267467678895252138522549954666727823986456596116354886230577456498035593634568174324112515076069479451096596094025228879710893145669136867228748940560101503308; // light speed [m s-1] const double cc_ = 2.99792458e8; // assume non-magnetic (MU=MU0=const) [N A-2] const FloatType mu_ = 4.0*PI_*1.0e-7; // Run calculation void RunMieCalculation(); void RunFieldCalculation(); void RunFieldCalculationPolar(const int outer_arc_points = 1, const int radius_points=1, const double from_Rho=0, const double to_Rho=static_cast<double>(1.), const double from_Theta=0, const double to_Theta=static_cast<double>(3.14159265358979323), const double from_Phi=0, const double to_Phi=static_cast<double>(3.14159265358979323), const bool isIgnoreAvailableNmax = true); // TODO change to false for production void calcScattCoeffs(); void calcExpanCoeffs(); // Return calculation results FloatType GetQext(); FloatType GetQsca(); FloatType GetQabs(); FloatType GetQbk(); FloatType GetQpr(); FloatType GetAsymmetryFactor(); FloatType GetAlbedo(); std::vector<std::complex<FloatType> > GetS1(); std::vector<std::complex<FloatType> > GetS2(); std::vector<std::complex<FloatType> > GetAn(){return an_;}; std::vector<std::complex<FloatType> > GetBn(){return bn_;}; std::vector< std::vector<std::complex<FloatType> > > GetLayerAn(){return aln_;}; std::vector< std::vector<std::complex<FloatType> > > GetLayerBn(){return bln_;}; std::vector< std::vector<std::complex<FloatType> > > GetLayerCn(){return cln_;}; std::vector< std::vector<std::complex<FloatType> > > GetLayerDn(){return dln_;}; // Problem definition // Modify size of all layers void SetLayersSize(const std::vector<FloatType> &layer_size); // Modify refractive index of all layers void SetLayersIndex(const std::vector< std::complex<FloatType> > &index); void GetIndexAtRadius(const FloatType Rho, std::complex<FloatType> &ml, unsigned int &l); void GetIndexAtRadius(const FloatType Rho, std::complex<FloatType> &ml); // Modify scattering (theta) angles void SetAngles(const std::vector<FloatType> &angles); // Modify coordinates for field calculation void SetFieldCoords(const std::vector< std::vector<FloatType> > &coords); // Modify index of PEC layer void SetPECLayer(int layer_position = 0); // Modify the mode taking into account for evaluation of output variables void SetModeNmaxAndType(int mode_n, int mode_type){mode_n_ = mode_n; mode_type_ = mode_type;}; // Set a fixed value for the maximun number of terms void SetMaxTerms(int nmax); // Get maximum number of terms int GetMaxTerms() {return nmax_;}; bool isMieCalculated(){return isMieCalculated_;}; // Clear layer information void ClearLayers(); void MarkUncalculated(); // Read parameters // Get total size parameter of particle FloatType GetSizeParameter(); // Returns size of all layers std::vector<FloatType> GetLayersSize(){return size_param_;}; // Returns refractive index of all layers std::vector<std::complex<FloatType> > GetLayersIndex(){return refractive_index_;}; // Returns scattering (theta) angles std::vector<FloatType> GetAngles(){return theta_;}; // Returns coordinates used for field calculation std::vector<std::vector<FloatType> > GetFieldCoords(){return coords_;}; // Returns index of PEC layer int GetPECLayer(){return PEC_layer_position_;}; std::vector<std::vector< std::complex<FloatType> > > GetFieldE(){return E_;}; // {X[], Y[], Z[]} std::vector<std::vector< std::complex<FloatType> > > GetFieldH(){return H_;}; // Get fields in spherical coordinates. std::vector<std::vector< std::complex<FloatType> > > GetFieldEs(){return E_;}; // {rho[], teha[], phi[]} std::vector<std::vector< std::complex<FloatType> > > GetFieldHs(){return H_;}; protected: // Size parameter for all layers std::vector<FloatType> size_param_; // Refractive index for all layers std::vector< std::complex<FloatType> > refractive_index_; // Scattering coefficients std::vector<std::complex<FloatType> > an_, bn_; std::vector< std::vector<std::complex<FloatType> > > aln_, bln_, cln_, dln_; // Points for field evaluation std::vector< std::vector<FloatType> > coords_; std::vector< std::vector<FloatType> > coords_polar_; private: unsigned int calcNstop(FloatType xL = -1); unsigned int calcNmax(FloatType xL = -1); std::complex<FloatType> calc_an(int n, FloatType XL, std::complex<FloatType> Ha, std::complex<FloatType> mL, std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL, std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1); std::complex<FloatType> calc_bn(int n, FloatType XL, std::complex<FloatType> Hb, std::complex<FloatType> mL, std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL, std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1); std::complex<FloatType> calc_S1(int n, std::complex<FloatType> an, std::complex<FloatType> bn, FloatType Pi, FloatType Tau); std::complex<FloatType> calc_S2(int n, std::complex<FloatType> an, std::complex<FloatType> bn, FloatType Pi, FloatType Tau); void calcD1D3(std::complex<FloatType> z, std::vector<std::complex<FloatType> > &D1, std::vector<std::complex<FloatType> > &D3); void calcPsiZeta(std::complex<FloatType> x, std::vector<std::complex<FloatType> > &Psi, std::vector<std::complex<FloatType> > &Zeta); void calcPiTau(const FloatType &costheta, std::vector<FloatType> &Pi, std::vector<FloatType> &Tau); void calcSpherHarm(const std::complex<FloatType> Rho, const FloatType Theta, const FloatType Phi, const std::complex<FloatType> &rn, const std::complex<FloatType> &Dn, const FloatType &Pi, const FloatType &Tau, const FloatType &n, std::vector<std::complex<FloatType> > &Mo1n, std::vector<std::complex<FloatType> > &Me1n, std::vector<std::complex<FloatType> > &No1n, std::vector<std::complex<FloatType> > &Ne1n); void calcFieldByComponents(const FloatType Rho, const FloatType Theta, const FloatType Phi, const std::vector<std::complex<FloatType> > &Psi, const std::vector<std::complex<FloatType> > &D1n, const std::vector<std::complex<FloatType> > &Zeta, const std::vector<std::complex<FloatType> > &D3n, const std::vector<FloatType> &Pi, const std::vector<FloatType> &Tau, std::vector<std::complex<FloatType> > &E, std::vector<std::complex<FloatType> > &H); bool isExpCoeffsCalc_ = false; bool isScaCoeffsCalc_ = false; bool isMieCalculated_ = false; // Scattering angles for scattering pattern in radians std::vector<FloatType> theta_; // Should be -1 if there is no PEC. int PEC_layer_position_ = -1; int mode_n_ = Modes::kAll; int mode_type_ = Modes::kAll; // with calcNmax(int first_layer); int nmax_ = -1; int nmax_preset_ = -1; int available_maximal_nmax_ = -1; /// Store result FloatType Qsca_ = 0.0, Qext_ = 0.0, Qabs_ = 0.0, Qbk_ = 0.0, Qpr_ = 0.0, asymmetry_factor_ = 0.0, albedo_ = 0.0; std::vector<std::vector< std::complex<FloatType> > > E_, H_; // {X[], Y[], Z[]} std::vector<std::vector< std::complex<FloatType> > > Es_, Hs_; // {X[], Y[], Z[]} std::vector<std::complex<FloatType> > S1_, S2_; void calcMieSeriesNeededToConverge(const FloatType Rho); void calcPiTauAllTheta(const double from_Theta, const double to_Theta, std::vector<std::vector<FloatType>> &Pi, std::vector<std::vector<FloatType>> &Tau); void calcRadialOnlyDependantFunctions(const FloatType from_Rho, const FloatType to_Rho, const bool isIgnoreAvailableNmax, std::vector<std::vector<std::complex<FloatType>>> &Psi, std::vector<std::vector<std::complex<FloatType>>> &D1n, std::vector<std::vector<std::complex<FloatType>>> &Zeta, std::vector<std::vector<std::complex<FloatType>>> &D3n); }; // end of class MultiLayerMie } // end of namespace nmie #endif // SRC_NMIE_HPP_