#!/usr/bin/env python3 # -*- coding: UTF-8 -*- import cmath import numpy as np import scipy.io from matplotlib import pyplot as plt from optical_constants import read_refractive_index_from_yaml as read_nk from scattnlay import mesomie, mie # shell 0.4-0.6 nm # omega_p goes down shell_h = 0.4 from_disk = np.loadtxt('silver-d_perp_interpolated.txt') omega_star_ratio = from_disk[0, :] d_perp = from_disk[1, :] + 1j*from_disk[2, :] from_disk = np.loadtxt('silver-d_parl_interpolated.txt') d_parl = from_disk[1, :] + 1j*from_disk[2, :] c = 299792458 # m/s h_reduced = 6.5821e-16 # eV s omega_p = 9.02 # eV omega_p_star = 3.81 # eV gamma = 0.15 # eV eps_inf_drud = 4.65 # eps_inf = 4.65 eps_d = 1 R = 2.5 y_min = 0 y_max = 2 min_lim_omega_star_ratio = 0.87 max_lim_omega_star_ratio = 0.99 # min_lim_omega_ratio = min_lim_omega_star_ratio * omega_p_star/omega_p # max_lim_omega_ratio = max_lim_omega_star_ratio * omega_p_star/omega_p # 2 pi / lambda = (omega/c) /h_reduced WL = 2*np.pi/((omega_star_ratio * omega_p_star/c)/h_reduced)*1e6 # mkm min_WL_available = 0.1879 max_WL_available = 1.9370 WL[WL < min_WL_available] = min_WL_available WL[WL > max_WL_available] = max_WL_available index_Ag = read_nk('Ag-Johnson-1972.yml', WL, kind=1) eps_Ag = index_Ag**2 # print(index_Ag) factor = 1 # TODO see app phys b 2017 fig 3, Karpov # 1. Нужна правильная eps (см выше) + размерный фактор в gamma # 2. Варьируем концентрацию # 3. На выходе спектр с красным сдвигом. jpcc def eps_m(omega, eps_inf, omega_p_local): return eps_inf - omega_p_local * omega_p_local / (omega*omega + 1j*omega*gamma*factor) def eps_inf(omega, eps_exp): return eps_exp + omega_p * omega_p / (omega*omega + 1j*omega*gamma*factor) Qext = [] Qext_mie = [] Qext_drude_nc = [] om_rat_plot = [] eps_inf_drude = [] eps_m_drude = [] for i in range(len(omega_star_ratio)): om_star_rat = omega_star_ratio[i] if (om_star_rat < min_lim_omega_star_ratio or om_star_rat > max_lim_omega_star_ratio): continue omega = om_star_rat*omega_p_star WL_mkm = 2*np.pi/((omega/c)/h_reduced)*1e6 if WL_mkm < min_WL_available or WL_mkm > max_WL_available: continue x_const = (omega/c) * 1e-9/h_reduced x = R * x_const m = index_Ag[i, 1] eps_m_drude.append(m**2) eps_inf_drude.append(eps_inf(omega, m**2)) m_drude = cmath.sqrt(eps_m(omega, eps_inf(omega, m**2), omega_p)) # m_drude = cmath.sqrt(eps_m(omega, eps_inf_drud, omega_p)) # m_drude = cmath.sqrt(eps_inf(omega, m**2)) print(x, m) # m = m_drude mesomie.calc_ab(R*10, # R in angstrem x, # xd x * m, # xm 1, # eps_d m * m, # eps_m d_parl[i], # d_parallel d_perp[i]) # d_perp mesomie.calc_Q() Qext.append(mesomie.GetQext()) mie.SetLayersSize(x) mie.SetLayersIndex(m) mie.RunMieCalculation() Qext_mie.append(mie.GetQext()) # m = m_drude # mesomie.calc_ab(R*10, # R in angstrem # x, # xd # x * m, # xm # 1, # eps_d # m * m, # eps_m # d_parl[i], # d_parallel # d_perp[i]) # d_perp # mesomie.calc_Q() # Qext_drude_nc.append(mesomie.GetQext()) # print(x, m, Qext[-1] - mie.GetQext()) om_rat_plot.append(om_star_rat) plt.plot(om_rat_plot, Qext_mie, label='classic', color='black', lw=4) # plt.plot(om_rat_plot, np.real(eps_inf_drude), # label='real drude', color='blue', lw=1) # plt.plot(om_rat_plot, np.imag(eps_inf_drude), # label='imag drude', color='red', lw=1) # plt.plot(om_rat_plot, np.real(eps_m_drude), # label='real drude', color='blue', lw=2) # plt.plot(om_rat_plot, np.imag(eps_m_drude), # label='imag drude', color='red', lw=2) plt.plot(om_rat_plot, Qext, label='non-classic', color='red', lw=4) # plt.plot(om_rat_plot, Qext_drude_nc, # label='non-classic drude fixed\nomega_p = 9.02 eV\ngamma = 0.15eV\neps_inf_drud = 4.65', color='blue', lw=2) for j in range(7): Qext_drude = [] step = 0.02 for i in range(len(omega_star_ratio)): om_star_rat = omega_star_ratio[i] if (om_star_rat < min_lim_omega_star_ratio or om_star_rat > max_lim_omega_star_ratio): continue omega = om_star_rat*omega_p_star WL_mkm = 2*np.pi/((omega/c)/h_reduced)*1e6 if WL_mkm < min_WL_available or WL_mkm > max_WL_available: continue x_const = (omega/c) * 1e-9/h_reduced x_cs = [(R-shell_h) * x_const, R * x_const], m = index_Ag[i, 1] m_drude = cmath.sqrt(eps_m(omega, eps_inf(omega, m**2), omega_p)) m_drude_shell = cmath.sqrt( eps_m(omega, eps_inf(omega, m**2), omega_p*(0.96+step*j))) m_cs = [m_drude, m_drude_shell] mie.SetLayersSize(x_cs) mie.SetLayersIndex(m_cs) mie.RunMieCalculation() Qext_drude.append(mie.GetQext()) plt.plot(om_rat_plot, Qext_drude, label=f'omega_p*{((0.96+step*j)*100)/100}', color='gray', lw=2) plt.legend() # plt.yscale('log') plt.xlim((min_lim_omega_star_ratio, max_lim_omega_star_ratio)) # plt.ylim((y_min, y_max)) plt.title( "R="+str(R)+f'\nfor core-shell totalR is the same,\nshell_h={shell_h}') plt.show()