#!/usr/bin/env python # -*- coding: UTF-8 -*- # # Copyright (C) 2009-2015 Ovidio Peña Rodríguez # Copyright (C) 2013-2015 Konstantin Ladutenko # # This file is part of python-scattnlay # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # The only additional remark is that we expect that all publications # describing work using this software, or all commercial products # using it, cite the following reference: # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by # a multilayered sphere," Computer Physics Communications, # vol. 180, Nov. 2009, pp. 2348-2354. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # This test case calculates the electric field in the # E-k plane, for an spherical Ag nanoparticle. import scattnlay from scattnlay import fieldnlay from scattnlay import scattnlay from fieldplot import fieldplot import numpy as np import cmath # # a) #WL=400 #nm #core_r = WL/20.0 #epsilon_Ag = -2.0 + 10.0j # # b) #WL=400 #nm #core_r = WL/20.0 #epsilon_Ag = -2.0 + 1.0j # c) WL=354 #nm core_r = WL/20.0 epsilon_Ag = -2.0 + 0.28j # d) #WL=367 #nm #core_r = WL/20.0 #epsilon_Ag = -2.71 + 0.25j index_Ag = np.sqrt(epsilon_Ag) # n1 = 1.53413 # n2 = 0.565838 + 7.23262j nm = 1.0 x = np.ones((2), dtype = np.float64) x[0] = 2.0*np.pi*core_r/WL/4.0*3.0 x[1] = 2.0*np.pi*core_r/WL m = np.ones((2), dtype = np.complex128) m[0] = index_Ag/nm m[1] = index_Ag/nm print "x =", x print "m =", m comment='bulk-Ag-flow' WL_units='nm' npts = 501 factor=2.1 flow_total = 39 #flow_total = 21 #flow_total = 0 crossplane='XZ' #crossplane='YZ' #crossplane='XY' # Options to plot: Eabs, Habs, Pabs, angleEx, angleHy field_to_plot='Pabs' #field_to_plot='angleEx' fieldplot(x,m, WL, comment, WL_units, crossplane, field_to_plot, npts, factor, flow_total, is_flow_extend=False)