#!/usr/bin/env python # -*- coding: UTF-8 -*- # # Copyright (C) 2009-2015 Ovidio Peña Rodríguez # Copyright (C) 2013-2015 Konstantin Ladutenko # # This file is part of python-scattnlay # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # The only additional remark is that we expect that all publications # describing work using this software, or all commercial products # using it, cite the following reference: # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by # a multilayered sphere," Computer Physics Communications, # vol. 180, Nov. 2009, pp. 2348-2354. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # This test case calculates the electric field in the # E-k plane, for an spherical Si-Ag-Si nanoparticle. Core radius is 17.74 nm, # inner layer 23.31nm, outer layer 22.95nm. Working wavelength is 800nm, we use # silicon epsilon=13.64+i0.047, silver epsilon= -28.05+i1.525 import scattnlay from scattnlay import fieldnlay from scattnlay import scattnlay import numpy as np import cmath epsilon_Si = 13.64 + 0.047j epsilon_Ag = -28.05 + 1.525j # epsilon_Si = 2.0 + 0.047j # epsilon_Ag = -2.0 + 1.525j # air = 1 # epsilon_Si = air*2 # epsilon_Ag = air*2 index_Si = np.sqrt(epsilon_Si) index_Ag = np.sqrt(epsilon_Ag) # # Values for 800 nm, taken from http://refractiveindex.info/ # index_Si = 3.69410 + 0.0065435j # index_Ag = 0.18599 + 4.9886j WL=800 #nm core_width = 17.74 #nm Si inner_width = 23.31 #nm Ag outer_width = 22.95 #nm Si core_r = core_width inner_r = core_r+inner_width outer_r = inner_r+outer_width # n1 = 1.53413 # n2 = 0.565838 + 7.23262j nm = 1.0 x = np.ones((1, 3), dtype = np.float64) x[0, 0] = 2.0*np.pi*core_r/WL x[0, 1] = 2.0*np.pi*inner_r/WL x[0, 2] = 2.0*np.pi*outer_r/WL m = np.ones((1, 3), dtype = np.complex128) m[0, 0] = index_Si/nm m[0, 1] = index_Ag/nm m[0, 2] = index_Si/nm print "x =", x print "m =", m npts = 281 factor=2.5 scan = np.linspace(-factor*x[0, 2], factor*x[0, 2], npts) coordX, coordZ = np.meshgrid(scan, scan) coordX.resize(npts*npts) coordZ.resize(npts*npts) coordY = np.zeros(npts*npts, dtype = np.float64) coord = np.vstack((coordX, coordY, coordZ)).transpose() terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m) terms, E, H = fieldnlay(x, m, coord) print("Qabs = "+str(Qabs)); Er = np.absolute(E) Hr = np.absolute(H) # |E|/|Eo| Eabs = np.sqrt(Er[0, :, 0]**2 + Er[0, :, 1]**2 + Er[0, :, 2]**2) Eangle = np.angle(E[0, :, 0])/np.pi*180 Habs= np.sqrt(Hr[0, :, 0]**2 + Hr[0, :, 1]**2 + Hr[0, :, 2]**2) Hangle = np.angle(H[0, :, 1])/np.pi*180 result = np.vstack((coordX, coordY, coordZ, Eabs)).transpose() result2 = np.vstack((coordX, coordY, coordZ, Eangle)).transpose() try: import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.colors import LogNorm # min_tick = 0.0 # max_tick = 1.0 Eabs_data = np.resize(Eabs, (npts, npts)).T Eangle_data = np.resize(Eangle, (npts, npts)).T Habs_data = np.resize(Habs, (npts, npts)).T Hangle_data = np.resize(Hangle, (npts, npts)).T fig, axs = plt.subplots(2,2)#, sharey=True, sharex=True) fig.tight_layout() # Rescale to better show the axes scale_x = np.linspace(min(coordX)*WL/2.0/np.pi/nm, max(coordX)*WL/2.0/np.pi/nm, npts) scale_z = np.linspace(min(coordZ)*WL/2.0/np.pi/nm, max(coordZ)*WL/2.0/np.pi/nm, npts) # Define scale ticks # min_tick = min(min_tick, np.amin(Eabs_data)) # max_tick = max(max_tick, np.amax(Eabs_data)) # scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6)) # scale_ticks = np.linspace(min_tick, max_tick, 10) # Interpolation can be 'nearest', 'bilinear' or 'bicubic' axs[0,0].set_title('Eabs') cax = axs[0,0].imshow(Eabs_data, interpolation = 'nearest', cmap = cm.jet, origin = 'lower' #, vmin = min_tick, vmax = max_tick , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z)) #,norm = LogNorm() ) axs[0,0].axis("image") axs[0,1].set_title('Eangle') cax = axs[0,1].imshow(Eangle_data, interpolation = 'nearest', cmap = cm.jet, origin = 'lower' #, vmin = min_tick, vmax = max_tick , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z)) #,norm = LogNorm() ) axs[1,0].set_title('Habs') cax = axs[1,0].imshow(Habs_data, interpolation = 'nearest', cmap = cm.jet, origin = 'lower' #, vmin = min_tick, vmax = max_tick , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z)) #,norm = LogNorm() ) axs[1,1].set_title('Hangle') cax = axs[1,1].imshow(Hangle_data, interpolation = 'nearest', cmap = cm.jet, origin = 'lower' #, vmin = min_tick, vmax = max_tick , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z)) #,norm = LogNorm() ) # Add colorbar # cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks]) # cbar.ax.set_yticklabels(['%5.3g' % (a) for a in scale_ticks]) # vertically oriented colorbar # pos = list(cbar.ax.get_position().bounds) # fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14) # plt.xlabel('Z, nm') # plt.ylabel('X, nm') # This part draws the nanoshell from matplotlib import patches for m in (0,1): for n in (0,1): s1 = patches.Arc((0, 0), 2.0*core_r, 2.0*core_r, angle=0.0, zorder=2, theta1=0.0, theta2=360.0, linewidth=1, color='black') s2 = patches.Arc((0, 0), 2.0*inner_r, 2.0*inner_r, angle=0.0, zorder=2, theta1=0.0, theta2=360.0, linewidth=1, color='black') s3 = patches.Arc((0, 0), 2.0*outer_r, 2.0*outer_r, angle=0.0, zorder=2, theta1=0.0, theta2=360.0, linewidth=1, color='black') axs[m,n].add_patch(s1) axs[m,n].add_patch(s2) axs[m,n].add_patch(s3) # axs[0,0].add_patch(s1) # axs[0,0].add_patch(s2) # axs[0,0].add_patch(s3) # axs[1,0].add_patch(s1) # axs[1,0].add_patch(s2) # axs[1,0].add_patch(s3) # axs[0,1].add_patch(s1) # axs[0,1].add_patch(s2) # axs[0,1].add_patch(s3) # axs[1,1].add_patch(s1) # axs[1,1].add_patch(s2) # axs[1,1].add_patch(s3) # for m in (0,1): # for n in (0,1): # print(m) # print(n) # axs[m,n].add_patch(s1) # axs[m,n].add_patch(s2) # axs[m,n].add_patch(s3) # End of drawing plt.savefig("SiAgSi.png") plt.draw() plt.show() plt.clf() plt.close() finally: np.savetxt("field.txt", result, fmt = "%.5f") print result