//********************************************************************************** // Copyright (C) 2009-2016 Ovidio Pena // Copyright (C) 2013-2016 Konstantin Ladutenko // // This file is part of scattnlay // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // The only additional remark is that we expect that all publications // describing work using this software, or all commercial products // using it, cite the following reference: // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // a multilayered sphere," Computer Physics Communications, // vol. 180, Nov. 2009, pp. 2348-2354. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . //********************************************************************************** #include #include #include #include #include #include #include #include #include #include #include // sudo aptitude install libgoogle-perftools-dev // #include #include "../../src/nmie-applied-impl.hpp" timespec diff(timespec start, timespec end); const double PI = 3.14159265358979323846; template inline T pow2(const T value) { return value * value; } //*********************************************************************************** // This is the main function of 'scattnlay', here we read the parameters as // arguments passed to the program which should be executed with the following // syntaxis: // ./scattnlay -l Layers x1 m1.r m1.i [x2 m2.r m2.i ...] [-t ti tf nt] [-c // comment] // // When all the parameters were correctly passed we setup the integer L (the // number of layers) and the arrays x and m, containing the size parameters and // refractive indexes of the layers, respectively and call the function nMie. // If the calculation is successful the results are printed with the following // format: // // * If no comment was passed: // 'Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo' // // * If a comment was passed: // 'comment, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo' //*********************************************************************************** int main(int argc, char* argv[]) { try { std::vector args; args.assign(argv, argv + argc); std::string error_msg(std::string("Insufficient parameters.\nUsage: ") + args[0] + " -l Layers x1 m1.r m1.i [x2 m2.r m2.i ...] " + "[-t ti tf nt] [-c comment]\n"); enum mode_states { read_L, read_x, read_mr, read_mi, read_ti, read_tf, read_nt, read_comment }; // for (auto arg : args) std::cout<< arg < x, Theta; std::vector > m, S1, S2; double Qext, Qabs, Qsca, Qbk, Qpr, g, Albedo; std::vector > mw, S1w, S2w; double Qextw, Qabsw, Qscaw, Qbkw, Qprw, gw, Albedow; double ti = 0.0, tf = 90.0; int nt = 0; if (argc < 5) throw std::invalid_argument(error_msg); // strcpy(comment, ""); // for (i = 1; i < argc; i++) { int mode = -1; double tmp_mr; for (auto arg : args) { // For each arg in args list we detect the change of the current // read mode or read the arg. The reading args algorithm works // as a finite-state machine. // Detecting new read mode (if it is a valid -key) if (arg == "-l") { mode = read_L; continue; } if (arg == "-t") { if ((mode != read_x) && (mode != read_comment)) throw std::invalid_argument(std::string("Unfinished layer!\n") + error_msg); mode = read_ti; continue; } if (arg == "-c") { if ((mode != read_x) && (mode != read_nt)) throw std::invalid_argument( std::string("Unfinished layer or theta!\n") + error_msg); mode = read_comment; continue; } // Reading data. For invalid date the exception will be thrown // with the std:: and catched in the end. if (mode == read_L) { L = std::stoi(arg); mode = read_x; continue; } if (mode == read_x) { x.push_back(std::stod(arg)); mode = read_mr; continue; } if (mode == read_mr) { tmp_mr = std::stod(arg); mode = read_mi; continue; } if (mode == read_mi) { m.push_back(std::complex(tmp_mr, std::stod(arg))); mode = read_x; continue; } if (mode == read_ti) { ti = std::stod(arg); mode = read_tf; continue; } if (mode == read_tf) { tf = std::stod(arg); mode = read_nt; continue; } if (mode == read_nt) { nt = std::stoi(arg); Theta.resize(nt); S1.resize(nt); S2.resize(nt); S1w.resize(nt); S2w.resize(nt); continue; } if (mode == read_comment) { comment = arg; has_comment = 1; continue; } } if ((x.size() != m.size()) || (L != x.size())) throw std::invalid_argument(std::string("Broken structure!\n") + error_msg); if ((0 == m.size()) || (0 == x.size())) throw std::invalid_argument(std::string("Empty structure!\n") + error_msg); if (nt < 0) { printf("Error reading Theta.\n"); return -1; } else if (nt == 1) { Theta[0] = ti * PI / 180.0; } else { for (i = 0; i < nt; i++) { Theta[i] = (ti + (double)i * (tf - ti) / (nt - 1)) * PI / 180.0; } } timespec time1, time2; long cpptime_nsec, best_cpp; long ctime_nsec, best_c; long cpptime_sec, ctime_sec; long repeats = 150; // HeapProfilerStart("heapprof"); printf("Start\n"); do { clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time1); for (int i = 0; i < repeats; ++i) { nmie::nMie(L, x, m, nt, Theta, &Qextw, &Qscaw, &Qabsw, &Qbkw, &Qprw, &gw, &Albedow, S1w, S2w); // break; } clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time2); cpptime_nsec = diff(time1, time2).tv_nsec; cpptime_sec = diff(time1, time2).tv_sec; printf("-- C++ time consumed %lg sec\n", cpptime_sec + (cpptime_nsec / 1e9)); repeats *= 10; // break; } while (cpptime_sec < 3 && ctime_sec < 3); printf("Finish\n"); // if (has_comment) { // printf("%6s, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e \n", // comment.c_str(), Qextw, Qscaw, Qabsw, Qbkw, Qprw, gw, Albedow); // } else { // printf("%+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e \n", Qextw, // Qscaw, Qabsw, Qbkw, Qprw, gw, Albedow); // } // if (nt > 0) { // printf(" Theta, S1.r, S1.i, S2.r, S2.i\n"); // for (i = 0; i < nt; i++) { // printf("%6.2f, %+.5e, %+.5e, %+.5e, %+.5e \n", Theta[i]*180.0/PI, // S1w[i].real(), S1w[i].imag(), S2w[i].real(), S2w[i].imag()); // } // } } catch (const std::invalid_argument& ia) { // Will catch if multi_layer_mie fails or other errors. std::cerr << "Invalid argument: " << ia.what() << std::endl; return -1; } return 0; } timespec diff(timespec start, timespec end) { timespec temp; if ((end.tv_nsec - start.tv_nsec) < 0) { temp.tv_sec = end.tv_sec - start.tv_sec - 1; temp.tv_nsec = 1000000000 + end.tv_nsec - start.tv_nsec; } else { temp.tv_sec = end.tv_sec - start.tv_sec; temp.tv_nsec = end.tv_nsec - start.tv_nsec; } return temp; }