//**********************************************************************************// // Copyright (C) 2009-2015 Ovidio Pena // // Copyright (C) 2013-2015 Konstantin Ladutenko // // // // This file is part of scattnlay // // // // This program is free software: you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation, either version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License for more details. // // // // The only additional remark is that we expect that all publications // // describing work using this software, or all commercial products // // using it, cite the following reference: // // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // // a multilayered sphere," Computer Physics Communications, // // vol. 180, Nov. 2009, pp. 2348-2354. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // //**********************************************************************************// //**********************************************************************************// // This class implements the algorithm for a multilayered sphere described by: // // [1] W. Yang, "Improved recursive algorithm for light scattering by a // // multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. // // // // You can find the description of all the used equations in: // // [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // // a multilayered sphere," Computer Physics Communications, // // vol. 180, Nov. 2009, pp. 2348-2354. // // // // Hereinafter all equations numbers refer to [2] // //**********************************************************************************// #include "bessel.h" #include "nmie.h" #include #include #include #include #include #include namespace nmie { //helpers template inline T pow2(const T value) {return value*value;} int round(double x) { return x >= 0 ? (int)(x + 0.5):(int)(x - 0.5); } //**********************************************************************************// // This function emulates a C call to calculate the actual scattering parameters // // and amplitudes. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to -1 and the function will calculate it // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nMie(const unsigned int L, const int pl, std::vector& x, std::vector >& m, const unsigned int nTheta, std::vector& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector >& S1, std::vector >& S2) { if (x.size() != L || m.size() != L) throw std::invalid_argument("Declared number of layers do not fit x and m!"); if (Theta.size() != nTheta) throw std::invalid_argument("Declared number of sample for Theta is not correct!"); try { MultiLayerMie multi_layer_mie; multi_layer_mie.SetLayersSize(x); multi_layer_mie.SetLayersIndex(m); multi_layer_mie.SetAngles(Theta); multi_layer_mie.SetPECLayer(pl); multi_layer_mie.SetMaxTerms(nmax); multi_layer_mie.RunMieCalculation(); *Qext = multi_layer_mie.GetQext(); *Qsca = multi_layer_mie.GetQsca(); *Qabs = multi_layer_mie.GetQabs(); *Qbk = multi_layer_mie.GetQbk(); *Qpr = multi_layer_mie.GetQpr(); *g = multi_layer_mie.GetAsymmetryFactor(); *Albedo = multi_layer_mie.GetAlbedo(); S1 = multi_layer_mie.GetS1(); S2 = multi_layer_mie.GetS2(); } catch(const std::invalid_argument& ia) { // Will catch if multi_layer_mie fails or other errors. std::cerr << "Invalid argument: " << ia.what() << std::endl; throw std::invalid_argument(ia); return -1; } return 0; } //**********************************************************************************// // This function is just a wrapper to call the full 'nMie' function with fewer // // parameters, it is here mainly for compatibility with older versions of the // // program. Also, you can use it if you neither have a PEC layer nor want to define // // any limit for the maximum number of terms. // // // // Input parameters: // // L: Number of layers // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nMie(const unsigned int L, std::vector& x, std::vector >& m, const unsigned int nTheta, std::vector& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector >& S1, std::vector >& S2) { return nmie::nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2); } //**********************************************************************************// // This function is just a wrapper to call the full 'nMie' function with fewer // // parameters, it is useful if you want to include a PEC layer but not a limit // // for the maximum number of terms. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nMie(const unsigned int L, const int pl, std::vector& x, std::vector >& m, const unsigned int nTheta, std::vector& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector >& S1, std::vector >& S2) { return nmie::nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2); } //**********************************************************************************// // This function is just a wrapper to call the full 'nMie' function with fewer // // parameters, it is useful if you want to include a limit for the maximum number // // of terms but not a PEC layer. // // // // Input parameters: // // L: Number of layers // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to -1 and the function will calculate it // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nMie(const unsigned int L, std::vector& x, std::vector >& m, const unsigned int nTheta, std::vector& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector >& S1, std::vector >& S2) { return nmie::nMie(L, -1, x, m, nTheta, Theta, nmax, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2); } //**********************************************************************************// // This function emulates a C call to calculate complex electric and magnetic field // // in the surroundings and inside (TODO) the particle. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send 0 (zero) // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to 0 (zero) and the function will calculate it. // // ncoord: Number of coordinate points // // Coords: Array containing all coordinates where the complex electric and // // magnetic fields will be calculated // // // // Output parameters: // // E, H: Complex electric and magnetic field at the provided coordinates // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nField(const unsigned int L, const int pl, const std::vector& x, const std::vector >& m, const int nmax, const unsigned int ncoord, const std::vector& Xp_vec, const std::vector& Yp_vec, const std::vector& Zp_vec, std::vector > >& E, std::vector > >& H) { if (x.size() != L || m.size() != L) throw std::invalid_argument("Declared number of layers do not fit x and m!"); if (Xp_vec.size() != ncoord || Yp_vec.size() != ncoord || Zp_vec.size() != ncoord || E.size() != ncoord || H.size() != ncoord) throw std::invalid_argument("Declared number of coords do not fit Xp, Yp, Zp, E, or H!"); for (auto f:E) if (f.size() != 3) throw std::invalid_argument("Field E is not 3D!"); for (auto f:H) if (f.size() != 3) throw std::invalid_argument("Field H is not 3D!"); try { MultiLayerMie multi_layer_mie; //multi_layer_mie.SetPECLayer(pl); // TODO add PEC layer to field plotting multi_layer_mie.SetLayersSize(x); multi_layer_mie.SetLayersIndex(m); multi_layer_mie.SetFieldCoords({Xp_vec, Yp_vec, Zp_vec}); multi_layer_mie.RunFieldCalculation(); E = multi_layer_mie.GetFieldE(); H = multi_layer_mie.GetFieldH(); } catch(const std::invalid_argument& ia) { // Will catch if multi_layer_mie fails or other errors. std::cerr << "Invalid argument: " << ia.what() << std::endl; throw std::invalid_argument(ia); return - 1; } return 0; } // ********************************************************************** // // Returns previously calculated Qext // // ********************************************************************** // double MultiLayerMie::GetQext() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return Qext_; } // ********************************************************************** // // Returns previously calculated Qabs // // ********************************************************************** // double MultiLayerMie::GetQabs() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return Qabs_; } // ********************************************************************** // // Returns previously calculated Qsca // // ********************************************************************** // double MultiLayerMie::GetQsca() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return Qsca_; } // ********************************************************************** // // Returns previously calculated Qbk // // ********************************************************************** // double MultiLayerMie::GetQbk() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return Qbk_; } // ********************************************************************** // // Returns previously calculated Qpr // // ********************************************************************** // double MultiLayerMie::GetQpr() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return Qpr_; } // ********************************************************************** // // Returns previously calculated assymetry factor // // ********************************************************************** // double MultiLayerMie::GetAsymmetryFactor() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return asymmetry_factor_; } // ********************************************************************** // // Returns previously calculated Albedo // // ********************************************************************** // double MultiLayerMie::GetAlbedo() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return albedo_; } // ********************************************************************** // // Returns previously calculated S1 // // ********************************************************************** // std::vector > MultiLayerMie::GetS1() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return S1_; } // ********************************************************************** // // Returns previously calculated S2 // // ********************************************************************** // std::vector > MultiLayerMie::GetS2() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return S2_; } // ********************************************************************** // // Modify scattering (theta) angles // // ********************************************************************** // void MultiLayerMie::SetAngles(const std::vector& angles) { isExpCoeffsCalc_ = false; isScaCoeffsCalc_ = false; isMieCalculated_ = false; theta_ = angles; } // ********************************************************************** // // Modify size of all layers // // ********************************************************************** // void MultiLayerMie::SetLayersSize(const std::vector& layer_size) { isExpCoeffsCalc_ = false; isScaCoeffsCalc_ = false; isMieCalculated_ = false; size_param_.clear(); double prev_layer_size = 0.0; for (auto curr_layer_size : layer_size) { if (curr_layer_size <= 0.0) throw std::invalid_argument("Size parameter should be positive!"); if (prev_layer_size > curr_layer_size) throw std::invalid_argument ("Size parameter for next layer should be larger than the previous one!"); prev_layer_size = curr_layer_size; size_param_.push_back(curr_layer_size); } } // ********************************************************************** // // Modify refractive index of all layers // // ********************************************************************** // void MultiLayerMie::SetLayersIndex(const std::vector< std::complex >& index) { isExpCoeffsCalc_ = false; isScaCoeffsCalc_ = false; isMieCalculated_ = false; refractive_index_ = index; } // ********************************************************************** // // Modify coordinates for field calculation // // ********************************************************************** // void MultiLayerMie::SetFieldCoords(const std::vector< std::vector >& coords) { if (coords.size() != 3) throw std::invalid_argument("Error! Wrong dimension of field monitor points!"); if (coords[0].size() != coords[1].size() || coords[0].size() != coords[2].size()) throw std::invalid_argument("Error! Missing coordinates for field monitor points!"); coords_ = coords; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::SetPECLayer(int layer_position) { isExpCoeffsCalc_ = false; isScaCoeffsCalc_ = false; isMieCalculated_ = false; if (layer_position < 0 && layer_position != -1) throw std::invalid_argument("Error! Layers are numbered from 0!"); PEC_layer_position_ = layer_position; } // ********************************************************************** // // Set maximun number of terms to be used // // ********************************************************************** // void MultiLayerMie::SetMaxTerms(int nmax) { isExpCoeffsCalc_ = false; isScaCoeffsCalc_ = false; isMieCalculated_ = false; nmax_preset_ = nmax; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // double MultiLayerMie::GetSizeParameter() { if (size_param_.size() > 0) return size_param_.back(); else return 0; } // ********************************************************************** // // Clear layer information // // ********************************************************************** // void MultiLayerMie::ClearLayers() { isExpCoeffsCalc_ = false; isScaCoeffsCalc_ = false; isMieCalculated_ = false; size_param_.clear(); refractive_index_.clear(); } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // Computational core // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // Calculate calcNstop - equation (17) // // ********************************************************************** // void MultiLayerMie::calcNstop() { const double& xL = size_param_.back(); if (xL <= 8) { nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 1); } else if (xL <= 4200) { nmax_ = round(xL + 4.05*pow(xL, 1.0/3.0) + 2); } else { nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 2); } } // ********************************************************************** // // Maximum number of terms required for the calculation // // ********************************************************************** // void MultiLayerMie::calcNmax(unsigned int first_layer) { int ri, riM1; const std::vector& x = size_param_; const std::vector >& m = refractive_index_; calcNstop(); // Set initial nmax_ value for (unsigned int i = first_layer; i < x.size(); i++) { if (static_cast(i) > PEC_layer_position_) // static_cast used to avoid warning ri = round(std::abs(x[i]*m[i])); else ri = 0; nmax_ = std::max(nmax_, ri); // first layer is pec, if pec is present if ((i > first_layer) && (static_cast(i - 1) > PEC_layer_position_)) riM1 = round(std::abs(x[i - 1]* m[i])); else riM1 = 0; nmax_ = std::max(nmax_, riM1); } nmax_ += 15; // Final nmax_ value } // ********************************************************************** // // Calculate an - equation (5) // // ********************************************************************** // std::complex MultiLayerMie::calc_an(int n, double XL, std::complex Ha, std::complex mL, std::complex PsiXL, std::complex ZetaXL, std::complex PsiXLM1, std::complex ZetaXLM1) { std::complex Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1; std::complex Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1; return Num/Denom; } // ********************************************************************** // // Calculate bn - equation (6) // // ********************************************************************** // std::complex MultiLayerMie::calc_bn(int n, double XL, std::complex Hb, std::complex mL, std::complex PsiXL, std::complex ZetaXL, std::complex PsiXLM1, std::complex ZetaXLM1) { std::complex Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1; std::complex Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1; return Num/Denom; } // ********************************************************************** // // Calculate an and bn for bulk sphere size x and index m // // equation (4.56) and (4.57) BH // // ********************************************************************** // void MultiLayerMie::calc_an_bn_bulk(std::vector >& an, std::vector >& bn, double x, std::complex m) { //printf("==========\n m = %g,%g, x= %g\n", std::real(m), std::imag(m), x); std::vector > PsiX(nmax_ + 1), ZetaX(nmax_ + 1); std::vector > PsiMX(nmax_ + 1), ZetaMX(nmax_ + 1); // First, calculate the Riccati-Bessel functions calcPsiZeta(x, PsiX, ZetaX); calcPsiZeta(m*x, PsiMX, ZetaMX); std::vector > D1X(nmax_ + 1), D3X(nmax_ + 1); std::vector > D1MX(nmax_ + 1), D3MX(nmax_ + 1); // Calculate the logarithmic derivatives calcD1D3(x, D1X, D3X); calcD1D3(m*x, D1MX, D3MX); std::vector > dPsiX(nmax_ + 1), dZetaX(nmax_ + 1); std::vector > dPsiMX(nmax_ + 1); for (int i = 0; i < nmax_ + 1; ++i) { dPsiX[i] = D1X[i]*PsiX[i]; dPsiMX[i] = D1MX[i]*PsiMX[i]; //dZetaX[i] = D3X[i]*ZetaX[i]; } bessel::calcZeta(nmax_, x, ZetaX, dZetaX); an.resize(nmax_); bn.resize(nmax_); for (int i = 0; i < nmax_; i++) { int n = i+1; std::complex Num = m*PsiMX[n]*dPsiX[n] - PsiX[n]*dPsiMX[n]; std::complex Denom = m*PsiMX[n]*dZetaX[n] - ZetaX[n]*dPsiMX[n]; an[i] = Num/Denom; Num = PsiMX[n]*dPsiX[n] - m*PsiX[n]*dPsiMX[n]; Denom = PsiMX[n]*dZetaX[n] - m*ZetaX[n]*dPsiMX[n]; bn[i] = Num/Denom; } // printf("dPsiX\n"); // for (auto a: dPsiX) printf("%11.4er%+10.5ei ",std::real(a), std::imag(a)); // printf("\ndPsiMX\n"); // for (auto a: dPsiMX) printf("%11.4er%+10.5ei ",std::real(a), std::imag(a)); // printf("\nPsiX\n"); // for (auto a: PsiX) printf("%11.4er%+10.5ei ",std::real(a), std::imag(a)); // printf("\nPsiMX\n"); // for (auto a: PsiMX) printf("%11.4er%+10.5ei ",std::real(a), std::imag(a)); // printf("\nZetaX\n"); // for (auto a: ZetaX) printf("%11.4er%+10.5ei ",std::real(a), std::imag(a)); // printf("\ndZetaX\n"); // for (auto a: dZetaX) printf("%11.4er%+10.5ei ",std::real(a), std::imag(a)); // printf("\nsize param: %g\n", x); } // ********************************************************************** // // Calculates S1 - equation (25a) // // ********************************************************************** // std::complex MultiLayerMie::calc_S1(int n, std::complex an, std::complex bn, double Pi, double Tau) { return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n); } // ********************************************************************** // // Calculates S2 - equation (25b) (it's the same as (25a), just switches // // Pi and Tau) // // ********************************************************************** // std::complex MultiLayerMie::calc_S2(int n, std::complex an, std::complex bn, double Pi, double Tau) { return calc_S1(n, an, bn, Tau, Pi); } //**********************************************************************************// // This function calculates the logarithmic derivatives of the Riccati-Bessel // // functions (D1 and D3) for a complex argument (z). // // Equations (16a), (16b) and (18a) - (18d) // // // // Input parameters: // // z: Complex argument to evaluate D1 and D3 // // nmax_: Maximum number of terms to calculate D1 and D3 // // // // Output parameters: // // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions // //**********************************************************************************// void MultiLayerMie::calcD1D3(const std::complex z, std::vector >& D1, std::vector >& D3) { // Downward recurrence for D1 - equations (16a) and (16b) D1[nmax_] = std::complex(0.0, 0.0); const std::complex zinv = std::complex(1.0, 0.0)/z; for (int n = nmax_; n > 0; n--) { D1[n - 1] = static_cast(n)*zinv - 1.0/(D1[n] + static_cast(n)*zinv); } if (std::abs(D1[0]) > 100000.0) throw std::invalid_argument("Unstable D1! Please, try to change input parameters!\n"); // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d) PsiZeta_[0] = 0.5*(1.0 - std::complex(std::cos(2.0*z.real()), std::sin(2.0*z.real())) *std::exp(-2.0*z.imag())); D3[0] = std::complex(0.0, 1.0); for (int n = 1; n <= nmax_; n++) { PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast(n)*zinv - D1[n - 1]) *(static_cast(n)*zinv - D3[n - 1]); D3[n] = D1[n] + std::complex(0.0, 1.0)/PsiZeta_[n]; } } //**********************************************************************************// // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a // // complex argument (z). // // Equations (20a) - (21b) // // // // Input parameters: // // z: Complex argument to evaluate Psi and Zeta // // nmax: Maximum number of terms to calculate Psi and Zeta // // // // Output parameters: // // Psi, Zeta: Riccati-Bessel functions // //**********************************************************************************// void MultiLayerMie::calcPsiZeta(std::complex z, std::vector >& Psi, std::vector >& Zeta) { std::complex c_i(0.0, 1.0); std::vector > D1(nmax_ + 1), D3(nmax_ + 1); // First, calculate the logarithmic derivatives calcD1D3(z, D1, D3); // Now, use the upward recurrence to calculate Psi and Zeta - equations (20a) - (21b) Psi[0] = std::sin(z); Zeta[0] = std::sin(z) - c_i*std::cos(z); for (int n = 1; n <= nmax_; n++) { Psi[n] = Psi[n - 1]*(static_cast(n)/z - D1[n - 1]); Zeta[n] = Zeta[n - 1]*(static_cast(n)/z - D3[n - 1]); } } //**********************************************************************************// // This function calculates the spherical Bessel (jn) and Hankel (h1n) functions // // and their derivatives for a given complex value z. See pag. 87 B&H. // // // // Input parameters: // // z: Complex argument to evaluate jn and h1n // // nmax_: Maximum number of terms to calculate jn and h1n // // // // Output parameters: // // jn, h1n: Spherical Bessel and Hankel functions // // jnp, h1np: Derivatives of the spherical Bessel and Hankel functions // // // // What we actually calculate are the Ricatti-Bessel fucntions and then simply // // evaluate the spherical Bessel and Hankel functions and their derivatives // // using the relations: // // // // j[n] = Psi[n]/z // // j'[n] = j[n-1]-(n+1)*jn[n])/z // // h1[n] = Zeta[n]/z // // h1'[n] = h1[n-1]-(n+1)*h1n[n]/z // // // //**********************************************************************************// void MultiLayerMie::sbesjh(std::complex z, std::vector >& jn, std::vector >& jnp, std::vector >& h1n, std::vector >& h1np) { // std::vector > Psi(nmax_ + 1), Zeta(nmax_ + 1); // // First, calculate the Riccati-Bessel functions // calcPsiZeta(z, Psi, Zeta); // // Now, calculate Spherical Bessel and Hankel functions and their derivatives // for (int n = 0; n <= nmax_; n++) { // jn[n] = Psi[n]/z; // h1n[n] = Zeta[n]/z; // if (n == 0) { // jnp[0] = -Psi[1]/z - jn[0]/z; // h1np[0] = -Zeta[1]/z - h1n[0]/z; // } else { // jnp[n] = jn[n - 1] - static_cast(n + 1)*jn[n]/z; // h1np[n] = h1n[n - 1] - static_cast(n + 1)*h1n[n]/z; // } // } std::vector< std::complex > yn, ynp; int nm; bessel::csphjy (nmax_, z, nm, jn, jnp, yn, ynp ); auto c_i = std::complex(0.0,1.0); h1n.resize(nmax_+1); h1np.resize(nmax_+1); for (int i = 0; i < nmax_+1; ++i) { h1n[i] = jn[i] + c_i*yn[i]; h1np[i] = jnp[i] + c_i*ynp[i]; } } //**********************************************************************************// // This function calculates Pi and Tau for a given value of cos(Theta). // // Equations (26a) - (26c) // // // // Input parameters: // // nmax_: Maximum number of terms to calculate Pi and Tau // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // // // Output parameters: // // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) // //**********************************************************************************// void MultiLayerMie::calcPiTau(const double& costheta, std::vector& Pi, std::vector& Tau) { int i; //****************************************************// // Equations (26a) - (26c) // //****************************************************// // Initialize Pi and Tau Pi[0] = 1.0; // n=1 Tau[0] = costheta; // Calculate the actual values if (nmax_ > 1) { Pi[1] = 3*costheta*Pi[0]; //n=2 Tau[1] = 2*costheta*Pi[1] - 3*Pi[0]; for (i = 2; i < nmax_; i++) { //n=[3..nmax_] Pi[i] = ((i + i + 1)*costheta*Pi[i - 1] - (i + 1)*Pi[i - 2])/i; Tau[i] = (i + 1)*costheta*Pi[i] - (i + 2)*Pi[i - 1]; } } } // end of MultiLayerMie::calcPiTau(...) //**********************************************************************************// // This function calculates vector spherical harmonics (eq. 4.50, p. 95 BH), // // required to calculate the near-field parameters. // // // // Input parameters: // // Rho: Radial distance // // Phi: Azimuthal angle // // Theta: Polar angle // // rn: Either the spherical Ricatti-Bessel function of first or third kind // // Dn: Logarithmic derivative of rn // // Pi, Tau: Angular functions Pi and Tau // // n: Order of vector spherical harmonics // // // // Output parameters: // // Mo1n, Me1n, No1n, Ne1n: Complex vector spherical harmonics // //**********************************************************************************// void MultiLayerMie::calcSpherHarm(const double Rho, const double Theta, const double Phi, const std::complex& rn, const std::complex& Dn, const double& Pi, const double& Tau, const double& n, std::vector >& Mo1n, std::vector >& Me1n, std::vector >& No1n, std::vector >& Ne1n) { // using eq 4.50 in BH std::complex c_zero(0.0, 0.0); using std::sin; using std::cos; Mo1n[0] = c_zero; Mo1n[1] = cos(Phi)*Pi*rn/Rho; Mo1n[2] = -sin(Phi)*Tau*rn/Rho; Me1n[0] = c_zero; Me1n[1] = -sin(Phi)*Pi*rn/Rho; Me1n[2] = -cos(Phi)*Tau*rn/Rho; No1n[0] = sin(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho; No1n[1] = sin(Phi)*Tau*Dn*rn/Rho; No1n[2] = cos(Phi)*Pi*Dn*rn/Rho; Ne1n[0] = cos(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho; Ne1n[1] = cos(Phi)*Tau*Dn*rn/Rho; Ne1n[2] = -sin(Phi)*Pi*Dn*rn/Rho; } // end of MultiLayerMie::calcSpherHarm(...) //**********************************************************************************// // This function calculates the scattering coefficients required to calculate // // both the near- and far-field parameters. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to -1 and the function will calculate it. // // // // Output parameters: // // an, bn: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// void MultiLayerMie::ScattCoeffs() { isScaCoeffsCalc_ = false; const std::vector& x = size_param_; const std::vector >& m = refractive_index_; const int& pl = PEC_layer_position_; const int L = refractive_index_.size(); //************************************************************************// // Calculate the index of the first layer. It can be either 0 (default) // // or the index of the outermost PEC layer. In the latter case all layers // // below the PEC are discarded. // // ***********************************************************************// int fl = (pl > 0) ? pl : 0; if (nmax_preset_ <= 0) calcNmax(fl); else nmax_ = nmax_preset_; std::complex z1, z2; //**************************************************************************// // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which // // means that index = layer number - 1 or index = n - 1. The only exception // // are the arrays for representing D1, D3 and Q because they need a value // // for the index 0 (zero), hence it is important to consider this shift // // between different arrays. The change was done to optimize memory usage. // //**************************************************************************// // Allocate memory to the arrays std::vector > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1), D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1); std::vector > > Q(L), Ha(L), Hb(L); for (int l = 0; l < L; l++) { Q[l].resize(nmax_ + 1); Ha[l].resize(nmax_); Hb[l].resize(nmax_); } an_.resize(nmax_); bn_.resize(nmax_); PsiZeta_.resize(nmax_ + 1); std::vector > PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1); //*************************************************// // Calculate D1 and D3 for z1 in the first layer // //*************************************************// if (fl == pl) { // PEC layer for (int n = 0; n <= nmax_; n++) { D1_mlxl[n] = std::complex(0.0, - 1.0); D3_mlxl[n] = std::complex(0.0, 1.0); } } else { // Regular layer z1 = x[fl]* m[fl]; // Calculate D1 and D3 calcD1D3(z1, D1_mlxl, D3_mlxl); } //******************************************************************// // Calculate Ha and Hb in the first layer - equations (7a) and (8a) // //******************************************************************// for (int n = 0; n < nmax_; n++) { Ha[fl][n] = D1_mlxl[n + 1]; Hb[fl][n] = D1_mlxl[n + 1]; } //*****************************************************// // Iteration from the second layer to the last one (L) // //*****************************************************// std::complex Temp, Num, Denom; std::complex G1, G2; for (int l = fl + 1; l < L; l++) { //************************************************************// //Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L // //************************************************************// z1 = x[l]*m[l]; z2 = x[l - 1]*m[l]; //Calculate D1 and D3 for z1 calcD1D3(z1, D1_mlxl, D3_mlxl); //Calculate D1 and D3 for z2 calcD1D3(z2, D1_mlxlM1, D3_mlxlM1); //*************************************************// //Calculate Q, Ha and Hb in the layers fl + 1..L // //*************************************************// // Upward recurrence for Q - equations (19a) and (19b) Num = std::exp(-2.0*(z1.imag() - z2.imag())) *std::complex(std::cos(-2.0*z2.real()) - std::exp(-2.0*z2.imag()), std::sin(-2.0*z2.real())); Denom = std::complex(std::cos(-2.0*z1.real()) - std::exp(-2.0*z1.imag()), std::sin(-2.0*z1.real())); Q[l][0] = Num/Denom; for (int n = 1; n <= nmax_; n++) { Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]); Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]); Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom; } // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15) for (int n = 1; n <= nmax_; n++) { //Ha if ((l - 1) == pl) { // The layer below the current one is a PEC layer G1 = -D1_mlxlM1[n]; G2 = -D3_mlxlM1[n]; } else { G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]); G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]); } // end of if PEC Temp = Q[l][n]*G1; Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]); Denom = G2 - Temp; Ha[l][n - 1] = Num/Denom; //Hb if ((l - 1) == pl) { // The layer below the current one is a PEC layer G1 = Hb[l - 1][n - 1]; G2 = Hb[l - 1][n - 1]; } else { G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]); G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]); } // end of if PEC Temp = Q[l][n]*G1; Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]); Denom = (G2- Temp); Hb[l][n - 1] = (Num/ Denom); } // end of for Ha and Hb terms } // end of for layers iteration //**************************************// //Calculate Psi and Zeta for XL // //**************************************// // Calculate PsiXL and ZetaXL calcPsiZeta(x[L - 1], PsiXL, ZetaXL); //*********************************************************************// // Finally, we calculate the scattering coefficients (an and bn) and // // the angular functions (Pi and Tau). Note that for these arrays the // // first layer is 0 (zero), in future versions all arrays will follow // // this convention to save memory. (13 Nov, 2014) // //*********************************************************************// for (int n = 0; n < nmax_; n++) { //********************************************************************// //Expressions for calculating an and bn coefficients are not valid if // //there is only one PEC layer (ie, for a simple PEC sphere). // //********************************************************************// if (pl < (L - 1)) { an_[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); bn_[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); } else { an_[n] = calc_an(n + 1, x[L - 1], std::complex(0.0, 0.0), std::complex(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); bn_[n] = PsiXL[n + 1]/ZetaXL[n + 1]; } } // end of for an and bn terms isScaCoeffsCalc_ = true; } // end of MultiLayerMie::ScattCoeffs(...) //**********************************************************************************// // This function calculates the actual scattering parameters and amplitudes // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // nmax_: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to -1 and the function will calculate it // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// void MultiLayerMie::RunMieCalculation() { if (size_param_.size() != refractive_index_.size()) throw std::invalid_argument("Each size parameter should have only one index!"); if (size_param_.size() == 0) throw std::invalid_argument("Initialize model first!"); const std::vector& x = size_param_; isExpCoeffsCalc_ = false; isScaCoeffsCalc_ = false; isMieCalculated_ = false; // Calculate scattering coefficients ScattCoeffs(); if (!isScaCoeffsCalc_) // TODO seems to be unreachable throw std::invalid_argument("Calculation of scattering coefficients failed!"); // Initialize the scattering parameters Qext_ = 0.0; Qsca_ = 0.0; Qabs_ = 0.0; Qbk_ = 0.0; Qpr_ = 0.0; asymmetry_factor_ = 0.0; albedo_ = 0.0; // Initialize the scattering amplitudes std::vector > tmp1(theta_.size(),std::complex(0.0, 0.0)); S1_.swap(tmp1); S2_ = S1_; std::vector Pi(nmax_), Tau(nmax_); std::complex Qbktmp(0.0, 0.0); std::vector< std::complex > Qbktmp_ch(nmax_ - 1, Qbktmp); // By using downward recurrence we avoid loss of precision due to float rounding errors // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html // http://en.wikipedia.org/wiki/Loss_of_significance for (int i = nmax_ - 2; i >= 0; i--) { const int n = i + 1; // Equation (27) Qext_ += (n + n + 1.0)*(an_[i].real() + bn_[i].real()); // Equation (28) Qsca_ += (n + n + 1.0)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag() + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag()); // Equation (29) Qpr_ += ((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real()); // Equation (33) Qbktmp += (double)(n + n + 1)*(1 - 2*(n % 2))*(an_[i]- bn_[i]); // Calculate the scattering amplitudes (S1 and S2) // // Equations (25a) - (25b) // for (unsigned int t = 0; t < theta_.size(); t++) { calcPiTau(std::cos(theta_[t]), Pi, Tau); S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[i], Tau[i]); S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[i], Tau[i]); } } double x2 = pow2(x.back()); Qext_ = 2.0*(Qext_)/x2; // Equation (27) Qsca_ = 2.0*(Qsca_)/x2; // Equation (28) Qpr_ = Qext_ - 4.0*(Qpr_)/x2; // Equation (29) Qabs_ = Qext_ - Qsca_; // Equation (30) albedo_ = Qsca_/Qext_; // Equation (31) asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_; // Equation (32) Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33) isMieCalculated_ = true; } //**********************************************************************************// // This function calculates the expansion coefficients inside the particle, // // required to calculate the near-field parameters. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to -1 and the function will calculate it. // // // // Output parameters: // // aln, bln, cln, dln: Complex scattering amplitudes inside the particle // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// void MultiLayerMie::ExpanCoeffs() { if (!isScaCoeffsCalc_) throw std::invalid_argument("(ExpanCoeffs) You should calculate external coefficients first!"); isExpCoeffsCalc_ = false; std::complex c_one(1.0, 0.0), c_zero(0.0, 0.0); const int L = refractive_index_.size(); aln_.resize(L + 1); bln_.resize(L + 1); cln_.resize(L + 1); dln_.resize(L + 1); for (int l = 0; l <= L; l++) { aln_[l].resize(nmax_); bln_[l].resize(nmax_); cln_[l].resize(nmax_); dln_[l].resize(nmax_); } // Yang, paragraph under eq. A3 // a^(L + 1)_n = a_n, d^(L + 1) = 1 ... for (int n = 0; n < nmax_; n++) { aln_[L][n] = an_[n]; bln_[L][n] = bn_[n]; cln_[L][n] = c_one; dln_[L][n] = c_one; printf("aln_[%02i, %02i] = %g,%g; bln_[%02i, %02i] = %g,%g; cln_[%02i, %02i] = %g,%g; dln_[%02i, %02i] = %g,%g\n", L, n, std::real(aln_[L][n]), std::imag(aln_[L][n]), L, n, std::real(bln_[L][n]), std::imag(bln_[L][n]), L, n, std::real(cln_[L][n]), std::imag(cln_[L][n]), L, n, std::real(dln_[L][n]), std::imag(dln_[L][n])); } std::vector > D1z(nmax_ + 1), D1z1(nmax_ + 1), D3z(nmax_ + 1), D3z1(nmax_ + 1); std::vector > Psiz(nmax_ + 1), Psiz1(nmax_ + 1), Zetaz(nmax_ + 1), Zetaz1(nmax_ + 1); std::complex denomZeta, denomPsi, T1, T2, T3, T4; auto& m = refractive_index_; std::vector< std::complex > m1(L); for (int l = 0; l < L - 1; l++) m1[l] = m[l + 1]; m1[L - 1] = std::complex (1.0, 0.0); std::complex z, z1; for (int l = L - 1; l >= 0; l--) { z = size_param_[l]*m[l]; z1 = size_param_[l]*m1[l]; calcD1D3(z, D1z, D3z); calcD1D3(z1, D1z1, D3z1); calcPsiZeta(z, Psiz, Zetaz); calcPsiZeta(z1, Psiz1, Zetaz1); for (int n = 0; n < nmax_; n++) { int n1 = n + 1; denomZeta = m1[l]*Zetaz[n1]*(D1z[n1] - D3z[n1]); denomPsi = m1[l]*Psiz[n1]*(D1z[n1] - D3z[n1]); T1 = aln_[l + 1][n]*Zetaz1[n1] - dln_[l + 1][n]*Psiz1[n1]; T2 = bln_[l + 1][n]*Zetaz1[n1] - cln_[l + 1][n]*Psiz1[n1]; T3 = D1z1[n1]*dln_[l + 1][n]*Psiz1[n1] - D3z1[n1]*aln_[l + 1][n]*Zetaz1[n1]; T4 = D1z1[n1]*cln_[l + 1][n]*Psiz1[n1] - D3z1[n1]*bln_[l + 1][n]*Zetaz1[n1]; // aln aln_[l][n] = (D1z[n1]*m1[l]*T1 + m[l]*T3)/denomZeta; // bln bln_[l][n] = (D1z[n1]*m[l]*T2 + m1[l]*T4)/denomZeta; // cln cln_[l][n] = (D3z[n1]*m[l]*T2 + m1[l]*T4)/denomPsi; // dln dln_[l][n] = (D3z[n1]*m1[l]*T1 + m[l]*T3)/denomPsi; printf("aln_[%02i, %02i] = %g,%g; bln_[%02i, %02i] = %g,%g; cln_[%02i, %02i] = %g,%g; dln_[%02i, %02i] = %g,%g\n", l, n, real(aln_[l][n]), imag(aln_[l][n]), l, n, real(bln_[l][n]), imag(bln_[l][n]), l, n, real(cln_[l][n]), imag(cln_[l][n]), l, n, real(dln_[l][n]), imag(dln_[l][n])); } // end of all n } // end of all l // Check the result and change aln_[0][n] and aln_[0][n] for exact zero for (int n = 0; n < nmax_; ++n) { // printf("n=%d, aln_=%g,%g, bln_=%g,%g \n", n, real(aln_[0][n]), imag(aln_[0][n]), // real(bln_[0][n]), imag(bln_[0][n])); if (std::abs(aln_[0][n]) < 1e-10) aln_[0][n] = 0.0; else throw std::invalid_argument("Unstable calculation of aln_[0][n]!"); if (std::abs(bln_[0][n]) < 1e-10) bln_[0][n] = 0.0; else throw std::invalid_argument("Unstable calculation of bln_[0][n]!"); } isExpCoeffsCalc_ = true; } // end of void MultiLayerMie::ExpanCoeffs() //**********************************************************************************// // This function calculates the expansion coefficients inside the particle, // // required to calculate the near-field parameters. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to -1 and the function will calculate it. // // // // Output parameters: // // aln, bln, cln, dln: Complex scattering amplitudes inside the particle // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// void MultiLayerMie::ExpanCoeffsV2() { if (!isScaCoeffsCalc_) throw std::invalid_argument("(ExpanCoeffs) You should calculate external coefficients first!"); isExpCoeffsCalc_ = false; std::complex c_one(1.0, 0.0), c_zero(0.0, 0.0); const int L = refractive_index_.size(); aln_.resize(L + 1); bln_.resize(L + 1); cln_.resize(L + 1); dln_.resize(L + 1); for (int l = 0; l <= L; l++) { aln_[l].resize(nmax_); bln_[l].resize(nmax_); cln_[l].resize(nmax_); dln_[l].resize(nmax_); } // Yang, paragraph under eq. A3 // a^(L + 1)_n = a_n, d^(L + 1) = 1 ... for (int i = 0; i < nmax_; ++i) { aln_[L][i] = an_[i]; bln_[L][i] = bn_[i]; cln_[L][i] = c_one; dln_[L][i] = c_one; } std::vector > D1z(nmax_ + 1), D1z1(nmax_ + 1), D3z(nmax_ + 1), D3z1(nmax_ + 1); std::vector > Psiz(nmax_ + 1), Psiz1(nmax_ + 1), Zetaz(nmax_ + 1), Zetaz1(nmax_ + 1); std::complex denomZeta, denomPsi, T1, T2, T3, T4; auto& m = refractive_index_; std::vector< std::complex > m1(L); for (int l = 0; l < L - 1; l++) m1[l] = m[l + 1]; m1[L - 1] = std::complex (1.0, 0.0); std::complex z, z1; for (int l = L - 1; l >= 0; l--) { z = size_param_[l]*m[l]; z1 = size_param_[l]*m1[l]; calcD1D3(z, D1z, D3z); calcD1D3(z1, D1z1, D3z1); calcPsiZeta(z, Psiz, Zetaz); calcPsiZeta(z1, Psiz1, Zetaz1); for (int n = 0; n < nmax_; n++) { int n1 = n + 1; denomZeta = m1[l]*Zetaz[n1]*(D1z[n1] - D3z[n1]); denomPsi = m1[l]*Psiz[n1]*(D1z[n1] - D3z[n1]); T1 = aln_[l + 1][n]*Zetaz1[n1] - dln_[l + 1][n]*Psiz1[n1]; T2 = bln_[l + 1][n]*Zetaz1[n1] - cln_[l + 1][n]*Psiz1[n1]; T3 = D1z1[n1]*dln_[l + 1][n]*Psiz1[n1] - D3z1[n1]*aln_[l + 1][n]*Zetaz1[n1]; T4 = D1z1[n1]*cln_[l + 1][n]*Psiz1[n1] - D3z1[n1]*bln_[l + 1][n]*Zetaz1[n1]; // aln aln_[l][n] = (D1z[n1]*m1[l]*T1 + m[l]*T3)/denomZeta; // bln bln_[l][n] = (D1z[n1]*m[l]*T2 + m1[l]*T4)/denomZeta; // cln cln_[l][n] = (D3z[n1]*m[l]*T2 + m1[l]*T4)/denomPsi; // dln dln_[l][n] = (D3z[n1]*m1[l]*T1 + m[l]*T3)/denomPsi; } // end of all n } // end of all l // Check the result and change aln_[0][n] and aln_[0][n] for exact zero for (int n = 0; n < nmax_; ++n) { printf("n=%d, aln_=%g,%g, bln_=%g,%g \n", n, real(aln_[0][n]), imag(aln_[0][n]), real(bln_[0][n]), imag(bln_[0][n])); if (std::abs(aln_[0][n]) < 1e-10) aln_[0][n] = 0.0; else throw std::invalid_argument("Unstable calculation of aln_[0][n]!"); if (std::abs(bln_[0][n]) < 1e-10) bln_[0][n] = 0.0; else throw std::invalid_argument("Unstable calculation of bln_[0][n]!"); } isExpCoeffsCalc_ = true; } // end of void MultiLayerMie::ExpanCoeffs() // ********************************************************************** // // external scattering field = incident + scattered // // BH p.92 (4.37), 94 (4.45), 95 (4.50) // // assume: medium is non-absorbing; refim = 0; Uabs = 0 // // ********************************************************************** // void MultiLayerMie::fieldExt(const double Rho, const double Theta, const double Phi, std::vector >& E, std::vector >& H) { std::complex c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0); std::vector > ipow = {c_one, c_i, -c_one, -c_i}; // Vector containing precomputed integer powers of i to avoid computation std::vector > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3); std::vector > Ei(3, c_zero), Hi(3, c_zero), Es(3, c_zero), Hs(3, c_zero); std::vector > Psi(nmax_ + 1), D1n(nmax_ + 1), Zeta(nmax_ + 1), D3n(nmax_ + 1); std::vector Pi(nmax_), Tau(nmax_); // Avoid calculation inside the particle if (Rho < size_param_.back()) { for (int i = 0; i < 3; i++) { E[i] = c_zero; H[i] = c_zero; } return; } calcD1D3(Rho, D1n, D3n); calcPsiZeta(Rho, Psi, Zeta); // Calculate spherical Bessel and Hankel functions //sbesjh(Rho, jn, jnp, h1n, h1np); // Calculate angular functions Pi and Tau calcPiTau(std::cos(Theta), Pi, Tau); for (int n = 0; n < nmax_; n++) { int n1 = n + 1; double rn = static_cast(n1); // using BH 4.12 and 4.50 calcSpherHarm(Rho, Theta, Phi, Zeta[n1], D3n[n1], Pi[n], Tau[n], rn, M3o1n, M3e1n, N3o1n, N3e1n); // scattered field: BH p.94 (4.45) std::complex En = ipow[n1 % 4]*(rn + rn + 1.0)/(rn*rn + rn); for (int i = 0; i < 3; i++) { Es[i] = Es[i] + En*(c_i*an_[n]*N3e1n[i] - bn_[n]*M3o1n[i]); Hs[i] = Hs[i] + En*(c_i*bn_[n]*N3o1n[i] + an_[n]*M3e1n[i]); } } // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38) // basis unit vectors = er, etheta, ephi std::complex eifac = std::exp(std::complex(0.0, Rho*std::cos(Theta))); { using std::sin; using std::cos; Ei[0] = eifac*sin(Theta)*cos(Phi); Ei[1] = eifac*cos(Theta)*cos(Phi); Ei[2] = -eifac*sin(Phi); } // magnetic field double hffact = 1.0/(cc_*mu_); for (int i = 0; i < 3; i++) { Hs[i] = hffact*Hs[i]; } // incident H field: BH p.26 (2.43), p.89 (4.21) std::complex hffacta = hffact; std::complex hifac = eifac*hffacta; { using std::sin; using std::cos; Hi[0] = hifac*sin(Theta)*sin(Phi); Hi[1] = hifac*cos(Theta)*sin(Phi); Hi[2] = hifac*cos(Phi); } for (int i = 0; i < 3; i++) { // electric field E [V m - 1] = EF*E0 E[i] = Ei[i] + Es[i]; H[i] = Hi[i] + Hs[i]; } } // end of MultiLayerMie::fieldExt(...) //**********************************************************************************// // This function calculates the electric (E) and magnetic (H) fields inside and // // around the particle. // // // // Input parameters (coordinates of the point): // // Rho: Radial distance // // Phi: Azimuthal angle // // Theta: Polar angle // // // // Output parameters: // // E, H: Complex electric and magnetic fields // //**********************************************************************************// void MultiLayerMie::calcField(const double Rho, const double Theta, const double Phi, std::vector >& E, std::vector >& H) { std::complex c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0); std::vector > ipow = {c_one, c_i, -c_one, -c_i}; // Vector containing precomputed integer powers of i to avoid computation std::vector > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3); std::vector > M1o1n(3), M1e1n(3), N1o1n(3), N1e1n(3); std::vector > Psi(nmax_ + 1), D1n(nmax_ + 1), Zeta(nmax_ + 1), D3n(nmax_ + 1); std::vector Pi(nmax_), Tau(nmax_); std::vector > Ei(3), Hi(3); int l = 0; // Layer number std::complex ml; // Initialize E and H for (int i = 0; i < 3; i++) { E[i] = c_zero; H[i] = c_zero; } if (Rho > size_param_.back()) { l = size_param_.size(); ml = c_one; } else { for (int i = size_param_.size() - 1; i >= 0 ; i--) { if (Rho <= size_param_[i]) { l = i; break; } } ml = refractive_index_[l]; } calcD1D3(Rho, D1n, D3n); calcPsiZeta(Rho, Psi, Zeta); // Calculate spherical Bessel and Hankel functions and their derivatives //sbesjh(Rho*ml, jn, jnp, h1n, h1np); //sbesjh(2.0*PI_*Rho*ml, jn, jnp, h1n, h1np); //printf("2.0*PI*Rho*ml = %10.5er%+10.5ei\n",std::real(2.0*PI_*Rho*ml), std::imag(2.0*PI_*Rho*ml)); // Calculate angular functions Pi and Tau calcPiTau(std::cos(Theta), Pi, Tau); //printf("Thetd = %g, cos(Theta) = %g\n", Theta, std::cos(Theta)); //printf("jn:\n"); //for (auto p : jn) printf("%+11.4er%+11.4ei\n",p.real(), p.imag()); //printf("Pi:\n"); //for (auto p : Pi) printf("%11.4e\n",p); //printf("Tau:\n"); //for (auto p : Tau) printf("%11.4e\n",p); for (int n = nmax_ - 2; n >= 0; n--) { int n1 = n + 1; double rn = static_cast(n1); // using BH 4.12 and 4.50 calcSpherHarm(Rho, Theta, Phi, Psi[n1], D1n[n1], Pi[n], Tau[n], rn, M1o1n, M1e1n, N1o1n, N1e1n); calcSpherHarm(Rho, Theta, Phi, Zeta[n1], D3n[n1], Pi[n], Tau[n], rn, M3o1n, M3e1n, N3o1n, N3e1n); // auto deriv1 = -rn*jn[n1]+Rho*jn[n1-1]; // auto deriv2 = Rho*jnp[n1] + jn[n1]; // printf("n=%d deriv1: %+11.4e deriv2: %+11.4ei\n",n1, deriv1.real(), deriv2.real()); // printf("N1e1n[%d]: ", n1); // for (auto p : N1e1n) printf("%+11.4er%+11.4ei\t",p.real(), p.imag()); // printf("\n"); // Total field in the lth layer: eqs. (1) and (2) in Yang, Appl. Opt., 42 (2003) 1710-1720 std::complex En = ipow[n1 % 4]*(rn + rn + 1.0)/(rn*rn + rn); for (int i = 0; i < 3; i++) { // electric field E [V m - 1] = EF*E0 E[i] += En*(cln_[l][n]*M1o1n[i] - c_i*dln_[l][n]*N1e1n[i] + c_i*aln_[l][n]*N3e1n[i] - bln_[l][n]*M3o1n[i]); H[i] += En*(-dln_[l][n]*M1e1n[i] - c_i*cln_[l][n]*N1o1n[i] + c_i*bln_[l][n]*N3o1n[i] + aln_[l][n]*M3e1n[i]); Ei[i] += En*(M1o1n[i] - c_i*N1e1n[i]); Hi[i] += En*(-M1e1n[i] - c_i*N1o1n[i]); } } // end of for all n //printf("rho = %11.4e; phi = %11.4eº; theta = %11.4eº; x[%i] = %11.4e; m[%i] = %11.4er%+10.5ei\n", Rho, Phi*180./PI_, Theta*180./PI_, l, size_param_[l], l, std::real(ml), std::imag(ml)); // magnetic field double hffact = 1.0/(cc_*mu_); for (int i = 0; i < 3; i++) { H[i] = hffact*H[i]; Hi[i] *= hffact; // printf("E[%i] = %10.5er%+10.5ei; Ei[%i] = %10.5er%+10.5ei; H[%i] = %10.5er%+10.5ei; Hi[%i] = %10.5er%+10.5ei\n", i, std::real(E[i]), std::imag(E[i]), i, std::real(Ei[i]), std::imag(Ei[i]), i, std::real(H[i]), std::imag(H[i]), i, std::real(Hi[i]), std::imag(Hi[i])); } } // end of MultiLayerMie::calcField(...) //**********************************************************************************// // This function calculates complex electric and magnetic field in the surroundings // // and inside the particle. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send 0 (zero) // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to 0 (zero) and the function will calculate it. // // ncoord: Number of coordinate points // // Coords: Array containing all coordinates where the complex electric and // // magnetic fields will be calculated // // // // Output parameters: // // E, H: Complex electric and magnetic field at the provided coordinates // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// void MultiLayerMie::RunFieldCalculation() { double Rho, Theta, Phi; // Calculate scattering coefficients an_ and bn_ ScattCoeffs(); // std::vector > an1(nmax_), bn1(nmax_); // calc_an_bn_bulk(an1, bn1, size_param_.back(), refractive_index_.back()); // for (int n = 0; n < nmax_; n++) { // printf("an_[%i] = %11.4er%+10.5ei; an_bulk_[%i] = %11.4er%+10.5ei\n", n, std::real(an_[n]), std::imag(an_[n]), n, std::real(an1[n]), std::imag(an1[n])); // printf("bn_[%i] = %11.4er%+10.5ei; bn_bulk_[%i] = %11.4er%+10.5ei\n", n, std::real(bn_[n]), std::imag(bn_[n]), n, std::real(bn1[n]), std::imag(bn1[n])); // } // Calculate expansion coefficients aln_, bln_, cln_, and dln_ ExpanCoeffs(); //ExpanCoeffsV2(); // for (int i = 0; i < nmax_; ++i) { // printf("cln_[%i] = %11.4er%+10.5ei; dln_[%i] = %11.4er%+10.5ei\n", i, std::real(cln_[0][i]), std::imag(cln_[0][i]), // i, std::real(dln_[0][i]), std::imag(dln_[0][i])); // } long total_points = coords_[0].size(); E_.resize(total_points); H_.resize(total_points); for (auto& f : E_) f.resize(3); for (auto& f : H_) f.resize(3); for (int point = 0; point < total_points; point++) { const double& Xp = coords_[0][point]; const double& Yp = coords_[1][point]; const double& Zp = coords_[2][point]; // Convert to spherical coordinates Rho = std::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp)); // If Rho=0 then Theta is undefined. Just set it to zero to avoid problems Theta = (Rho > 0.0) ? std::acos(Zp/Rho) : 0.0; // If Xp=Yp=0 then Phi is undefined. Just set it to zero to avoid problems if (Xp == 0.0) Phi = (Yp != 0.0) ? std::asin(Yp/std::sqrt(pow2(Xp) + pow2(Yp))) : 0.0; else Phi = std::acos(Xp/std::sqrt(pow2(Xp) + pow2(Yp))); // Avoid convergence problems due to Rho too small if (Rho < 1e-5) Rho = 1e-5; //printf("X = %g; Y = %g; Z = %g; pho = %g; phi = %g; theta = %g\n", Xp, Yp, Zp, Rho, Phi*180./PI_, Theta*180./PI_); //*******************************************************// // external scattering field = incident + scattered // // BH p.92 (4.37), 94 (4.45), 95 (4.50) // // assume: medium is non-absorbing; refim = 0; Uabs = 0 // //*******************************************************// // This array contains the fields in spherical coordinates std::vector > Es(3), Hs(3); // Firstly the easiest case: the field outside the particle // if (Rho >= GetSizeParameter()) { // fieldExt(Rho, Theta, Phi, Es, Hs); // } else { calcField(Rho, Theta, Phi, Es, Hs); //Should work fine both: inside and outside the particle //} { //Now, convert the fields back to cartesian coordinates using std::sin; using std::cos; E_[point][0] = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2]; E_[point][1] = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2]; E_[point][2] = cos(Theta)*Es[0] - sin(Theta)*Es[1]; H_[point][0] = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2]; H_[point][1] = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2]; H_[point][2] = cos(Theta)*Hs[0] - sin(Theta)*Hs[1]; } } // end of for all field coordinates } // end of MultiLayerMie::RunFieldCalculation() } // end of namespace nmie