#!/usr/bin/env python3 # -*- coding: UTF-8 -*- from matplotlib import pyplot as plt import cmath from evalMie import * import numpy as np min_lim = 0.4 max_lim = 0.75 # mat = scipy.io.loadmat('d-parameters/rs=4.mat') # omega_ratio = mat['omegav'][0] # d_perp = mat['dperp'][0]*10 from_disk = np.loadtxt('rs4-d_perp_interpolated.txt') omega_ratio = from_disk[0, :] d_perp = from_disk[1, :] + 1j*from_disk[2, :] c = 299792458 # m/s h_reduced = 6.5821e-16 # eV s omega_p = 5.9 # eV gamma = 0.1 # eV eps_d = 1 def eps_m(omega): return 1 - omega_p * omega_p / (omega*omega + 1j*omega*gamma) Rs = [2.5, 5, 10, 25] # nm y_min = [1e-2, 1e-2, 1e-1, 1e-1] y_max = [1e1, 5e1, 5e1, 5e1] # for om_rat in omega_ratio: for fig in range(len(Rs)): R = Rs[fig] Qext = [] Qext_mie = [] om_rat_plot = [] x_in = [] m_in = [] d_perp_in = [] for i in range(len(omega_ratio)): om_rat = omega_ratio[i] if om_rat < min_lim or om_rat > max_lim: continue omega = om_rat*omega_p m = cmath.sqrt(eps_m(omega)) x = (omega/c) * R * 1e-9/h_reduced x_in.append(x) m_in.append(m) om_rat_plot.append(om_rat) d_perp_in.append(d_perp[i]) Qext_mie, _ = eval_mie_spectrum(x_in, m_in) Qext, _ = eval_mesomie_spectrum(x_in, m_in, R, d_perp_in) print(Qext) plt.figure(fig) plt.plot(om_rat_plot, Qext_mie, label='classic', color='gray', lw=4) plt.plot(om_rat_plot, Qext, label='non-classic', color='red', lw=4) # plt.plot(om_rat_plot, Qext, label="R="+str(R), lw=1) plt.legend() plt.yscale('log') plt.xlim((0.4, 0.75)) plt.ylim((y_min[fig], y_max[fig])) plt.title("R="+str(R)) plt.show()