#!/usr/bin/env python # This test case calculates the differential scattering # cross section from a Luneburg lens, as described in: # B. R. Johnson, Applied Optics 35 (1996) 3286-3296. # The Luneburg lens is a sphere of radius a, with a # radially-varying index of refraction, given by: # m(r) = [2 - (r/a)**1]**(1/2) # For the calculations, the Luneburg lens was approximated # as a multilayered sphere with 500 equally spaced layers. # The refractive index of each layer is defined to be equal to # m(r) at the midpoint of the layer: ml = [2 - (xm/xL)**1]**(1/2), # with xm = (xl-1 + xl)/2, for l = 1,2,...,L. The size # parameter in the lth layer is xl = l*xL/500. According to # geometrical optics theory, the differential cross section # can be expressed as: # d(Csca)/d(a**2*Omega) = cos(Theta) # The differential cross section from wave optics is: # d(Csca)/d(a**2*Omega) = S11(Theta)/x**2 from scattnlay import fieldnlay import numpy as np x = np.ones((1, 1), dtype = np.float64) x[0, 0] = 1. m = np.ones((1, 1), dtype = np.complex128) m[0, 0] = (0.0252 + 2.0181j)/1.46 nc = 1001 coordX = np.zeros((nc, 3), dtype = np.float64) coordY = np.zeros((nc, 3), dtype = np.float64) coordZ = np.zeros((nc, 3), dtype = np.float64) scan = np.linspace(-10.0*x[0, 0], 10.0*x[0, 0], nc) one = np.ones(nc, dtype = np.float64) coordX[:, 0] = scan coordY[:, 1] = scan coordZ[:, 2] = scan terms, Ex, Hx = fieldnlay(x, m, coordX) terms, Ey, Hy = fieldnlay(x, m, coordY) terms, Ez, Hz = fieldnlay(x, m, coordZ) Exr = np.absolute(Ex) Eyr = np.absolute(Ey) Ezr = np.absolute(Ez) # |E|/|Eo| Exh = np.sqrt(Exr[0, :, 0]**2 + Exr[0, :, 1]**2 + Exr[0, :, 2]**2) Eyh = np.sqrt(Eyr[0, :, 0]**2 + Eyr[0, :, 1]**2 + Eyr[0, :, 2]**2) Ezh = np.sqrt(Ezr[0, :, 0]**2 + Ezr[0, :, 1]**2 + Ezr[0, :, 2]**2) result = np.vstack((scan, Exh, Eyh, Ezh)).transpose() try: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) ax.errorbar(result[:, 0], one, fmt = 'k') ax.errorbar(result[:, 0], result[:, 1], fmt = 'r', label = 'X axis') ax.errorbar(result[:, 0], result[:, 2], fmt = 'g', label = 'Y axis') ax.errorbar(result[:, 0], result[:, 3], fmt = 'b', label = 'Z axis') ax.legend() plt.xlabel('X|Y|Z') plt.ylabel('|E|/|Eo|') plt.draw() plt.show() finally: np.savetxt("field.txt", result, fmt = "%.5f") print result