/// /// @file nmie.cc /// @author Ladutenko Konstantin /// @date Tue Sep 3 00:38:27 2013 /// @copyright 2013,2014,2015 Ladutenko Konstantin /// /// nmie is free software: you can redistribute it and/or modify /// it under the terms of the GNU General Public License as published by /// the Free Software Foundation, either version 3 of the License, or /// (at your option) any later version. /// /// nmie-wrapper is distributed in the hope that it will be useful, /// but WITHOUT ANY WARRANTY; without even the implied warranty of /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the /// GNU General Public License for more details. /// /// You should have received a copy of the GNU General Public License /// along with nmie-wrapper. If not, see . /// /// nmie uses nmie.c from scattnlay by Ovidio Pena /// . He has an additional condition to /// his library: // The only additional condition is that we expect that all publications // // describing work using this software , or all commercial products // // using it, cite the following reference: // // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // // a multilayered sphere," Computer Physics Communications, // // vol. 180, Nov. 2009, pp. 2348-2354. // /// /// @brief Wrapper class around nMie function for ease of use /// #include "nmie-wrapper.h" #include #include #include #include #include #include namespace nmie { //helpers template inline T pow2(const T value) {return value*value;} //#define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5)) int round(double x) { return x >= 0 ? (int)(x + 0.5):(int)(x - 0.5); } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // //emulate C call. int nMie_wrapper(int L, const std::vector& x, const std::vector >& m, int nTheta, const std::vector& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector >& S1, std::vector >& S2) { if (x.size() != L || m.size() != L) throw std::invalid_argument("Declared number of layers do not fit x and m!"); if (Theta.size() != nTheta) throw std::invalid_argument("Declared number of sample for Theta is not correct!"); try { MultiLayerMie multi_layer_mie; multi_layer_mie.SetWidthSP(x); multi_layer_mie.SetIndexSP(m); multi_layer_mie.SetAngles(Theta); multi_layer_mie.RunMieCalculations(); *Qext = multi_layer_mie.GetQext(); *Qsca = multi_layer_mie.GetQsca(); *Qabs = multi_layer_mie.GetQabs(); *Qbk = multi_layer_mie.GetQbk(); *Qpr = multi_layer_mie.GetQpr(); *g = multi_layer_mie.GetAsymmetryFactor(); *Albedo = multi_layer_mie.GetAlbedo(); S1 = multi_layer_mie.GetS1(); S2 = multi_layer_mie.GetS2(); //multi_layer_mie.GetFailed(); } catch( const std::invalid_argument& ia ) { // Will catch if multi_layer_mie fails or other errors. std::cerr << "Invalid argument: " << ia.what() << std::endl; throw std::invalid_argument(ia); return -1; } return 0; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // int nField(const int L, const int pl, const std::vector& x, const std::vector >& m, const int nmax, const int ncoord, const std::vector& Xp_vec, const std::vector& Yp_vec, const std::vector& Zp_vec, std::vector > >& E, std::vector > >& H) { if (x.size() != L || m.size() != L) throw std::invalid_argument("Declared number of layers do not fit x and m!"); if (Xp_vec.size() != ncoord || Yp_vec.size() != ncoord || Zp_vec.size() != ncoord || E.size() != ncoord || H.size() != ncoord ) throw std::invalid_argument("Declared number of coords do not fit Xp, Yp, Zp, E, or H!"); for (auto f:E) if ( f.size() != 3) throw std::invalid_argument("Field E is not 3D!"); for (auto f:H) if ( f.size() != 3) throw std::invalid_argument("Field H is not 3D!"); try { MultiLayerMie multi_layer_mie; multi_layer_mie.SetPEC(pl); multi_layer_mie.SetWidthSP(x); multi_layer_mie.SetIndexSP(m); multi_layer_mie.SetFieldPointsSP({Xp_vec, Yp_vec, Zp_vec}); multi_layer_mie.RunFieldCalculations(); //multi_layer_mie.GetFailed(); } catch( const std::invalid_argument& ia ) { // Will catch if multi_layer_mie fails or other errors. std::cerr << "Invalid argument: " << ia.what() << std::endl; throw std::invalid_argument(ia); return -1; } return 0; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::GetFailed() { double faild_x = 9.42477796076938; //double faild_x = 9.42477796076937; std::complex z(faild_x, 0.0); std::vector nmax_local_array = {20, 100, 500, 2500}; for (auto nmax_local : nmax_local_array) { std::vector > D1_failed(nmax_local +1); // Downward recurrence for D1 - equations (16a) and (16b) D1_failed[nmax_local] = std::complex(0.0, 0.0); const std::complex zinv = std::complex(1.0, 0.0)/z; for (int n = nmax_local; n > 0; n--) { D1_failed[n - 1] = double(n)*zinv - 1.0/(D1_failed[n] + double(n)*zinv); } printf("Faild D1[0] from reccurence (z = %16.14f, nmax = %d): %g\n", faild_x, nmax_local, D1_failed[0].real()); } printf("Faild D1[0] from continued fraction (z = %16.14f): %g\n", faild_x, calcD1confra(0,z).real()); //D1[nmax_] = calcD1confra(nmax_, z); } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // double MultiLayerMie::GetQext() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return Qext_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // double MultiLayerMie::GetQabs() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return Qabs_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // std::vector MultiLayerMie::GetQabs_channel() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return Qabs_ch_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // std::vector MultiLayerMie::GetQabs_channel_normalized() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); // std::vector NACS(nmax_-1, 0.0); // double x2 = pow2(size_parameter_.back()); // for (int i = 0; i < nmax_ - 1; ++i) { // const int n = i+1; // NACS[i] = Qabs_ch_[i]*x2/(2.0*(2.0*static_cast(n)+1)); // // if (NACS[i] > 0.250000001) // // throw std::invalid_argument("Unexpected normalized absorption cross-section value!"); // } //return NACS; return Qabs_ch_norm_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // double MultiLayerMie::GetQsca() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return Qsca_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // std::vector MultiLayerMie::GetQsca_channel() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return Qsca_ch_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // std::vector MultiLayerMie::GetQsca_channel_normalized() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); // std::vector NACS(nmax_-1, 0.0); // double x2 = pow2(size_parameter_.back()); // for (int i = 0; i < nmax_ - 1; ++i) { // const int n = i+1; // NACS[i] = Qsca_ch_[i]*x2/(2.0*(2.0*static_cast(n)+1.0)); // } // return NACS; return Qsca_ch_norm_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // double MultiLayerMie::GetQbk() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return Qbk_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // double MultiLayerMie::GetQpr() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return Qpr_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // double MultiLayerMie::GetAsymmetryFactor() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return asymmetry_factor_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // double MultiLayerMie::GetAlbedo() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return albedo_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // std::vector > MultiLayerMie::GetS1() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return S1_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // std::vector > MultiLayerMie::GetS2() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return S2_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::AddTargetLayer(double width, std::complex layer_index) { isMieCalculated_ = false; if (width <= 0) throw std::invalid_argument("Layer width should be positive!"); target_width_.push_back(width); target_index_.push_back(layer_index); } // end of void MultiLayerMie::AddTargetLayer(...) // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::SetTargetPEC(double radius) { isMieCalculated_ = false; if (target_width_.size() != 0 || target_index_.size() != 0) throw std::invalid_argument("Error! Define PEC target radius before any other layers!"); // Add layer of any index... AddTargetLayer(radius, std::complex(0.0, 0.0)); // ... and mark it as PEC SetPEC(0.0); } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::SetCoatingIndex(std::vector > index) { isMieCalculated_ = false; coating_index_.clear(); for (auto value : index) coating_index_.push_back(value); } // end of void MultiLayerMie::SetCoatingIndex(std::vector index); // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::SetAngles(const std::vector& angles) { isMieCalculated_ = false; theta_ = angles; // theta_.clear(); // for (auto value : angles) theta_.push_back(value); } // end of SetAngles() // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::SetCoatingWidth(std::vector width) { isMieCalculated_ = false; coating_width_.clear(); for (auto w : width) if (w <= 0) throw std::invalid_argument("Coating width should be positive!"); else coating_width_.push_back(w); } // end of void MultiLayerMie::SetCoatingWidth(...); // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::SetWidthSP(const std::vector& size_parameter) { isMieCalculated_ = false; size_parameter_.clear(); double prev_size_parameter = 0.0; for (auto layer_size_parameter : size_parameter) { if (layer_size_parameter <= 0.0) throw std::invalid_argument("Size parameter should be positive!"); if (prev_size_parameter > layer_size_parameter) throw std::invalid_argument ("Size parameter for next layer should be larger than the previous one!"); prev_size_parameter = layer_size_parameter; size_parameter_.push_back(layer_size_parameter); } } // end of void MultiLayerMie::SetWidthSP(...); // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::SetIndexSP(const std::vector< std::complex >& index) { isMieCalculated_ = false; //index_.clear(); index_ = index; // for (auto value : index) index_.push_back(value); } // end of void MultiLayerMie::SetIndexSP(...); // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::SetFieldPointsSP(const std::vector< std::vector >& coords_sp) { if (coords_sp.size() != 3) throw std::invalid_argument("Error! Wrong dimension of field monitor points!"); if (coords_sp[0].size() != coords_sp[1].size() || coords_sp[0].size() != coords_sp[2].size()) throw std::invalid_argument("Error! Missing coordinates for field monitor points!"); coords_sp_ = coords_sp; // for (int i = 0; i < coords_sp_[0].size(); ++i) { // printf("%g, %g, %g\n", coords_sp_[0][i], coords_sp_[1][i], coords_sp_[2][i]); // } } // end of void MultiLayerMie::SetFieldPointsSP(...) // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::SetPEC(int layer_position) { isMieCalculated_ = false; if (layer_position < 0) throw std::invalid_argument("Error! Layers are numbered from 0!"); PEC_layer_position_ = layer_position; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::SetMaxTermsNumber(int nmax) { isMieCalculated_ = false; nmax_preset_ = nmax; //debug printf("Setting max terms: %d\n", nmax_preset_); } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::GenerateSizeParameter() { isMieCalculated_ = false; size_parameter_.clear(); double radius = 0.0; for (auto width : target_width_) { radius += width; size_parameter_.push_back(2*PI_*radius / wavelength_); } for (auto width : coating_width_) { radius += width; size_parameter_.push_back(2*PI_*radius / wavelength_); } total_radius_ = radius; } // end of void MultiLayerMie::GenerateSizeParameter(); // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::GenerateIndex() { isMieCalculated_ = false; index_.clear(); for (auto index : target_index_) index_.push_back(index); for (auto index : coating_index_) index_.push_back(index); } // end of void MultiLayerMie::GenerateIndex(); // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // double MultiLayerMie::GetTotalRadius() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); if (total_radius_ == 0) GenerateSizeParameter(); return total_radius_; } // end of double MultiLayerMie::GetTotalRadius(); // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // std::vector< std::vector > MultiLayerMie::GetSpectra(double from_WL, double to_WL, int samples) { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); std::vector< std::vector > spectra; double step_WL = (to_WL - from_WL)/ static_cast(samples); double wavelength_backup = wavelength_; long fails = 0; for (double WL = from_WL; WL < to_WL; WL += step_WL) { wavelength_ = WL; try { RunMieCalculations(); } catch( const std::invalid_argument& ia ) { fails++; continue; } //printf("%3.1f ",WL); spectra.push_back(std::vector({wavelength_, Qext_, Qsca_, Qabs_, Qbk_})); } // end of for each WL in spectra printf("Spectrum has %li fails\n",fails); wavelength_ = wavelength_backup; return spectra; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::ClearTarget() { isMieCalculated_ = false; target_width_.clear(); target_index_.clear(); } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::ClearCoating() { isMieCalculated_ = false; coating_width_.clear(); coating_index_.clear(); } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::ClearLayers() { isMieCalculated_ = false; ClearTarget(); ClearCoating(); } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::ClearAllDesign() { isMieCalculated_ = false; ClearLayers(); size_parameter_.clear(); index_.clear(); } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // Computational core // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // Calculate Nstop - equation (17) // void MultiLayerMie::Nstop() { const double& xL = size_parameter_.back(); if (xL <= 8) { nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 1); } else if (xL <= 4200) { nmax_ = round(xL + 4.05*pow(xL, 1.0/3.0) + 2); } else { nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 2); } } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::Nmax(int first_layer) { int ri, riM1; const std::vector& x = size_parameter_; const std::vector >& m = index_; Nstop(); // Set initial nmax_ value for (int i = first_layer; i < x.size(); i++) { if (i > PEC_layer_position_) ri = round(std::abs(x[i]*m[i])); else ri = 0; nmax_ = std::max(nmax_, ri); // first layer is pec, if pec is present if ((i > first_layer) && ((i - 1) > PEC_layer_position_)) riM1 = round(std::abs(x[i - 1]* m[i])); else riM1 = 0; nmax_ = std::max(nmax_, riM1); } nmax_ += 15; // Final nmax_ value } //**********************************************************************************// // This function calculates the spherical Bessel (jn) and Hankel (h1n) functions // // and their derivatives for a given complex value z. See pag. 87 B&H. // // // // Input parameters: // // z: Real argument to evaluate jn and h1n // // nmax_: Maximum number of terms to calculate jn and h1n // // // // Output parameters: // // jn, h1n: Spherical Bessel and Hankel functions // // jnp, h1np: Derivatives of the spherical Bessel and Hankel functions // // // // The implementation follows the algorithm by I.J. Thompson and A.R. Barnett, // // Comp. Phys. Comm. 47 (1987) 245-257. // // // // Complex spherical Bessel functions from n=0..nmax_-1 for z in the upper half // // plane (Im(z) > -3). // // // // j[n] = j/n(z) Regular solution: j[0]=sin(z)/z // // j'[n] = d[j/n(z)]/dz // // h1[n] = h[0]/n(z) Irregular Hankel function: // // h1'[n] = d[h[0]/n(z)]/dz h1[0] = j0(z) + i*y0(z) // // = (sin(z)-i*cos(z))/z // // = -i*exp(i*z)/z // // Using complex CF1, and trigonometric forms for n=0 solutions. // //**********************************************************************************// void MultiLayerMie::sbesjh(std::complex z, std::vector >& jn, std::vector >& jnp, std::vector >& h1n, std::vector >& h1np) { const int limit = 20000; const double accur = 1.0e-12; const double tm30 = 1e-30; double absc; std::complex zi, w; std::complex pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb; absc = std::abs(std::real(z)) + std::abs(std::imag(z)); if ((absc < accur) || (std::imag(z) < -3.0)) { throw std::invalid_argument("TODO add error description for condition if ((absc < accur) || (std::imag(z) < -3.0))"); } zi = 1.0/z; w = zi + zi; pl = double(nmax_)*zi; f = pl + zi; b = f + f + zi; d = 0.0; c = f; for (int n = 0; n < limit; n++) { d = b - d; c = b - 1.0/c; absc = std::abs(std::real(d)) + std::abs(std::imag(d)); if (absc < tm30) { d = tm30; } absc = std::abs(std::real(c)) + std::abs(std::imag(c)); if (absc < tm30) { c = tm30; } d = 1.0/d; del = d*c; f = f*del; b += w; absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0)); if (absc < accur) { // We have obtained the desired accuracy break; } } if (absc > accur) { throw std::invalid_argument("We were not able to obtain the desired accuracy"); } jn[nmax_ - 1] = tm30; jnp[nmax_ - 1] = f*jn[nmax_ - 1]; // Downward recursion to n=0 (N.B. Coulomb Functions) for (int n = nmax_ - 2; n >= 0; n--) { jn[n] = pl*jn[n + 1] + jnp[n + 1]; jnp[n] = pl*jn[n] - jn[n + 1]; pl = pl - zi; } // Calculate the n=0 Bessel Functions jn0 = zi*std::sin(z); h1n[0] = std::exp(std::complex(0.0, 1.0)*z)*zi*(-std::complex(0.0, 1.0)); h1np[0] = h1n[0]*(std::complex(0.0, 1.0) - zi); // Rescale j[n], j'[n], converting to spherical Bessel functions. // Recur h1[n], h1'[n] as spherical Bessel functions. w = 1.0/jn[0]; pl = zi; for (int n = 0; n < nmax_; n++) { jn[n] = jn0*(w*jn[n]); jnp[n] = jn0*(w*jnp[n]) - zi*jn[n]; if (n != 0) { h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1]; // check if hankel is increasing (upward stable) if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) { jndb = z; h1nldb = h1n[n]; h1nbdb = h1n[n - 1]; } pl += zi; h1np[n] = -(pl*h1n[n]) + h1n[n - 1]; } } } //**********************************************************************************// // This function calculates the spherical Bessel functions (bj and by) and the // // logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H. // // // // Input parameters: // // z: Complex argument to evaluate bj, by and bd // // nmax_: Maximum number of terms to calculate bj, by and bd // // // // Output parameters: // // bj, by: Spherical Bessel functions // // bd: Logarithmic derivative // //**********************************************************************************// void MultiLayerMie::sphericalBessel(std::complex z, std::vector >& bj, std::vector >& by, std::vector >& bd) { std::vector > jn(nmax_), jnp(nmax_), h1n(nmax_), h1np(nmax_); sbesjh(z, jn, jnp, h1n, h1np); for (int n = 0; n < nmax_; n++) { bj[n] = jn[n]; by[n] = (h1n[n] - jn[n])/std::complex(0.0, 1.0); bd[n] = jnp[n]/jn[n] + 1.0/z; } } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // Calculate an - equation (5) std::complex MultiLayerMie::calc_an(int n, double XL, std::complex Ha, std::complex mL, std::complex PsiXL, std::complex ZetaXL, std::complex PsiXLM1, std::complex ZetaXLM1) { std::complex Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1; std::complex Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1; return Num/Denom; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // Calculate bn - equation (6) std::complex MultiLayerMie::calc_bn(int n, double XL, std::complex Hb, std::complex mL, std::complex PsiXL, std::complex ZetaXL, std::complex PsiXLM1, std::complex ZetaXLM1) { std::complex Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1; std::complex Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1; return Num/Denom; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // Calculates S1 - equation (25a) std::complex MultiLayerMie::calc_S1(int n, std::complex an, std::complex bn, double Pi, double Tau) { return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n); } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau) std::complex MultiLayerMie::calc_S2(int n, std::complex an, std::complex bn, double Pi, double Tau) { return calc_S1(n, an, bn, Tau, Pi); } //**********************************************************************************// // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a // // real argument (x). // // Equations (20a) - (21b) // // // // Input parameters: // // x: Real argument to evaluate Psi and Zeta // // nmax: Maximum number of terms to calculate Psi and Zeta // // // // Output parameters: // // Psi, Zeta: Riccati-Bessel functions // //**********************************************************************************// void MultiLayerMie::calcPsiZeta(double x, std::vector > D1, std::vector > D3, std::vector >& Psi, std::vector >& Zeta) { //Upward recurrence for Psi and Zeta - equations (20a) - (21b) Psi[0] = std::complex(std::sin(x), 0); Zeta[0] = std::complex(std::sin(x), -std::cos(x)); for (int n = 1; n <= nmax_; n++) { Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]); Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]); } } //**********************************************************************************// // Function CONFRA ported from MIEV0.f (Wiscombe,1979) // Ref. to NCAR Technical Notes, Wiscombe, 1979 /* c Compute Bessel function ratio A-sub-N from its c continued fraction using Lentz method c ZINV = Reciprocal of argument of A c I N T E R N A L V A R I A B L E S c ------------------------------------ c CAK Term in continued fraction expansion of A (Eq. R25) c a_k c CAPT Factor used in Lentz iteration for A (Eq. R27) c T_k c CNUMER Numerator in capT ( Eq. R28A ) c N_k c CDENOM Denominator in capT ( Eq. R28B ) c D_k c CDTD Product of two successive denominators of capT factors c ( Eq. R34C ) c xi_1 c CNTN Product of two successive numerators of capT factors c ( Eq. R34B ) c xi_2 c EPS1 Ill-conditioning criterion c EPS2 Convergence criterion c KK Subscript k of cAk ( Eq. R25B ) c k c KOUNT Iteration counter ( used to prevent infinite looping ) c MAXIT Max. allowed no. of iterations c MM + 1 and - 1, alternately */ std::complex MultiLayerMie::calcD1confra(const int N, const std::complex z) { // NTMR -> nmax_ -1 \\TODO nmax_ ? //int N = nmax_ - 1; int KK, KOUNT, MAXIT = 10000, MM; // double EPS1=1.0e-2; double EPS2=1.0e-8; std::complex CAK, CAPT, CDENOM, CDTD, CNTN, CNUMER; std::complex one = std::complex(1.0,0.0); std::complex ZINV = one/z; // c ** Eq. R25a std::complex CONFRA = static_cast >(N+1)*ZINV; //debug ZINV MM = -1; KK = 2*N +3; //debug 3 // c ** Eq. R25b, k=2 CAK = static_cast >(MM*KK) * ZINV; //debug -3 ZINV CDENOM = CAK; CNUMER = CDENOM + one / CONFRA; //-3zinv+z KOUNT = 1; //10 CONTINUE do { ++KOUNT; if (KOUNT > MAXIT) { printf("re(%g):im(%g)\t\n", CONFRA.real(), CONFRA.imag()); throw std::invalid_argument("ConFra--Iteration failed to converge!\n"); } MM *= -1; KK += 2; //debug mm=1 kk=5 CAK = static_cast >(MM*KK) * ZINV; // ** Eq. R25b //debug 5zinv // //c ** Eq. R32 Ill-conditioned case -- stride two terms instead of one // if (std::abs( CNUMER / CAK ) >= EPS1 || std::abs( CDENOM / CAK ) >= EPS1) { // //c ** Eq. R34 // CNTN = CAK * CNUMER + 1.0; // CDTD = CAK * CDENOM + 1.0; // CONFRA = ( CNTN / CDTD ) * CONFRA; // ** Eq. R33 // MM *= -1; KK += 2; // CAK = static_cast >(MM*KK) * ZINV; // ** Eq. R25b // //c ** Eq. R35 // CNUMER = CAK + CNUMER / CNTN; // CDENOM = CAK + CDENOM / CDTD; // ++KOUNT; // //GO TO 10 // continue; // } else { //c *** Well-conditioned case { CAPT = CNUMER / CDENOM; // ** Eq. R27 //debug (-3zinv + z)/(-3zinv) // printf("re(%g):im(%g)**\t", CAPT.real(), CAPT.imag()); CONFRA = CAPT * CONFRA; // ** Eq. R26 //if (N == 0) {output=true;printf(" re:");prn(CONFRA.real());printf(" im:"); prn(CONFRA.imag());output=false;}; //c ** Check for convergence; Eq. R31 if ( std::abs(CAPT.real() - 1.0) >= EPS2 || std::abs(CAPT.imag()) >= EPS2 ) { //c ** Eq. R30 CNUMER = CAK + one/CNUMER; CDENOM = CAK + one/CDENOM; continue; //GO TO 10 } // end of if < eps2 } break; } while(1); //if (N == 0) printf(" return confra for z=(%g,%g)\n", ZINV.real(), ZINV.imag()); return CONFRA; } //**********************************************************************************// // This function calculates the logarithmic derivatives of the Riccati-Bessel // // functions (D1 and D3) for a complex argument (z). // // Equations (16a), (16b) and (18a) - (18d) // // // // Input parameters: // // z: Complex argument to evaluate D1 and D3 // // nmax_: Maximum number of terms to calculate D1 and D3 // // // // Output parameters: // // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions // //**********************************************************************************// void MultiLayerMie::calcD1D3(const std::complex z, std::vector >& D1, std::vector >& D3) { // Downward recurrence for D1 - equations (16a) and (16b) D1[nmax_] = std::complex(0.0, 0.0); //D1[nmax_] = calcD1confra(nmax_, z); const std::complex zinv = std::complex(1.0, 0.0)/z; // printf(" D:");prn((D1[nmax_]).real()); printf("\t diff:"); // prn((D1[nmax_] + double(nmax_)*zinv).real()); for (int n = nmax_; n > 0; n--) { D1[n - 1] = double(n)*zinv - 1.0/(D1[n] + double(n)*zinv); //D1[n-1] = calcD1confra(n-1, z); // printf(" D:");prn((D1[n-1]).real()); printf("\t diff:"); // prn((D1[n] + double(n)*zinv).real()); } // printf("\n\n"); iformat=0; if (std::abs(D1[0]) > 100000.0 ) throw std::invalid_argument ("Unstable D1! Please, try to change input parameters!\n"); // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d) PsiZeta_[0] = 0.5*(1.0 - std::complex(std::cos(2.0*z.real()), std::sin(2.0*z.real())) *std::exp(-2.0*z.imag())); D3[0] = std::complex(0.0, 1.0); for (int n = 1; n <= nmax_; n++) { PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast(n)*zinv - D1[n - 1]) *(static_cast(n)*zinv- D3[n - 1]); D3[n] = D1[n] + std::complex(0.0, 1.0)/PsiZeta_[n]; } } //**********************************************************************************// // This function calculates Pi and Tau for all values of Theta. // // Equations (26a) - (26c) // // // // Input parameters: // // nmax_: Maximum number of terms to calculate Pi and Tau // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // // // Output parameters: // // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) // //**********************************************************************************// void MultiLayerMie::calcSinglePiTau(const double& costheta, std::vector& Pi, std::vector& Tau) { //****************************************************// // Equations (26a) - (26c) // //****************************************************// for (int n = 0; n < nmax_; n++) { if (n == 0) { // Initialize Pi and Tau Pi[n] = 1.0; Tau[n] = (n + 1)*costheta; } else { // Calculate the actual values Pi[n] = ((n == 1) ? ((n + n + 1)*costheta*Pi[n - 1]/n) : (((n + n + 1)*costheta*Pi[n - 1] - (n + 1)*Pi[n - 2])/n)); Tau[n] = (n + 1)*costheta*Pi[n] - (n + 2)*Pi[n - 1]; } } } // end of void MultiLayerMie::calcPiTau(...) void MultiLayerMie::calcAllPiTau(std::vector< std::vector >& Pi, std::vector< std::vector >& Tau) { std::vector costheta(theta_.size(), 0.0); for (int t = 0; t < theta_.size(); t++) { costheta[t] = std::cos(theta_[t]); } // Do not join upper and lower 'for' to a single one! It will slow // down the code!!! (For about 0.5-2.0% of runtime, it is probably // due to increased cache missing rate originated from the // recurrence in calcPiTau...) for (int t = 0; t < theta_.size(); t++) { calcSinglePiTau(costheta[t], Pi[t], Tau[t]); //calcSinglePiTau(std::cos(theta_[t]), Pi[t], Tau[t]); // It is slow!! } } // end of void MultiLayerMie::calcAllPiTau(...) //**********************************************************************************// // This function calculates the scattering coefficients required to calculate // // both the near- and far-field parameters. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to -1 and the function will calculate it. // // // // Output parameters: // // an, bn: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// void MultiLayerMie::ScattCoeffs(std::vector >& an, std::vector >& bn) { const std::vector& x = size_parameter_; const std::vector >& m = index_; const int& pl = PEC_layer_position_; const int L = index_.size(); //************************************************************************// // Calculate the index of the first layer. It can be either 0 // (default) // or the index of the outermost PEC layer. In the // latter case all layers // below the PEC are discarded. // // ************************************************************************// // TODO, is it possible for PEC to have a zero index? If yes than // is should be: // int fl = (pl > -1) ? pl : 0; // This will give the same result, however, it corresponds the // logic - if there is PEC, than first layer is PEC. int fl = (pl > 0) ? pl : 0; if (nmax_ <= 0) Nmax(fl); std::complex z1, z2; //**************************************************************************// // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which // // means that index = layer number - 1 or index = n - 1. The only exception // // are the arrays for representing D1, D3 and Q because they need a value // // for the index 0 (zero), hence it is important to consider this shift // // between different arrays. The change was done to optimize memory usage. // //**************************************************************************// // Allocate memory to the arrays std::vector > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1), D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1); std::vector > > Q(L), Ha(L), Hb(L); for (int l = 0; l < L; l++) { // D1_mlxl[l].resize(nmax_ + 1); // D1_mlxlM1[l].resize(nmax_ + 1); // D3_mlxl[l].resize(nmax_ + 1); // D3_mlxlM1[l].resize(nmax_ + 1); Q[l].resize(nmax_ + 1); Ha[l].resize(nmax_); Hb[l].resize(nmax_); } an.resize(nmax_); bn.resize(nmax_); PsiZeta_.resize(nmax_ + 1); std::vector > D1XL(nmax_ + 1), D3XL(nmax_ + 1), PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1); //*************************************************// // Calculate D1 and D3 for z1 in the first layer // //*************************************************// if (fl == pl) { // PEC layer for (int n = 0; n <= nmax_; n++) { D1_mlxl[n] = std::complex(0.0, -1.0); D3_mlxl[n] = std::complex(0.0, 1.0); } } else { // Regular layer z1 = x[fl]* m[fl]; // Calculate D1 and D3 calcD1D3(z1, D1_mlxl, D3_mlxl); } // do { \ // ++iformat;\ // if (iformat%5 == 0) printf("%24.16e",z1.real()); \ // } while (false); //******************************************************************// // Calculate Ha and Hb in the first layer - equations (7a) and (8a) // //******************************************************************// for (int n = 0; n < nmax_; n++) { Ha[fl][n] = D1_mlxl[n + 1]; Hb[fl][n] = D1_mlxl[n + 1]; } //*****************************************************// // Iteration from the second layer to the last one (L) // //*****************************************************// std::complex Temp, Num, Denom; std::complex G1, G2; for (int l = fl + 1; l < L; l++) { //************************************************************// //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L // //************************************************************// z1 = x[l]*m[l]; z2 = x[l - 1]*m[l]; //Calculate D1 and D3 for z1 calcD1D3(z1, D1_mlxl, D3_mlxl); //Calculate D1 and D3 for z2 calcD1D3(z2, D1_mlxlM1, D3_mlxlM1); // prn(z1.real()); // for ( auto i : D1_mlxl) { prn(i.real()); // // prn(i.imag()); // } printf("\n"); //*********************************************// //Calculate Q, Ha and Hb in the layers fl+1..L // //*********************************************// // Upward recurrence for Q - equations (19a) and (19b) Num = std::exp(-2.0*(z1.imag() - z2.imag())) * std::complex(std::cos(-2.0*z2.real()) - std::exp(-2.0*z2.imag()), std::sin(-2.0*z2.real())); Denom = std::complex(std::cos(-2.0*z1.real()) - std::exp(-2.0*z1.imag()), std::sin(-2.0*z1.real())); Q[l][0] = Num/Denom; for (int n = 1; n <= nmax_; n++) { Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]); Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]); Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom; } // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15) for (int n = 1; n <= nmax_; n++) { //Ha if ((l - 1) == pl) { // The layer below the current one is a PEC layer G1 = -D1_mlxlM1[n]; G2 = -D3_mlxlM1[n]; } else { G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]); G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]); } // end of if PEC Temp = Q[l][n]*G1; Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]); Denom = G2 - Temp; Ha[l][n - 1] = Num/Denom; //Hb if ((l - 1) == pl) { // The layer below the current one is a PEC layer G1 = Hb[l - 1][n - 1]; G2 = Hb[l - 1][n - 1]; } else { G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]); G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]); } // end of if PEC Temp = Q[l][n]*G1; Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]); Denom = (G2- Temp); Hb[l][n - 1] = (Num/ Denom); } // end of for Ha and Hb terms } // end of for layers iteration //**************************************// //Calculate D1, D3, Psi and Zeta for XL // //**************************************// // Calculate D1XL and D3XL calcD1D3(x[L - 1], D1XL, D3XL); //printf("%5.20f\n",Ha[L-1][0].real()); // Calculate PsiXL and ZetaXL calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL); //*********************************************************************// // Finally, we calculate the scattering coefficients (an and bn) and // // the angular functions (Pi and Tau). Note that for these arrays the // // first layer is 0 (zero), in future versions all arrays will follow // // this convention to save memory. (13 Nov, 2014) // //*********************************************************************// for (int n = 0; n < nmax_; n++) { //********************************************************************// //Expressions for calculating an and bn coefficients are not valid if // //there is only one PEC layer (ie, for a simple PEC sphere). // //********************************************************************// if (pl < (L - 1)) { an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); } else { an[n] = calc_an(n + 1, x[L - 1], std::complex(0.0, 0.0), std::complex(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); bn[n] = PsiXL[n + 1]/ZetaXL[n + 1]; } } // end of for an and bn terms } // end of void MultiLayerMie::ScattCoeffs(...) // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::InitMieCalculations() { isMieCalculated_ = false; // Initialize the scattering parameters Qext_ = 0; Qsca_ = 0; Qabs_ = 0; Qbk_ = 0; Qpr_ = 0; asymmetry_factor_ = 0; albedo_ = 0; Qsca_ch_.clear(); Qext_ch_.clear(); Qabs_ch_.clear(); Qbk_ch_.clear(); Qpr_ch_.clear(); Qsca_ch_.resize(nmax_-1); Qext_ch_.resize(nmax_-1); Qabs_ch_.resize(nmax_-1); Qbk_ch_.resize(nmax_-1); Qpr_ch_.resize(nmax_-1); Qsca_ch_norm_.resize(nmax_-1); Qext_ch_norm_.resize(nmax_-1); Qabs_ch_norm_.resize(nmax_-1); Qbk_ch_norm_.resize(nmax_-1); Qpr_ch_norm_.resize(nmax_-1); // Initialize the scattering amplitudes std::vector > tmp1(theta_.size(),std::complex(0.0, 0.0)); S1_.swap(tmp1); S2_ = S1_; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::ConvertToSP() { isMieCalculated_ = false; if (target_width_.size() + coating_width_.size() == 0) return; // Nothing to convert, we suppose that SP was set directly GenerateSizeParameter(); GenerateIndex(); if (size_parameter_.size() != index_.size()) throw std::invalid_argument("Ivalid conversion of width to size parameter units!/n"); } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // //**********************************************************************************// // This function calculates the actual scattering parameters and amplitudes // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // nmax_: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to -1 and the function will calculate it // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// void MultiLayerMie::RunMieCalculations() { isMieCalculated_ = false; ConvertToSP(); nmax_ = nmax_preset_; if (size_parameter_.size() != index_.size()) throw std::invalid_argument("Each size parameter should have only one index!"); if (size_parameter_.size() == 0) throw std::invalid_argument("Initialize model first!"); const std::vector& x = size_parameter_; // Calculate scattering coefficients ScattCoeffs(an_, bn_); // std::vector< std::vector > Pi(nmax_), Tau(nmax_); std::vector< std::vector > Pi, Tau; Pi.resize(theta_.size()); Tau.resize(theta_.size()); for (int i =0; i< theta_.size(); ++i) { Pi[i].resize(nmax_); Tau[i].resize(nmax_); } calcAllPiTau(Pi, Tau); InitMieCalculations(); // std::complex Qbktmp(0.0, 0.0); std::vector< std::complex > Qbktmp_ch(nmax_ - 1, Qbktmp); // By using downward recurrence we avoid loss of precision due to float rounding errors // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html // http://en.wikipedia.org/wiki/Loss_of_significance for (int i = nmax_ - 2; i >= 0; i--) { const int n = i + 1; // Equation (27) Qext_ch_norm_[i] = (an_[i].real() + bn_[i].real()); Qext_ch_[i] = (n + n + 1.0)*Qext_ch_norm_[i]; //Qext_ch_[i] = (n + n + 1)*(an_[i].real() + bn_[i].real()); Qext_ += Qext_ch_[i]; // Equation (28) Qsca_ch_norm_[i] = (an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag() + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag()); Qsca_ch_[i] = (n + n + 1.0)*Qsca_ch_norm_[i]; Qsca_ += Qsca_ch_[i]; // Qsca_ch_[i] += (n + n + 1)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag() // + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag()); // Equation (29) TODO We must check carefully this equation. If we // remove the typecast to double then the result changes. Which is // the correct one??? Ovidio (2014/12/10) With cast ratio will // give double, without cast (n + n + 1)/(n*(n + 1)) will be // rounded to integer. Tig (2015/02/24) Qpr_ch_[i]=((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real()); Qpr_ += Qpr_ch_[i]; // Equation (33) Qbktmp_ch[i] = (double)(n + n + 1)*(1 - 2*(n % 2))*(an_[i]- bn_[i]); Qbktmp += Qbktmp_ch[i]; // Calculate the scattering amplitudes (S1 and S2) // // Equations (25a) - (25b) // for (int t = 0; t < theta_.size(); t++) { S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[t][i], Tau[t][i]); S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[t][i], Tau[t][i]); } } double x2 = pow2(x.back()); Qext_ = 2.0*(Qext_)/x2; // Equation (27) for (double& Q : Qext_ch_) Q = 2.0*Q/x2; Qsca_ = 2.0*(Qsca_)/x2; // Equation (28) for (double& Q : Qsca_ch_) Q = 2.0*Q/x2; //for (double& Q : Qsca_ch_norm_) Q = 2.0*Q/x2; Qpr_ = Qext_ - 4.0*(Qpr_)/x2; // Equation (29) for (int i = 0; i < nmax_ - 1; ++i) Qpr_ch_[i] = Qext_ch_[i] - 4.0*Qpr_ch_[i]/x2; Qabs_ = Qext_ - Qsca_; // Equation (30) for (int i = 0; i < nmax_ - 1; ++i) { Qabs_ch_[i] = Qext_ch_[i] - Qsca_ch_[i]; Qabs_ch_norm_[i] = Qext_ch_norm_[i] - Qsca_ch_norm_[i]; } albedo_ = Qsca_ / Qext_; // Equation (31) asymmetry_factor_ = (Qext_ - Qpr_) / Qsca_; // Equation (32) Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33) isMieCalculated_ = true; nmax_used_ = nmax_; //return nmax; } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::ScattCoeffsLayerdInit() { const int L = index_.size(); // we need to fill // std::vector< std::vector > > al_n_, bl_n_, cl_n_, dl_n_; // for n = [0..nmax_) and for l=[L..0) // TODO: to decrease cache miss outer loop is with n and inner with reversed l // at the moment outer is forward l and inner in n al_n_.resize(L+1); bl_n_.resize(L+1); cl_n_.resize(L+1); dl_n_.resize(L+1); for (auto& element:al_n_) element.resize(nmax_); for (auto& element:bl_n_) element.resize(nmax_); for (auto& element:cl_n_) element.resize(nmax_); for (auto& element:dl_n_) element.resize(nmax_); std::complex c_one(1.0, 0.0); std::complex c_zero(0.0, 0.0); // Yang, paragraph under eq. A3 // a^(L+1)_n = a_n, d^(L+1) = 1 ... for (int i = 0; i < nmax_; ++i) { al_n_[L][i] = an_[i]; bl_n_[L][i] = bn_[i]; cl_n_[L][i] = c_one; dl_n_[L][i] = c_one; } } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // void MultiLayerMie::ScattCoeffsLayerd() { if (!isMieCalculated_) throw std::invalid_argument("(ScattCoeffsLayerd) You should run calculations first!"); ScattCoeffsLayerdInit(); const int L = index_.size(); std::vector > z(L), z1(L); for (int i = 0; i > > D1zn(L), D1z1n(L), D3zn(L), D3z1n(L); for (int l = 0; l < L; ++l) { D1zn[l].resize(nmax_ +1); D1z1n[l].resize(nmax_ +1); D3zn[l].resize(nmax_ +1); D3z1n[l].resize(nmax_ +1); calcD1D3(z[l],D1zn[l],D3zn[l]); calcD1D3(z1[l],D1z1n[l],D3z1n[l]); } for (int l = 0; l < L; ++l) { printf("l=%d --> ", l); for (int n = 0; n < nmax_ + 1; ++n) { printf("n=%d --> D1zn=%g, D3zn=%g, D1zn=%g, D3zn=%g || ", n, D1zn[l][n].real(), D3zn[l][n].real(), D1z1n[l][n].real(), D3z1n[l][n].real()); } printf("\n\n"); } // for (int j = 0; j < nmax_; ++j) { // int i = L; // printf("n=%d --> a=%g, b=%g, c=%g, d=%g\n", // i, // al_n_[i][j].real(), bl_n_[i][j].real(), // cl_n_[i][j].real(), dl_n_[i][j].real()); // } } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // external scattering field = incident + scattered // BH p.92 (4.37), 94 (4.45), 95 (4.50) // assume: medium is non-absorbing; refim = 0; Uabs = 0 void MultiLayerMie::fieldExt(const double Rho, const double Phi, const double Theta, const std::vector& Pi, const std::vector& Tau, std::vector >& E, std::vector >& H) { std::complex c_zero(0.0, 0.0), c_i(0.0, 1.0); std::vector > vm3o1n(3), vm3e1n(3), vn3o1n(3), vn3e1n(3); std::vector > Ei(3,c_zero), Hi(3,c_zero), Es(3,c_zero), Hs(3,c_zero); std::vector > bj(nmax_+1), by(nmax_+1), bd(nmax_+1); // Calculate spherical Bessel and Hankel functions sphericalBessel(Rho,bj, by, bd); for (int n = 0; n < nmax_; n++) { double rn = static_cast(n + 1); std::complex zn = bj[n+1] + c_i*by[n+1]; std::complex xxip = Rho*(bj[n] + c_i*by[n]) - rn*zn; using std::sin; using std::cos; vm3o1n[0] = c_zero; vm3o1n[1] = cos(Phi)*Pi[n]*zn; vm3o1n[2] = -sin(Phi)*Tau[n]*zn; vm3e1n[0] = c_zero; vm3e1n[1] = -sin(Phi)*Pi[n]*zn; vm3e1n[2] = -cos(Phi)*Tau[n]*zn; vn3o1n[0] = sin(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho; vn3o1n[1] = sin(Phi)*Tau[n]*xxip/Rho; vn3o1n[2] = cos(Phi)*Pi[n]*xxip/Rho; vn3e1n[0] = cos(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho; vn3e1n[1] = cos(Phi)*Tau[n]*xxip/Rho; vn3e1n[2] = -sin(Phi)*Pi[n]*xxip/Rho; // scattered field: BH p.94 (4.45) std::complex encap = std::pow(c_i, rn)*(2.0*rn + 1.0)/(rn*rn + rn); for (int i = 0; i < 3; i++) { Es[i] = Es[i] + encap*(c_i*an_[n]*vn3e1n[i] - bn_[n]*vm3o1n[i]); Hs[i] = Hs[i] + encap*(c_i*bn_[n]*vn3o1n[i] + an_[n]*vm3e1n[i]); } } // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38) // basis unit vectors = er, etheta, ephi std::complex eifac = std::exp(std::complex(0.0, Rho*std::cos(Theta))); { using std::sin; using std::cos; Ei[0] = eifac*sin(Theta)*cos(Phi); Ei[1] = eifac*cos(Theta)*cos(Phi); Ei[2] = -eifac*sin(Phi); } // magnetic field double hffact = 1.0/(cc_*mu_); for (int i = 0; i < 3; i++) { Hs[i] = hffact*Hs[i]; } // incident H field: BH p.26 (2.43), p.89 (4.21) std::complex hffacta = hffact; std::complex hifac = eifac*hffacta; { using std::sin; using std::cos; Hi[0] = hifac*sin(Theta)*sin(Phi); Hi[1] = hifac*cos(Theta)*sin(Phi); Hi[2] = hifac*cos(Phi); } for (int i = 0; i < 3; i++) { // electric field E [V m-1] = EF*E0 E[i] = Ei[i] + Es[i]; H[i] = Hi[i] + Hs[i]; } } // end of void fieldExt(...) // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // //**********************************************************************************// // This function calculates complex electric and magnetic field in the surroundings // // and inside (TODO) the particle. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send 0 (zero) // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to 0 (zero) and the function will calculate it. // // ncoord: Number of coordinate points // // Coords: Array containing all coordinates where the complex electric and // // magnetic fields will be calculated // // // // Output parameters: // // E, H: Complex electric and magnetic field at the provided coordinates // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// void MultiLayerMie::RunFieldCalculations() { // Calculate scattering coefficients an_ and bn_ RunMieCalculations(); ScattCoeffsLayerd(); std::vector Pi(nmax_), Tau(nmax_); long total_points = coords_sp_[0].size(); E_field_.resize(total_points); H_field_.resize(total_points); for (auto& f:E_field_) f.resize(3); for (auto& f:H_field_) f.resize(3); for (int point = 0; point < total_points; ++point) { const double& Xp = coords_sp_[0][point]; const double& Yp = coords_sp_[1][point]; const double& Zp = coords_sp_[2][point]; // Convert to spherical coordinates double Rho, Phi, Theta; Rho = std::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp)); // Avoid convergence problems due to Rho too small if (Rho < 1e-5) Rho = 1e-5; // If Rho=0 then Theta is undefined. Just set it to zero to avoid problems if (Rho == 0.0) Theta = 0.0; else Theta = std::acos(Zp/Rho); // If Xp=Yp=0 then Phi is undefined. Just set it to zero to zero to avoid problems if (Xp == 0.0 && Yp == 0.0) Phi = 0.0; else Phi = std::acos(Xp/std::sqrt(pow2(Xp) + pow2(Yp))); calcSinglePiTau(std::cos(Theta), Pi, Tau); //*******************************************************// // external scattering field = incident + scattered // // BH p.92 (4.37), 94 (4.45), 95 (4.50) // // assume: medium is non-absorbing; refim = 0; Uabs = 0 // //*******************************************************// // This array contains the fields in spherical coordinates std::vector > Es(3), Hs(3); const double outer_size = size_parameter_.back(); // Firstly the easiest case: the field outside the particle if (Rho >= outer_size) { fieldExt(Rho, Phi, Theta, Pi, Tau, Es, Hs); } else { // TODO, for now just set all the fields to zero for (int i = 0; i < 3; i++) { Es[i] = std::complex(0.0, 0.0); Hs[i] = std::complex(0.0, 0.0); } } std::complex& Ex = E_field_[point][0]; std::complex& Ey = E_field_[point][1]; std::complex& Ez = E_field_[point][2]; std::complex& Hx = H_field_[point][0]; std::complex& Hy = H_field_[point][1]; std::complex& Hz = H_field_[point][2]; //Now, convert the fields back to cartesian coordinates { using std::sin; using std::cos; Ex = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2]; Ey = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2]; Ez = cos(Theta)*Es[0] - sin(Theta)*Es[1]; Hx = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2]; Hy = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2]; Hz = cos(Theta)*Hs[0] - sin(Theta)*Hs[1]; } } // end of for all field coordinates } // end of void MultiLayerMie::RunFieldCalculations() } // end of namespace nmie