#!/usr/bin/env python # -*- coding: UTF-8 -*- # # Copyright (C) 2009-2015 Ovidio Peña Rodríguez # # This file is part of python-scattnlay # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # The only additional remark is that we expect that all publications # describing work using this software, or all commercial products # using it, cite the following reference: # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by # a multilayered sphere," Computer Physics Communications, # vol. 180, Nov. 2009, pp. 2348-2354. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # This test case calculates the electric field along the # X, Y and Z axes, for an spherical silver nanoparticle # embedded in glass. # Refractive index values correspond to a wavelength of # 400 nm. Maximum of the surface plasmon resonance (and, # hence, of electric field) is expected under those # conditions. from scattnlay import fieldnlay import numpy as np x = np.ones((1, 2), dtype = np.float64) x[0, 0] = 2.0*np.pi*0.05/1.064 x[0, 1] = 2.0*np.pi*0.06/1.064 m = np.ones((1, 2), dtype = np.complex128) m[0, 0] = 1.53413/1.3205 m[0, 1] = (0.565838 + 7.23262j)/1.3205 nc = 1001 coordX = np.zeros((nc, 3), dtype = np.float64) coordY = np.zeros((nc, 3), dtype = np.float64) coordZ = np.zeros((nc, 3), dtype = np.float64) scan = np.linspace(-10.0*x[0, 1], 10.0*x[0, 1], nc) one = np.ones(nc, dtype = np.float64) coordX[:, 0] = scan coordY[:, 1] = scan coordZ[:, 2] = scan from scattnlay import scattnlay print "\nscattnlay" terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m) print "Results: ", Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 print "\nfieldnlay" terms, Ex, Hx = fieldnlay(x, m, coordX) terms, Ey, Hy = fieldnlay(x, m, coordY) terms, Ez, Hz = fieldnlay(x, m, coordZ) Exr = np.absolute(Ex) Eyr = np.absolute(Ey) Ezr = np.absolute(Ez) # |E|/|Eo| Exh = np.sqrt(Exr[0, :, 0]**2 + Exr[0, :, 1]**2 + Exr[0, :, 2]**2) Eyh = np.sqrt(Eyr[0, :, 0]**2 + Eyr[0, :, 1]**2 + Eyr[0, :, 2]**2) Ezh = np.sqrt(Ezr[0, :, 0]**2 + Ezr[0, :, 1]**2 + Ezr[0, :, 2]**2) result = np.vstack((scan, Exh, Eyh, Ezh)).transpose() try: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) ax.errorbar(result[:, 0], one, fmt = 'k') ax.errorbar(result[:, 0], result[:, 1], fmt = 'r', label = 'X axis') ax.errorbar(result[:, 0], result[:, 2], fmt = 'g', label = 'Y axis') ax.errorbar(result[:, 0], result[:, 3], fmt = 'b', label = 'Z axis') ax.legend() plt.xlabel('X|Y|Z') plt.ylabel('|E|/|Eo|') plt.draw() plt.show() finally: np.savetxt("lfield.txt", result, fmt = "%.5f") print result