Sfoglia il codice sorgente

begin of implementation

Konstantin Ladutenko 10 anni fa
parent
commit
f086a33826
4 ha cambiato i file con 931 aggiunte e 43 eliminazioni
  1. 2 2
      go.sh
  2. 893 35
      nmie-wrapper.cc
  3. 16 6
      nmie-wrapper.h
  4. 20 0
      standalone.cc

+ 2 - 2
go.sh

@@ -2,9 +2,9 @@
 echo Compile with gcc -O2
 rm -rf *.bin
 
-g++ -O2 -std=c++11 standalone.cc nmie.cc -lm -o scattnlay.bin
+#g++ -O2 -std=c++11 standalone.cc nmie.cc -lm -o scattnlay.bin
 
-# clang++ -g -O1 -fsanitize=address  -fno-optimize-sibling-calls -fno-omit-frame-pointer -std=c++11 standalone.cc nmie.cc -lm -o scattnlay.bin
+clang++ -g -O1 -fsanitize=address  -fno-optimize-sibling-calls -fno-omit-frame-pointer -std=c++11 standalone.cc nmie.cc nmie-wrapper.cc -lm -o scattnlay.bin
 
 cp scattnlay.bin ../scattnlay
 cd tests/shell

+ 893 - 35
nmie-wrapper.cc

@@ -31,30 +31,48 @@
 ///
 #include "nmie-wrapper.h"
 #include "nmie.h"
+#include <array>
 #include <cstdio>
 #include <cstdlib>
 #include <stdexcept>
 #include <vector>
 
 namespace nmie {  
+  int nMie_wrapper(int L, std::vector<double> x, std::vector<std::complex<double> > m,
+         int nTheta, std::vector<double> Theta,
+         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
+		   std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
+    
+    MultiLayerMie multi_layer_mie;  
+    if (x.size() != L || m.size() != L)
+        throw std::invalid_argument("Declared number of layers do not fit x and m!");
+    if (Theta.size() != nTheta)
+        throw std::invalid_argument("Declared number of sample for Theta is not correct!");
+
+    multi_layer_mie.SetWidthSP(x);
+    multi_layer_mie.SetIndexSP(m);
+    return 0;
+  }
+
+
   // ********************************************************************** //
   // ********************************************************************** //
   // ********************************************************************** //
-    void MultiLayerMie::SetSizeParameter(std::vector<double> size_parameter) {
+    void MultiLayerMie::SetWidthSP(std::vector<double> size_parameter) {
     size_parameter_.clear();
     for (auto layer_size_parameter : size_parameter)
       if (layer_size_parameter <= 0.0)
         throw std::invalid_argument("Size parameter should be positive!");
       else size_parameter_.push_back(layer_size_parameter);
   }
-  // end of void MultiLayerMie::SetSizeParameter(...);
+  // end of void MultiLayerMie::SetWidthSP(...);
   // ********************************************************************** //
   // ********************************************************************** //
   // ********************************************************************** //
-  void MultiLayerMie::SetIndex(std::vector< std::complex<double> > index) {
+  void MultiLayerMie::SetIndexSP(std::vector< std::complex<double> > index) {
     index_.clear();
     for (auto value : index) index_.push_back(value);
-  }  // end of void MultiLayerMie::SetIndex(...);
+  }  // end of void MultiLayerMie::SetIndexSP(...);
   // ********************************************************************** //
   // ********************************************************************** //
   // ********************************************************************** //
@@ -79,36 +97,35 @@ namespace nmie {
   // ********************************************************************** //
   // ********************************************************************** //
   // ********************************************************************** //
-  void MultiLayerMie::RunMie(double *Qext_out, double *Qsca_out,
-                             double *Qabs_out, double *Qbk_out) {
+  void MultiLayerMie::RunMieCalculations() {
     if (size_parameter_.size() != index_.size())
       throw std::invalid_argument("Each size parameter should have only one index!");
-    int L = static_cast<int>(size_parameter_.size()) - 1;
-    double Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo;
-    int nt = 0;
-    double *Theta = (double *)malloc(nt * sizeof(double));
-    complex *S1 = (complex *)malloc(nt * sizeof(complex *));
-    complex *S2 = (complex *)malloc(nt * sizeof(complex *));
-    double *x = &(size_parameter_.front());
-    complex *m = &(index_.front());
-    int terms = 0;
-    terms = nMie(L, x, m, nt, Theta,
-                 &Qext, &Qsca, &Qabs, &Qbk, &Qpr, &g, &Albedo,
-                 S1,S2);
-    free(Theta);
-    free(S1);
-    free(S2);
-    if (terms == 0) {
-      *Qext_out = Qfaild_;
-      *Qsca_out = Qfaild_;
-      *Qabs_out = Qfaild_;
-      *Qbk_out = Qfaild_;
-      throw std::invalid_argument("Failed to evaluate Q!");
-    }
-    *Qext_out = Qext;
-    *Qsca_out = Qsca;
-    *Qabs_out = Qabs;
-    *Qbk_out = Qbk;
+    // int L = static_cast<int>(size_parameter_.size()) - 1;
+    // double Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo;
+    // int nt = 0;
+    // double *Theta = (double *)malloc(nt * sizeof(double));
+    // complex *S1 = (complex *)malloc(nt * sizeof(complex *));
+    // complex *S2 = (complex *)malloc(nt * sizeof(complex *));
+    // double *x = &(size_parameter_.front());
+    // complex *m = &(index_.front());
+    // int terms = 0;
+    // terms = nMie(L, x, m, nt, Theta,
+    //              &Qext, &Qsca, &Qabs, &Qbk, &Qpr, &g, &Albedo,
+    //              S1,S2);
+    // free(Theta);
+    // free(S1);
+    // free(S2);
+    // if (terms == 0) {
+    //   *Qext_out = Qfaild_;
+    //   *Qsca_out = Qfaild_;
+    //   *Qabs_out = Qfaild_;
+    //   *Qbk_out = Qfaild_;
+    //   throw std::invalid_argument("Failed to evaluate Q!");
+    // }
+    // *Qext_out = Qext;
+    // *Qsca_out = Qsca;
+    // *Qabs_out = Qabs;
+    // *Qbk_out = Qbk;
   }  // end of void MultiLayerMie::RunMie();
   // ********************************************************************** //
   // ********************************************************************** //
@@ -120,9 +137,9 @@ namespace nmie {
   // ********************************************************************** //
   // ********************************************************************** //
   // ********************************************************************** //
-  std::vector< std::vector<double> >
+  std::vector< std::array<double,5> >
   MultiLayerMie::GetSpectra(double from_WL, double to_WL, int samples) {
-    std::vector< std::vector<double> > spectra;
+    std::vector< std::array<double,5> > spectra;
     double step_WL = (to_WL - from_WL)/ static_cast<double>(samples);
     double wavelength_backup = wavelength_;
     long fails = 0;
@@ -130,7 +147,7 @@ namespace nmie {
       double Qext, Qsca, Qabs, Qbk;
       wavelength_ = WL;
       try {
-        RunMie(&Qext, &Qsca, &Qabs, &Qbk);
+        RunMieCalculations();
       } catch( const std::invalid_argument& ia ) {
         fails++;
         continue;
@@ -146,4 +163,845 @@ namespace nmie {
   // ********************************************************************** //
   // ********************************************************************** //
 ///MultiLayerMie::
+#define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
+
+const double PI=3.14159265358979323846;
+// light speed [m s-1]
+double const cc = 2.99792458e8;
+// assume non-magnetic (MU=MU0=const) [N A-2]
+double const mu = 4.0*PI*1.0e-7;
+
+// Calculate Nstop - equation (17)
+int Nstop(double xL) {
+  int result;
+
+  if (xL <= 8) {
+    result = round(xL + 4*pow(xL, 1/3) + 1);
+  } else if (xL <= 4200) {
+    result = round(xL + 4.05*pow(xL, 1/3) + 2);
+  } else {
+    result = round(xL + 4*pow(xL, 1/3) + 2);
+  }
+
+  return result;
+}
+
+//**********************************************************************************//
+int Nmax(int L, int fl, int pl,
+         std::vector<double> x,
+		 std::vector<std::complex<double> > m) {
+  int i, result, ri, riM1;
+  result = Nstop(x[L - 1]);
+  for (i = fl; i < L; i++) {
+    if (i > pl) {
+      ri = round(std::abs(x[i]*m[i]));
+    } else {
+      ri = 0;
+    }
+    if (result < ri) {
+      result = ri;
+    }
+
+    if ((i > fl) && ((i - 1) > pl)) {
+      riM1 = round(std::abs(x[i - 1]* m[i]));
+    } else {
+      riM1 = 0;
+    }
+    if (result < riM1) {
+      result = riM1;
+    }
+  }
+  return result + 15;
+}
+
+//**********************************************************************************//
+// This function calculates the spherical Bessel (jn) and Hankel (h1n) functions    //
+// and their derivatives for a given complex value z. See pag. 87 B&H.              //
+//                                                                                  //
+// Input parameters:                                                                //
+//   z: Real argument to evaluate jn and h1n                                        //
+//   nmax: Maximum number of terms to calculate jn and h1n                          //
+//                                                                                  //
+// Output parameters:                                                               //
+//   jn, h1n: Spherical Bessel and Hankel functions                                 //
+//   jnp, h1np: Derivatives of the spherical Bessel and Hankel functions            //
+//                                                                                  //
+// The implementation follows the algorithm by I.J. Thompson and A.R. Barnett,      //
+// Comp. Phys. Comm. 47 (1987) 245-257.                                             //
+//                                                                                  //
+// Complex spherical Bessel functions from n=0..nmax-1 for z in the upper half      //
+// plane (Im(z) > -3).                                                              //
+//                                                                                  //
+//     j[n]   = j/n(z)                Regular solution: j[0]=sin(z)/z               //
+//     j'[n]  = d[j/n(z)]/dz                                                        //
+//     h1[n]  = h[0]/n(z)             Irregular Hankel function:                    //
+//     h1'[n] = d[h[0]/n(z)]/dz                h1[0] = j0(z) + i*y0(z)              //
+//                                                   = (sin(z)-i*cos(z))/z          //
+//                                                   = -i*exp(i*z)/z                //
+// Using complex CF1, and trigonometric forms for n=0 solutions.                    //
+//**********************************************************************************//
+int sbesjh(std::complex<double> z, int nmax, std::vector<std::complex<double> >& jn, std::vector<std::complex<double> >& jnp, std::vector<std::complex<double> >& h1n, std::vector<std::complex<double> >& h1np) {
+
+  const int limit = 20000;
+  double const accur = 1.0e-12;
+  double const tm30 = 1e-30;
+
+  int n;
+  double absc;
+  std::complex<double> zi, w;
+  std::complex<double> pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb;
+
+  absc = std::abs(std::real(z)) + std::abs(std::imag(z));
+  if ((absc < accur) || (std::imag(z) < -3.0)) {
+    return -1;
+  }
+
+  zi = 1.0/z;
+  w = zi + zi;
+
+  pl = double(nmax)*zi;
+
+  f = pl + zi;
+  b = f + f + zi;
+  d = 0.0;
+  c = f;
+  for (n = 0; n < limit; n++) {
+    d = b - d;
+    c = b - 1.0/c;
+
+    absc = std::abs(std::real(d)) + std::abs(std::imag(d));
+    if (absc < tm30) {
+      d = tm30;
+    }
+
+    absc = std::abs(std::real(c)) + std::abs(std::imag(c));
+    if (absc < tm30) {
+      c = tm30;
+    }
+
+    d = 1.0/d;
+    del = d*c;
+    f = f*del;
+    b += w;
+
+    absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
+
+    if (absc < accur) {
+      // We have obtained the desired accuracy
+      break;
+    }
+  }
+
+  if (absc > accur) {
+    // We were not able to obtain the desired accuracy
+    return -2;
+  }
+
+  jn[nmax - 1] = tm30;
+  jnp[nmax - 1] = f*jn[nmax - 1];
+
+  // Downward recursion to n=0 (N.B.  Coulomb Functions)
+  for (n = nmax - 2; n >= 0; n--) {
+    jn[n] = pl*jn[n + 1] + jnp[n + 1];
+    jnp[n] = pl*jn[n] - jn[n + 1];
+    pl = pl - zi;
+  }
+
+  // Calculate the n=0 Bessel Functions
+  jn0 = zi*std::sin(z);
+  h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
+  h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
+
+  // Rescale j[n], j'[n], converting to spherical Bessel functions.
+  // Recur   h1[n], h1'[n] as spherical Bessel functions.
+  w = 1.0/jn[0];
+  pl = zi;
+  for (n = 0; n < nmax; n++) {
+    jn[n] = jn0*(w*jn[n]);
+    jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
+    if (n != 0) {
+      h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
+
+      // check if hankel is increasing (upward stable)
+      if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
+        jndb = z;
+        h1nldb = h1n[n];
+        h1nbdb = h1n[n - 1];
+      }
+
+      pl += zi;
+
+      h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
+    }
+  }
+
+  // success
+  return 0;
+}
+
+//**********************************************************************************//
+// This function calculates the spherical Bessel functions (bj and by) and the      //
+// logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H.        //
+//                                                                                  //
+// Input parameters:                                                                //
+//   z: Complex argument to evaluate bj, by and bd                                  //
+//   nmax: Maximum number of terms to calculate bj, by and bd                       //
+//                                                                                  //
+// Output parameters:                                                               //
+//   bj, by: Spherical Bessel functions                                             //
+//   bd: Logarithmic derivative                                                     //
+//**********************************************************************************//
+void sphericalBessel(std::complex<double> z, int nmax, std::vector<std::complex<double> >& bj, std::vector<std::complex<double> >& by, std::vector<std::complex<double> >& bd) {
+
+    std::vector<std::complex<double> > jn, jnp, h1n, h1np;
+    jn.resize(nmax);
+    jnp.resize(nmax);
+    h1n.resize(nmax);
+    h1np.resize(nmax);
+
+    // TODO verify that the function succeeds
+    int ifail = sbesjh(z, nmax, jn, jnp, h1n, h1np);
+
+    for (int n = 0; n < nmax; n++) {
+      bj[n] = jn[n];
+      by[n] = (h1n[n] - jn[n])/std::complex<double>(0.0, 1.0);
+      bd[n] = jnp[n]/jn[n] + 1.0/z;
+    }
+}
+
+// external scattering field = incident + scattered
+// BH p.92 (4.37), 94 (4.45), 95 (4.50)
+// assume: medium is non-absorbing; refim = 0; Uabs = 0
+void fieldExt(int nmax, double Rho, double Phi, double Theta, std::vector<double> Pi, std::vector<double> Tau,
+             std::vector<std::complex<double> > an, std::vector<std::complex<double> > bn,
+		     std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H)  {
+
+  int i, n;
+  double rn = 0.0;
+  std::complex<double> zn, xxip, encap;
+  std::vector<std::complex<double> > vm3o1n, vm3e1n, vn3o1n, vn3e1n;
+  vm3o1n.resize(3);
+  vm3e1n.resize(3);
+  vn3o1n.resize(3);
+  vn3e1n.resize(3);
+
+  std::vector<std::complex<double> > Ei, Hi, Es, Hs;
+  Ei.resize(3);
+  Hi.resize(3);
+  Es.resize(3);
+  Hs.resize(3);
+  for (i = 0; i < 3; i++) {
+    Ei[i] = std::complex<double>(0.0, 0.0);
+    Hi[i] = std::complex<double>(0.0, 0.0);
+    Es[i] = std::complex<double>(0.0, 0.0);
+    Hs[i] = std::complex<double>(0.0, 0.0);
+  }
+
+  std::vector<std::complex<double> > bj, by, bd;
+  bj.resize(nmax);
+  by.resize(nmax);
+  bd.resize(nmax);
+
+  // Calculate spherical Bessel and Hankel functions
+  sphericalBessel(Rho, nmax, bj, by, bd);
+
+  for (n = 0; n < nmax; n++) {
+    rn = double(n + 1);
+
+    zn = bj[n] + std::complex<double>(0.0, 1.0)*by[n];
+    xxip = Rho*(bj[n] + std::complex<double>(0.0, 1.0)*by[n]) - rn*zn;
+
+    vm3o1n[0] = std::complex<double>(0.0, 0.0);
+    vm3o1n[1] = std::cos(Phi)*Pi[n]*zn;
+    vm3o1n[2] = -(std::sin(Phi)*Tau[n]*zn);
+    vm3e1n[0] = std::complex<double>(0.0, 0.0);
+    vm3e1n[1] = -(std::sin(Phi)*Pi[n]*zn);
+    vm3e1n[2] = -(std::cos(Phi)*Tau[n]*zn);
+    vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
+    vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho;
+    vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho;
+    vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
+    vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho;
+    vn3e1n[2] = -(std::sin(Phi)*Pi[n]*xxip/Rho);
+
+    // scattered field: BH p.94 (4.45)
+    encap = std::pow(std::complex<double>(0.0, 1.0), rn)*(2.0*rn + 1.0)/(rn*(rn + 1.0));
+    for (i = 0; i < 3; i++) {
+      Es[i] = Es[i] + encap*(std::complex<double>(0.0, 1.0)*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]);
+      Hs[i] = Hs[i] + encap*(std::complex<double>(0.0, 1.0)*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]);
+    }
+  }
+
+  // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
+  // basis unit vectors = er, etheta, ephi
+  std::complex<double> eifac = std::exp(std::complex<double>(0.0, 1.0)*Rho*std::cos(Theta));
+
+  Ei[0] = eifac*std::sin(Theta)*std::cos(Phi);
+  Ei[1] = eifac*std::cos(Theta)*std::cos(Phi);
+  Ei[2] = -(eifac*std::sin(Phi));
+
+  // magnetic field
+  double hffact = 1.0/(cc*mu);
+  for (i = 0; i < 3; i++) {
+    Hs[i] = hffact*Hs[i];
+  }
+
+  // incident H field: BH p.26 (2.43), p.89 (4.21)
+  std::complex<double> hffacta = hffact;
+  std::complex<double> hifac = eifac*hffacta;
+
+  Hi[0] = hifac*std::sin(Theta)*std::sin(Phi);
+  Hi[1] = hifac*std::cos(Theta)*std::sin(Phi);
+  Hi[2] = hifac*std::cos(Phi);
+
+  for (i = 0; i < 3; i++) {
+    // electric field E [V m-1] = EF*E0
+    E[i] = Ei[i] + Es[i];
+    H[i] = Hi[i] + Hs[i];
+  }
+}
+
+// Calculate an - equation (5)
+std::complex<double> calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
+	                         std::complex<double> PsiXL, std::complex<double> ZetaXL,
+	                         std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
+
+  std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
+  std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
+
+  return Num/Denom;
+}
+
+// Calculate bn - equation (6)
+std::complex<double> calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
+	                         std::complex<double> PsiXL, std::complex<double> ZetaXL,
+	                         std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
+
+  std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
+  std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
+
+  return Num/Denom;
+}
+
+// Calculates S1 - equation (25a)
+std::complex<double> calc_S1(int n, std::complex<double> an, std::complex<double> bn,
+		                     double Pi, double Tau) {
+
+  return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
+}
+
+// Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
+std::complex<double> calc_S2(int n, std::complex<double> an, std::complex<double> bn,
+				             double Pi, double Tau) {
+
+  return calc_S1(n, an, bn, Tau, Pi);
+}
+
+
+//**********************************************************************************//
+// This function calculates the Riccati-Bessel functions (Psi and Zeta) for a       //
+// real argument (x).                                                               //
+// Equations (20a) - (21b)                                                          //
+//                                                                                  //
+// Input parameters:                                                                //
+//   x: Real argument to evaluate Psi and Zeta                                      //
+//   nmax: Maximum number of terms to calculate Psi and Zeta                        //
+//                                                                                  //
+// Output parameters:                                                               //
+//   Psi, Zeta: Riccati-Bessel functions                                            //
+//**********************************************************************************//
+void calcPsiZeta(double x, int nmax,
+		         std::vector<std::complex<double> > D1,
+		         std::vector<std::complex<double> > D3,
+		         std::vector<std::complex<double> >& Psi,
+		         std::vector<std::complex<double> >& Zeta) {
+
+  int n;
+
+  //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
+  Psi[0] = std::complex<double>(sin(x), 0);
+  Zeta[0] = std::complex<double>(sin(x), -cos(x));
+  for (n = 1; n <= nmax; n++) {
+    Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
+    Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
+  }
+}
+
+//**********************************************************************************//
+// This function calculates the logarithmic derivatives of the Riccati-Bessel       //
+// functions (D1 and D3) for a complex argument (z).                                //
+// Equations (16a), (16b) and (18a) - (18d)                                         //
+//                                                                                  //
+// Input parameters:                                                                //
+//   z: Complex argument to evaluate D1 and D3                                      //
+//   nmax: Maximum number of terms to calculate D1 and D3                           //
+//                                                                                  //
+// Output parameters:                                                               //
+//   D1, D3: Logarithmic derivatives of the Riccati-Bessel functions                //
+//**********************************************************************************//
+void calcD1D3(std::complex<double> z, int nmax,
+		      std::vector<std::complex<double> >& D1,
+		      std::vector<std::complex<double> >& D3) {
+
+  int n;
+  std::vector<std::complex<double> > PsiZeta;
+  PsiZeta.resize(nmax + 1);
+
+  // Downward recurrence for D1 - equations (16a) and (16b)
+  D1[nmax] = std::complex<double>(0.0, 0.0);
+  for (n = nmax; n > 0; n--) {
+    D1[n - 1] = double(n)/z - 1.0/(D1[n] + double(n)/z);
+  }
+
+  // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
+  PsiZeta[0] = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
+  D3[0] = std::complex<double>(0.0, 1.0);
+  for (n = 1; n <= nmax; n++) {
+    PsiZeta[n] = PsiZeta[n - 1]*(double(n)/z - D1[n - 1])*(double(n)/z- D3[n - 1]);
+    D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta[n];
+  }
+}
+
+//**********************************************************************************//
+// This function calculates Pi and Tau for all values of Theta.                     //
+// Equations (26a) - (26c)                                                          //
+//                                                                                  //
+// Input parameters:                                                                //
+//   nmax: Maximum number of terms to calculate Pi and Tau                          //
+//   nTheta: Number of scattering angles                                            //
+//   Theta: Array containing all the scattering angles where the scattering         //
+//          amplitudes will be calculated                                           //
+//                                                                                  //
+// Output parameters:                                                               //
+//   Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c)   //
+//**********************************************************************************//
+void calcPiTau(int nmax, double Theta, std::vector<double>& Pi, std::vector<double>& Tau) {
+
+  int n;
+  //****************************************************//
+  // Equations (26a) - (26c)                            //
+  //****************************************************//
+  for (n = 0; n < nmax; n++) {
+    if (n == 0) {
+      // Initialize Pi and Tau
+      Pi[n] = 1.0;
+      Tau[n] = (n + 1)*cos(Theta);
+    } else {
+      // Calculate the actual values
+      Pi[n] = ((n == 1) ? ((n + n + 1)*cos(Theta)*Pi[n - 1]/n)
+                           : (((n + n + 1)*cos(Theta)*Pi[n - 1] - (n + 1)*Pi[n - 2])/n));
+      Tau[n] = (n + 1)*cos(Theta)*Pi[n] - (n + 2)*Pi[n - 1];
+    }
+  }
+}
+
+//**********************************************************************************//
+// This function calculates the scattering coefficients required to calculate       //
+// both the near- and far-field parameters.                                         //
+//                                                                                  //
+// Input parameters:                                                                //
+//   L: Number of layers                                                            //
+//   pl: Index of PEC layer. If there is none just send -1                          //
+//   x: Array containing the size parameters of the layers [0..L-1]                 //
+//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
+//   nmax: Maximum number of multipolar expansion terms to be used for the          //
+//         calculations. Only use it if you know what you are doing, otherwise      //
+//         set this parameter to -1 and the function will calculate it.             //
+//                                                                                  //
+// Output parameters:                                                               //
+//   an, bn: Complex scattering amplitudes                                          //
+//                                                                                  //
+// Return value:                                                                    //
+//   Number of multipolar expansion terms used for the calculations                 //
+//**********************************************************************************//
+int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
+		        std::vector<std::complex<double> >& an, std::vector<std::complex<double> >& bn) {
+  //************************************************************************//
+  // Calculate the index of the first layer. It can be either 0 (default)   //
+  // or the index of the outermost PEC layer. In the latter case all layers //
+  // below the PEC are discarded.                                           //
+  //************************************************************************//
+
+  int fl = (pl > 0) ? pl : 0;
+
+  if (nmax <= 0) {
+    nmax = Nmax(L, fl, pl, x, m);
+  }
+
+  std::complex<double> z1, z2;
+  std::complex<double> Num, Denom;
+  std::complex<double> G1, G2;
+  std::complex<double> Temp;
+
+  int n, l;
+
+  //**************************************************************************//
+  // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which  //
+  // means that index = layer number - 1 or index = n - 1. The only exception //
+  // are the arrays for representing D1, D3 and Q because they need a value   //
+  // for the index 0 (zero), hence it is important to consider this shift     //
+  // between different arrays. The change was done to optimize memory usage.  //
+  //**************************************************************************//
+
+  // Allocate memory to the arrays
+  std::vector<std::vector<std::complex<double> > > D1_mlxl, D1_mlxlM1;
+  D1_mlxl.resize(L);
+  D1_mlxlM1.resize(L);
+
+  std::vector<std::vector<std::complex<double> > > D3_mlxl, D3_mlxlM1;
+  D3_mlxl.resize(L);
+  D3_mlxlM1.resize(L);
+
+  std::vector<std::vector<std::complex<double> > > Q;
+  Q.resize(L);
+
+  std::vector<std::vector<std::complex<double> > > Ha, Hb;
+  Ha.resize(L);
+  Hb.resize(L);
+
+  for (l = 0; l < L; l++) {
+    D1_mlxl[l].resize(nmax + 1);
+    D1_mlxlM1[l].resize(nmax + 1);
+
+    D3_mlxl[l].resize(nmax + 1);
+    D3_mlxlM1[l].resize(nmax + 1);
+
+    Q[l].resize(nmax + 1);
+
+    Ha[l].resize(nmax);
+    Hb[l].resize(nmax);
+  }
+
+  an.resize(nmax);
+  bn.resize(nmax);
+
+  std::vector<std::complex<double> > D1XL, D3XL;
+  D1XL.resize(nmax + 1);
+  D3XL.resize(nmax + 1);
+
+
+  std::vector<std::complex<double> > PsiXL, ZetaXL;
+  PsiXL.resize(nmax + 1);
+  ZetaXL.resize(nmax + 1);
+
+  //*************************************************//
+  // Calculate D1 and D3 for z1 in the first layer   //
+  //*************************************************//
+  if (fl == pl) {  // PEC layer
+    for (n = 0; n <= nmax; n++) {
+      D1_mlxl[fl][n] = std::complex<double>(0.0, -1.0);
+      D3_mlxl[fl][n] = std::complex<double>(0.0, 1.0);
+    }
+  } else { // Regular layer
+    z1 = x[fl]* m[fl];
+
+    // Calculate D1 and D3
+    calcD1D3(z1, nmax, D1_mlxl[fl], D3_mlxl[fl]);
+  }
+
+  //******************************************************************//
+  // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
+  //******************************************************************//
+  for (n = 0; n < nmax; n++) {
+    Ha[fl][n] = D1_mlxl[fl][n + 1];
+    Hb[fl][n] = D1_mlxl[fl][n + 1];
+  }
+
+  //*****************************************************//
+  // Iteration from the second layer to the last one (L) //
+  //*****************************************************//
+  for (l = fl + 1; l < L; l++) {
+    //************************************************************//
+    //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L     //
+    //************************************************************//
+    z1 = x[l]*m[l];
+    z2 = x[l - 1]*m[l];
+
+    //Calculate D1 and D3 for z1
+    calcD1D3(z1, nmax, D1_mlxl[l], D3_mlxl[l]);
+
+    //Calculate D1 and D3 for z2
+    calcD1D3(z2, nmax, D1_mlxlM1[l], D3_mlxlM1[l]);
+
+    //*********************************************//
+    //Calculate Q, Ha and Hb in the layers fl+1..L //
+    //*********************************************//
+
+    // Upward recurrence for Q - equations (19a) and (19b)
+    Num = exp(-2.0*(z1.imag() - z2.imag()))*std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
+    Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
+    Q[l][0] = Num/Denom;
+
+    for (n = 1; n <= nmax; n++) {
+      Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]);
+      Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]);
+
+      Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom;
+    }
+
+    // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
+    for (n = 1; n <= nmax; n++) {
+      //Ha
+      if ((l - 1) == pl) { // The layer below the current one is a PEC layer
+        G1 = -D1_mlxlM1[l][n];
+        G2 = -D3_mlxlM1[l][n];
+      } else {
+        G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]);
+        G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]);
+      }
+
+      Temp = Q[l][n]*G1;
+
+      Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]);
+      Denom = G2 - Temp;
+
+      Ha[l][n - 1] = Num/Denom;
+
+      //Hb
+      if ((l - 1) == pl) { // The layer below the current one is a PEC layer
+        G1 = Hb[l - 1][n - 1];
+        G2 = Hb[l - 1][n - 1];
+      } else {
+        G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]);
+        G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]);
+      }
+
+      Temp = Q[l][n]*G1;
+
+      Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]);
+      Denom = (G2- Temp);
+
+      Hb[l][n - 1] = (Num/ Denom);
+    }
+  }
+
+  //**************************************//
+  //Calculate D1, D3, Psi and Zeta for XL //
+  //**************************************//
+
+  // Calculate D1XL and D3XL
+  calcD1D3(x[L - 1], nmax, D1XL, D3XL);
+
+  // Calculate PsiXL and ZetaXL
+  calcPsiZeta(x[L - 1], nmax, D1XL, D3XL, PsiXL, ZetaXL);
+
+  //*********************************************************************//
+  // Finally, we calculate the scattering coefficients (an and bn) and   //
+  // the angular functions (Pi and Tau). Note that for these arrays the  //
+  // first layer is 0 (zero), in future versions all arrays will follow  //
+  // this convention to save memory. (13 Nov, 2014)                      //
+  //*********************************************************************//
+  for (n = 0; n < nmax; n++) {
+    //********************************************************************//
+    //Expressions for calculating an and bn coefficients are not valid if //
+    //there is only one PEC layer (ie, for a simple PEC sphere).          //
+    //********************************************************************//
+    if (pl < (L - 1)) {
+      an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
+      bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
+    } else {
+      an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
+      bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
+    }
+  }
+
+  return nmax;
+}
+
+//**********************************************************************************//
+// This function calculates the actual scattering parameters and amplitudes         //
+//                                                                                  //
+// Input parameters:                                                                //
+//   L: Number of layers                                                            //
+//   pl: Index of PEC layer. If there is none just send -1                          //
+//   x: Array containing the size parameters of the layers [0..L-1]                 //
+//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
+//   nTheta: Number of scattering angles                                            //
+//   Theta: Array containing all the scattering angles where the scattering         //
+//          amplitudes will be calculated                                           //
+//   nmax: Maximum number of multipolar expansion terms to be used for the          //
+//         calculations. Only use it if you know what you are doing, otherwise      //
+//         set this parameter to -1 and the function will calculate it              //
+//                                                                                  //
+// Output parameters:                                                               //
+//   Qext: Efficiency factor for extinction                                         //
+//   Qsca: Efficiency factor for scattering                                         //
+//   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
+//   Qbk: Efficiency factor for backscattering                                      //
+//   Qpr: Efficiency factor for the radiation pressure                              //
+//   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
+//   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
+//   S1, S2: Complex scattering amplitudes                                          //
+//                                                                                  //
+// Return value:                                                                    //
+//   Number of multipolar expansion terms used for the calculations                 //
+//**********************************************************************************//
+
+int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
+         int nTheta, std::vector<double> Theta, int nmax,
+         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
+		 std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2)  {
+
+  int i, n, t;
+  std::vector<std::complex<double> > an, bn;
+  std::complex<double> Qbktmp;
+
+  // Calculate scattering coefficients
+  nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn);
+
+  std::vector<double> Pi, Tau;
+  Pi.resize(nmax);
+  Tau.resize(nmax);
+
+  double x2 = x[L - 1]*x[L - 1];
+
+  // Initialize the scattering parameters
+  *Qext = 0;
+  *Qsca = 0;
+  *Qabs = 0;
+  *Qbk = 0;
+  Qbktmp = std::complex<double>(0.0, 0.0);
+  *Qpr = 0;
+  *g = 0;
+  *Albedo = 0;
+
+  // Initialize the scattering amplitudes
+  for (t = 0; t < nTheta; t++) {
+    S1[t] = std::complex<double>(0.0, 0.0);
+    S2[t] = std::complex<double>(0.0, 0.0);
+  }
+
+  // By using downward recurrence we avoid loss of precision due to float rounding errors
+  // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
+  //      http://en.wikipedia.org/wiki/Loss_of_significance
+  for (i = nmax - 2; i >= 0; i--) {
+    n = i + 1;
+    // Equation (27)
+    *Qext += (n + n + 1)*(an[i].real() + bn[i].real());
+    // Equation (28)
+    *Qsca += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
+    // Equation (29) TODO We must check carefully this equation. If we
+    // remove the typecast to double then the result changes. Which is
+    // the correct one??? Ovidio (2014/12/10) With cast ratio will
+    // give double, without cast (n + n + 1)/(n*(n + 1)) will be
+    // rounded to integer. Tig (2015/02/24)
+    *Qpr += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
+    // Equation (33)
+    Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
+
+    //****************************************************//
+    // Calculate the scattering amplitudes (S1 and S2)    //
+    // Equations (25a) - (25b)                            //
+    //****************************************************//
+    for (t = 0; t < nTheta; t++) {
+      calcPiTau(nmax, Theta[t], Pi, Tau);
+
+      S1[t] += calc_S1(n, an[i], bn[i], Pi[i], Tau[i]);
+      S2[t] += calc_S2(n, an[i], bn[i], Pi[i], Tau[i]);
+    }
+  }
+
+  *Qext = 2*(*Qext)/x2;                                 // Equation (27)
+  *Qsca = 2*(*Qsca)/x2;                                 // Equation (28)
+  *Qpr = *Qext - 4*(*Qpr)/x2;                           // Equation (29)
+
+  *Qabs = *Qext - *Qsca;                                // Equation (30)
+  *Albedo = *Qsca / *Qext;                              // Equation (31)
+  *g = (*Qext - *Qpr) / *Qsca;                          // Equation (32)
+
+  *Qbk = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2;    // Equation (33)
+
+  return nmax;
+}
+
+
+
+
+
+//**********************************************************************************//
+// This function calculates complex electric and magnetic field in the surroundings //
+// and inside (TODO) the particle.                                                  //
+//                                                                                  //
+// Input parameters:                                                                //
+//   L: Number of layers                                                            //
+//   pl: Index of PEC layer. If there is none just send 0 (zero)                    //
+//   x: Array containing the size parameters of the layers [0..L-1]                 //
+//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
+//   nmax: Maximum number of multipolar expansion terms to be used for the          //
+//         calculations. Only use it if you know what you are doing, otherwise      //
+//         set this parameter to 0 (zero) and the function will calculate it.       //
+//   ncoord: Number of coordinate points                                            //
+//   Coords: Array containing all coordinates where the complex electric and        //
+//           magnetic fields will be calculated                                     //
+//                                                                                  //
+// Output parameters:                                                               //
+//   E, H: Complex electric and magnetic field at the provided coordinates          //
+//                                                                                  //
+// Return value:                                                                    //
+//   Number of multipolar expansion terms used for the calculations                 //
+//**********************************************************************************//
+
+int nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
+           int ncoord, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
+		   std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
+
+  int i, c;
+  double Rho, Phi, Theta;
+  std::vector<std::complex<double> > an, bn;
+
+  // This array contains the fields in spherical coordinates
+  std::vector<std::complex<double> > Es, Hs;
+  Es.resize(3);
+  Hs.resize(3);
+
+
+  // Calculate scattering coefficients
+  nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn);
+
+  std::vector<double> Pi, Tau;
+  Pi.resize(nmax);
+  Tau.resize(nmax);
+
+  for (c = 0; c < ncoord; c++) {
+    // Convert to spherical coordinates
+    Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
+    if (Rho < 1e-3) {
+      // Avoid convergence problems
+      Rho = 1e-3;
+    }
+    Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
+    Theta = acos(Xp[c]/Rho);
+
+    calcPiTau(nmax, Theta, Pi, Tau);
+
+    //*******************************************************//
+    // external scattering field = incident + scattered      //
+    // BH p.92 (4.37), 94 (4.45), 95 (4.50)                  //
+    // assume: medium is non-absorbing; refim = 0; Uabs = 0  //
+    //*******************************************************//
+
+    // Firstly the easiest case: the field outside the particle
+    if (Rho >= x[L - 1]) {
+      fieldExt(nmax, Rho, Phi, Theta, Pi, Tau, an, bn, Es, Hs);
+    } else {
+      // TODO, for now just set all the fields to zero
+      for (i = 0; i < 3; i++) {
+        Es[i] = std::complex<double>(0.0, 0.0);
+        Hs[i] = std::complex<double>(0.0, 0.0);
+      }
+    }
+
+    //Now, convert the fields back to cartesian coordinates
+    E[c][0] = std::sin(Theta)*std::cos(Phi)*Es[0] + std::cos(Theta)*std::cos(Phi)*Es[1] - std::sin(Phi)*Es[2];
+    E[c][1] = std::sin(Theta)*std::sin(Phi)*Es[0] + std::cos(Theta)*std::sin(Phi)*Es[1] + std::cos(Phi)*Es[2];
+    E[c][2] = std::cos(Theta)*Es[0] - std::sin(Theta)*Es[1];
+
+    H[c][0] = std::sin(Theta)*std::cos(Phi)*Hs[0] + std::cos(Theta)*std::cos(Phi)*Hs[1] - std::sin(Phi)*Hs[2];
+    H[c][1] = std::sin(Theta)*std::sin(Phi)*Hs[0] + std::cos(Theta)*std::sin(Phi)*Hs[1] + std::cos(Phi)*Hs[2];
+    H[c][2] = std::cos(Theta)*Hs[0] - std::sin(Theta)*Hs[1];
+  }
+
+  return nmax;
+}  // end of int nField()
+
 }  // end of namespace nmie

+ 16 - 6
nmie-wrapper.h

@@ -1,4 +1,4 @@
-#ifNdef SRC_NMIE_NMIE_WRAPPER_H_
+#ifndef SRC_NMIE_NMIE_WRAPPER_H_
 #define SRC_NMIE_NMIE_WRAPPER_H_
 ///
 /// @file   nmie-wrapper.h
@@ -32,6 +32,7 @@
 /// @brief  Wrapper class around nMie function for ease of use
 /// 
 ///
+#include <array>
 #include <complex>
 #include <cstdlib>
 #include <iostream>
@@ -51,6 +52,11 @@
 #endif
 
 namespace nmie {
+  int nMie_wrapper(int L, std::vector<double> x, std::vector<std::complex<double> > m,
+         int nTheta, std::vector<double> Theta,
+         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
+	   std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2);
+
   class MultiLayerMie {
     // Will throw for any error!
     // SP stands for size parameter units.
@@ -76,6 +82,7 @@ namespace nmie {
 
     // Set common parameters
     void SetAnglesForPattern(double from_angle, double to_angle, int samples);
+    void SetAngles(std::vector<double> angles);
     std::vector<double> GetAngles();
     
     void ClearTarget();
@@ -90,10 +97,10 @@ namespace nmie {
     std::vector< std::complex<double> >  GetTargetLayersIndex();
     std::vector<double>                  GetCoatingLayersWidth();
     std::vector< std::complex<double> >  GetCoatingLayersIndex();
-    std::vector< std::vector<double> >   GetFieldPoints();
+    std::vector< std::array<double,3> >   GetFieldPoints();
     std::vector<std::array< std::complex<double>,3 > >  GetFieldE();
     std::vector<std::array< std::complex<double>,3 > >  GetFieldH();
-    std::vector< std::array<double,4> >   GetSpectra(double from_WL, double to_WL,
+    std::vector< std::array<double,5> >   GetSpectra(double from_WL, double to_WL,
                                                    int samples);  // ext, sca, abs, bk
     double GetRCSext();
     double GetRCSsca();
@@ -109,12 +116,12 @@ namespace nmie {
     std::vector<double>                  GetLayerWidthSP();
     // Same as to get target and coating index
     std::vector< std::complex<double> >  GetLayerIndex();  
-    std::vector< std::vector<double> >   GetFieldPointsSP();
+    std::vector< std::array<double,3> >   GetFieldPointsSP();
     // Do we need normalize field to size parameter?
     /* std::vector<std::vector<std::complex<double> > >  GetFieldESP(); */
     /* std::vector<std::vector<std::complex<double> > >  GetFieldHSP(); */
-    std::vector< std::array<double,4> >   GetSpectraSP(double from_SP, double to_SP,
-						       int samples);  // ext, sca, abs, bk
+    std::vector< std::array<double,5> >   GetSpectraSP(double from_SP, double to_SP,
+						       int samples);  // WL,ext, sca, abs, bk
     double GetQext();
     double GetQsca();
     double GetQabs();
@@ -137,6 +144,8 @@ namespace nmie {
     void PlotSpectraSP();
     void PlotField();
     void PlotFieldSP();
+    void PlotPattern();
+    void PlotPatternSP();
 
   private:
     const double PI=3.14159265358979323846;
@@ -151,6 +160,7 @@ namespace nmie {
     std::vector<double> size_parameter_;
     /// Complex index values for each layers.
     std::vector< std::complex<double> > index_;
+    double Qsca_ = 0.0, Qext_ = 0.0, Qabs_ = 0.0, Qbk_ = 0.0;
   };  // end of class MultiLayerMie
 
 }  // end of namespace nmie

+ 20 - 0
standalone.cc

@@ -36,6 +36,7 @@
 #include <time.h>
 #include <string.h>
 #include "nmie.h"
+#include "nmie-wrapper.h"
 
 const double PI=3.14159265358979323846;
 
@@ -204,6 +205,7 @@ int main(int argc, char *argv[]) {
 
 
     nMie(L, x, m, nt, Theta, &Qext, &Qsca, &Qabs, &Qbk, &Qpr, &g, &Albedo, S1, S2);
+   
 
     if (has_comment) {
       printf("%6s, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e\n", comment.c_str(), Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo);
@@ -218,6 +220,24 @@ int main(int argc, char *argv[]) {
         printf("%6.2f, %+.5e, %+.5e, %+.5e, %+.5e\n", Theta[i]*180.0/PI, S1[i].real(), S1[i].imag(), S2[i].real(), S2[i].imag());
       }
     }
+
+
+    nmie::nMie_wrapper(L, x, m, nt, Theta, &Qext, &Qsca, &Qabs, &Qbk, &Qpr, &g, &Albedo, S1, S2);
+
+    if (has_comment) {
+      printf("%6s, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e  wrapper\n", comment.c_str(), Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo);
+    } else {
+      printf("%+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e, %+.5e  wrapper\n", Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo);
+    }
+    
+    if (nt > 0) {
+      printf(" Theta,         S1.r,         S1.i,         S2.r,         S2.i  wrapper\n");
+      
+      for (i = 0; i < nt; i++) {
+        printf("%6.2f, %+.5e, %+.5e, %+.5e, %+.5e  wrapper\n", Theta[i]*180.0/PI, S1[i].real(), S1[i].imag(), S2[i].real(), S2[i].imag());
+      }
+    }
+
   } catch( const std::invalid_argument& ia ) {
     // Will catch if  multi_layer_mie fails or other errors.
     std::cerr << "Invalid argument: " << ia.what() << std::endl;