|  | @@ -0,0 +1,1160 @@
 | 
	
		
			
				|  |  | +#ifndef SRC_NMIE_IMPL_H_
 | 
	
		
			
				|  |  | +#define SRC_NMIE_IMPL_H_
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +//    Copyright (C) 2009-2016  Ovidio Pena <ovidio@bytesfall.com>                   //
 | 
	
		
			
				|  |  | +//    Copyright (C) 2013-2016  Konstantin Ladutenko <kostyfisik@gmail.com>          //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +//    This file is part of scattnlay                                                //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +//    This program is free software: you can redistribute it and/or modify          //
 | 
	
		
			
				|  |  | +//    it under the terms of the GNU General Public License as published by          //
 | 
	
		
			
				|  |  | +//    the Free Software Foundation, either version 3 of the License, or             //
 | 
	
		
			
				|  |  | +//    (at your option) any later version.                                           //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +//    This program is distributed in the hope that it will be useful,               //
 | 
	
		
			
				|  |  | +//    but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | 
	
		
			
				|  |  | +//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                 //
 | 
	
		
			
				|  |  | +//    GNU General Public License for more details.                                  //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +//    The only additional remark is that we expect that all publications            //
 | 
	
		
			
				|  |  | +//    describing work using this software, or all commercial products               //
 | 
	
		
			
				|  |  | +//    using it, cite the following reference:                                       //
 | 
	
		
			
				|  |  | +//    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by           //
 | 
	
		
			
				|  |  | +//        a multilayered sphere," Computer Physics Communications,                  //
 | 
	
		
			
				|  |  | +//        vol. 180, Nov. 2009, pp. 2348-2354.                                       //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +//    You should have received a copy of the GNU General Public License             //
 | 
	
		
			
				|  |  | +//    along with this program.  If not, see <http://www.gnu.org/licenses/>.         //
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +// This class implements the algorithm for a multilayered sphere described by:      //
 | 
	
		
			
				|  |  | +//    [1] W. Yang, "Improved recursive algorithm for light scattering by a          //
 | 
	
		
			
				|  |  | +//        multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720.  //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// You can find the description of all the used equations in:                       //
 | 
	
		
			
				|  |  | +//    [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by           //
 | 
	
		
			
				|  |  | +//        a multilayered sphere," Computer Physics Communications,                  //
 | 
	
		
			
				|  |  | +//        vol. 180, Nov. 2009, pp. 2348-2354.                                       //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Hereinafter all equations numbers refer to [2]                                   //
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +#include "nmie.hpp"
 | 
	
		
			
				|  |  | +#include "nmie-precision.hpp"
 | 
	
		
			
				|  |  | +#include <array>
 | 
	
		
			
				|  |  | +#include <algorithm>
 | 
	
		
			
				|  |  | +#include <cstdio>
 | 
	
		
			
				|  |  | +#include <cstdlib>
 | 
	
		
			
				|  |  | +#include <iostream>
 | 
	
		
			
				|  |  | +#include <iomanip>
 | 
	
		
			
				|  |  | +#include <stdexcept>
 | 
	
		
			
				|  |  | +#include <vector>
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +namespace nmie {  
 | 
	
		
			
				|  |  | +  //helpers
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  
 | 
	
		
			
				|  |  | +  
 | 
	
		
			
				|  |  | +  template<class T> inline T pow2(const T value) {return value*value;}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  template<class T> inline T cabs(const std::complex<T> value)
 | 
	
		
			
				|  |  | +  {return nmm::sqrt(pow2(value.real()) + pow2(value.imag()));}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  int newround(FloatType x) {
 | 
	
		
			
				|  |  | +    return x >= 0 ? static_cast<int>(x + 0.5):static_cast<int>(x - 0.5);
 | 
	
		
			
				|  |  | +    //return x >= 0 ? (x + 0.5).convert_to<int>():(x - 0.5).convert_to<int>();
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +  template<typename T>
 | 
	
		
			
				|  |  | +  inline std::complex<T> my_exp(const std::complex<T>& x) { 
 | 
	
		
			
				|  |  | +    using std::exp; // use ADL
 | 
	
		
			
				|  |  | +    T const& r = exp(x.real());
 | 
	
		
			
				|  |  | +    return std::polar(r, x.imag()); 
 | 
	
		
			
				|  |  | +  }  
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  template <typename ToFloatType, typename FromFloatType>
 | 
	
		
			
				|  |  | +  std::vector<ToFloatType> ConvertVector(std::vector<FromFloatType> x) {
 | 
	
		
			
				|  |  | +    std::vector<ToFloatType> new_x;
 | 
	
		
			
				|  |  | +    for (auto element : x) {
 | 
	
		
			
				|  |  | +      new_x.push_back(static_cast<ToFloatType>(element));
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    return new_x;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  template <typename ToFloatType, typename FromFloatType>
 | 
	
		
			
				|  |  | +  std::vector<std::complex<ToFloatType> > ConvertComplexVector(std::vector<std::complex<FromFloatType> > x) {
 | 
	
		
			
				|  |  | +    std::vector<std::complex<ToFloatType> > new_x;
 | 
	
		
			
				|  |  | +    for (auto element : x) {
 | 
	
		
			
				|  |  | +      new_x.push_back(std::complex<ToFloatType>(static_cast<ToFloatType>(element.real()),
 | 
	
		
			
				|  |  | +						static_cast<ToFloatType>(element.imag())
 | 
	
		
			
				|  |  | +						)
 | 
	
		
			
				|  |  | +		      );
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    return new_x;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  template <typename ToFloatType, typename FromFloatType>
 | 
	
		
			
				|  |  | +  std::vector<std::vector<std::complex<ToFloatType> > > ConvertComplexVectorVector(std::vector<std::vector<std::complex<FromFloatType> > > x) {
 | 
	
		
			
				|  |  | +    std::vector<std::vector<std::complex<ToFloatType> > > new_x;
 | 
	
		
			
				|  |  | +    std::vector<std::complex<ToFloatType> >  new_y;
 | 
	
		
			
				|  |  | +    for (auto y : x) {
 | 
	
		
			
				|  |  | +      new_y.clear();
 | 
	
		
			
				|  |  | +      for (auto element : y) {
 | 
	
		
			
				|  |  | +	new_y.push_back(std::complex<ToFloatType>(static_cast<ToFloatType>(element.real()),
 | 
	
		
			
				|  |  | +						static_cast<ToFloatType>(element.imag())
 | 
	
		
			
				|  |  | +						  )
 | 
	
		
			
				|  |  | +			);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      new_x.push_back(new_y);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    return new_x;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +  
 | 
	
		
			
				|  |  | +  
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated Qext                                     //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  FloatType MultiLayerMie<FloatType>::GetQext() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return Qext_;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated Qabs                                     //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  FloatType MultiLayerMie<FloatType>::GetQabs() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return Qabs_;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated Qsca                                     //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  FloatType MultiLayerMie<FloatType>::GetQsca() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return Qsca_;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated Qbk                                      //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  FloatType MultiLayerMie<FloatType>::GetQbk() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return Qbk_;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated Qpr                                      //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  FloatType MultiLayerMie<FloatType>::GetQpr() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return Qpr_;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated assymetry factor                         //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  FloatType MultiLayerMie<FloatType>::GetAsymmetryFactor() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return asymmetry_factor_;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated Albedo                                   //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  FloatType MultiLayerMie<FloatType>::GetAlbedo() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return albedo_;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated S1                                       //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  std::vector<std::complex<FloatType> > MultiLayerMie<FloatType>::GetS1() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return S1_;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated S2                                       //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  std::vector<std::complex<FloatType> > MultiLayerMie<FloatType>::GetS2() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return S2_;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Modify scattering (theta) angles                                       //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::SetAngles(const std::vector<FloatType>& angles) {
 | 
	
		
			
				|  |  | +    MarkUncalculated();
 | 
	
		
			
				|  |  | +    theta_ = angles;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Modify size of all layers                                             //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::SetLayersSize(const std::vector<FloatType>& layer_size) {
 | 
	
		
			
				|  |  | +    MarkUncalculated();
 | 
	
		
			
				|  |  | +    size_param_.clear();
 | 
	
		
			
				|  |  | +    FloatType prev_layer_size = 0.0;
 | 
	
		
			
				|  |  | +    for (auto curr_layer_size : layer_size) {
 | 
	
		
			
				|  |  | +      if (curr_layer_size <= 0.0)
 | 
	
		
			
				|  |  | +        throw std::invalid_argument("Size parameter should be positive!");
 | 
	
		
			
				|  |  | +      if (prev_layer_size > curr_layer_size)
 | 
	
		
			
				|  |  | +        throw std::invalid_argument
 | 
	
		
			
				|  |  | +          ("Size parameter for next layer should be larger than the previous one!");
 | 
	
		
			
				|  |  | +      prev_layer_size = curr_layer_size;
 | 
	
		
			
				|  |  | +      size_param_.push_back(curr_layer_size);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Modify refractive index of all layers                                  //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::SetLayersIndex(const std::vector< std::complex<FloatType> >& index) {
 | 
	
		
			
				|  |  | +    MarkUncalculated();
 | 
	
		
			
				|  |  | +    refractive_index_ = index;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Modify coordinates for field calculation                               //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::SetFieldCoords(const std::vector< std::vector<FloatType> >& coords) {
 | 
	
		
			
				|  |  | +    if (coords.size() != 3)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("Error! Wrong dimension of field monitor points!");
 | 
	
		
			
				|  |  | +    if (coords[0].size() != coords[1].size() || coords[0].size() != coords[2].size())
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("Error! Missing coordinates for field monitor points!");
 | 
	
		
			
				|  |  | +    coords_ = coords;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Modify index of PEC layer                                              //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::SetPECLayer(int layer_position) {
 | 
	
		
			
				|  |  | +    MarkUncalculated();
 | 
	
		
			
				|  |  | +    if (layer_position < 0 && layer_position != -1)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("Error! Layers are numbered from 0!");
 | 
	
		
			
				|  |  | +    PEC_layer_position_ = layer_position;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Set maximun number of terms to be used                                 //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::SetMaxTerms(int nmax) {
 | 
	
		
			
				|  |  | +    MarkUncalculated();
 | 
	
		
			
				|  |  | +    nmax_preset_ = nmax;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Get total size parameter of particle                                   //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  FloatType MultiLayerMie<FloatType>::GetSizeParameter() {
 | 
	
		
			
				|  |  | +    if (size_param_.size() > 0)
 | 
	
		
			
				|  |  | +      return size_param_.back();
 | 
	
		
			
				|  |  | +    else
 | 
	
		
			
				|  |  | +      return 0;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Mark uncalculated                                                      //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::MarkUncalculated() {
 | 
	
		
			
				|  |  | +    isExpCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +    isScaCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    isMieCalculated_ = false;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Clear layer information                                                //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::ClearLayers() {
 | 
	
		
			
				|  |  | +    MarkUncalculated();
 | 
	
		
			
				|  |  | +    size_param_.clear();
 | 
	
		
			
				|  |  | +    refractive_index_.clear();
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  //                         Computational core
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Calculate calcNstop - equation (17)                                    //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::calcNstop() {
 | 
	
		
			
				|  |  | +    const FloatType& xL = size_param_.back();
 | 
	
		
			
				|  |  | +    if (xL <= 8) {
 | 
	
		
			
				|  |  | +      nmax_ = newround(xL + 4.0*pow(xL, 1.0/3.0) + 1);
 | 
	
		
			
				|  |  | +    } else if (xL <= 4200) {
 | 
	
		
			
				|  |  | +      nmax_ = newround(xL + 4.05*pow(xL, 1.0/3.0) + 2);
 | 
	
		
			
				|  |  | +    } else {
 | 
	
		
			
				|  |  | +      nmax_ = newround(xL + 4.0*pow(xL, 1.0/3.0) + 2);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Maximum number of terms required for the calculation                   //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::calcNmax(unsigned int first_layer) {
 | 
	
		
			
				|  |  | +    int ri, riM1;
 | 
	
		
			
				|  |  | +    const std::vector<FloatType>& x = size_param_;
 | 
	
		
			
				|  |  | +    const std::vector<std::complex<FloatType> >& m = refractive_index_;
 | 
	
		
			
				|  |  | +    calcNstop();  // Set initial nmax_ value
 | 
	
		
			
				|  |  | +    for (unsigned int i = first_layer; i < x.size(); i++) {
 | 
	
		
			
				|  |  | +      if (static_cast<int>(i) > PEC_layer_position_)  // static_cast used to avoid warning
 | 
	
		
			
				|  |  | +        ri = newround(cabs(x[i]*m[i]));
 | 
	
		
			
				|  |  | +      else
 | 
	
		
			
				|  |  | +        ri = 0;
 | 
	
		
			
				|  |  | +      nmax_ = std::max(nmax_, ri);
 | 
	
		
			
				|  |  | +      // first layer is pec, if pec is present
 | 
	
		
			
				|  |  | +      if ((i > first_layer) && (static_cast<int>(i - 1) > PEC_layer_position_))
 | 
	
		
			
				|  |  | +        riM1 = newround(cabs(x[i - 1]* m[i]));
 | 
	
		
			
				|  |  | +      else
 | 
	
		
			
				|  |  | +        riM1 = 0;
 | 
	
		
			
				|  |  | +      nmax_ = std::max(nmax_, riM1);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    nmax_ += 15;  // Final nmax_ value
 | 
	
		
			
				|  |  | +    // nmax_ *= nmax_;
 | 
	
		
			
				|  |  | +    // printf("using nmax %i\n", nmax_);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Calculate an - equation (5)                                            //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  std::complex<FloatType> MultiLayerMie<FloatType>::calc_an(int n, FloatType XL, std::complex<FloatType> Ha, std::complex<FloatType> mL,
 | 
	
		
			
				|  |  | +                                              std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL,
 | 
	
		
			
				|  |  | +                                              std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::complex<FloatType> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
 | 
	
		
			
				|  |  | +    std::complex<FloatType> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
 | 
	
		
			
				|  |  | +    // std::cout<< std::setprecision(100)
 | 
	
		
			
				|  |  | +    // 	     << "Ql "	<< PsiXL
 | 
	
		
			
				|  |  | +    // 	     <<std::endl;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    return Num/Denom;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Calculate bn - equation (6)                                            //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  std::complex<FloatType> MultiLayerMie<FloatType>::calc_bn(int n, FloatType XL, std::complex<FloatType> Hb, std::complex<FloatType> mL,
 | 
	
		
			
				|  |  | +                                              std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL,
 | 
	
		
			
				|  |  | +                                              std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::complex<FloatType> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
 | 
	
		
			
				|  |  | +    std::complex<FloatType> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    return Num/Denom;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Calculates S1 - equation (25a)                                         //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  std::complex<FloatType> MultiLayerMie<FloatType>::calc_S1(int n, std::complex<FloatType> an, std::complex<FloatType> bn,
 | 
	
		
			
				|  |  | +                                              FloatType Pi, FloatType Tau) {
 | 
	
		
			
				|  |  | +    return FloatType(n + n + 1)*(Pi*an + Tau*bn)/FloatType(n*n + n);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Calculates S2 - equation (25b) (it's the same as (25a), just switches  //
 | 
	
		
			
				|  |  | +  // Pi and Tau)                                                            //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  std::complex<FloatType> MultiLayerMie<FloatType>::calc_S2(int n, std::complex<FloatType> an, std::complex<FloatType> bn,
 | 
	
		
			
				|  |  | +                                              FloatType Pi, FloatType Tau) {
 | 
	
		
			
				|  |  | +    return calc_S1(n, an, bn, Tau, Pi);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function calculates the logarithmic derivatives of the Riccati-Bessel       //
 | 
	
		
			
				|  |  | +  // functions (D1 and D3) for a complex argument (z).                                //
 | 
	
		
			
				|  |  | +  // Equations (16a), (16b) and (18a) - (18d)                                         //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   z: Complex argument to evaluate D1 and D3                                      //
 | 
	
		
			
				|  |  | +  //   nmax_: Maximum number of terms to calculate D1 and D3                          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   D1, D3: Logarithmic derivatives of the Riccati-Bessel functions                //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::calcD1D3(const std::complex<FloatType> z,
 | 
	
		
			
				|  |  | +                               std::vector<std::complex<FloatType> >& D1,
 | 
	
		
			
				|  |  | +                               std::vector<std::complex<FloatType> >& D3) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Downward recurrence for D1 - equations (16a) and (16b)
 | 
	
		
			
				|  |  | +    D1[nmax_] = std::complex<FloatType>(0.0, 0.0);
 | 
	
		
			
				|  |  | +    std::complex<FloatType> c_one(1.0, 0.0);
 | 
	
		
			
				|  |  | +    const std::complex<FloatType> zinv = std::complex<FloatType>(1.0, 0.0)/z;
 | 
	
		
			
				|  |  | +    for (int n = nmax_; n > 0; n--) {
 | 
	
		
			
				|  |  | +      D1[n - 1] = static_cast<FloatType>(n)*zinv - c_one/(D1[n] + static_cast<FloatType>(n)*zinv);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    // TODO: Do we need this check?
 | 
	
		
			
				|  |  | +    // if (cabs(D1[0]) > 1.0e15) {
 | 
	
		
			
				|  |  | +    //   throw std::invalid_argument("Unstable D1! Please, try to change input parameters!\n");
 | 
	
		
			
				|  |  | +    // //printf("Warning: Potentially unstable D1! Please, try to change input parameters!\n");
 | 
	
		
			
				|  |  | +    // }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
 | 
	
		
			
				|  |  | +    PsiZeta_[0] = static_cast<FloatType>(0.5)*(static_cast<FloatType>(1.0) - std::complex<FloatType>(nmm::cos(2.0*z.real()), nmm::sin(2.0*z.real()))
 | 
	
		
			
				|  |  | +		       *static_cast<FloatType>(nmm::exp(-2.0*z.imag())));
 | 
	
		
			
				|  |  | +    D3[0] = std::complex<FloatType>(0.0, 1.0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | +      PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<FloatType>(n)*zinv - D1[n - 1])
 | 
	
		
			
				|  |  | +                                   *(static_cast<FloatType>(n)*zinv - D3[n - 1]);
 | 
	
		
			
				|  |  | +      D3[n] = D1[n] + std::complex<FloatType>(0.0, 1.0)/PsiZeta_[n];
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a       //
 | 
	
		
			
				|  |  | +  // complex argument (z).                                                            //
 | 
	
		
			
				|  |  | +  // Equations (20a) - (21b)                                                          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   z: Complex argument to evaluate Psi and Zeta                                   //
 | 
	
		
			
				|  |  | +  //   nmax: Maximum number of terms to calculate Psi and Zeta                        //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   Psi, Zeta: Riccati-Bessel functions                                            //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::calcPsiZeta(std::complex<FloatType> z,
 | 
	
		
			
				|  |  | +                                  std::vector<std::complex<FloatType> >& Psi,
 | 
	
		
			
				|  |  | +                                  std::vector<std::complex<FloatType> >& Zeta) {
 | 
	
		
			
				|  |  | +  
 | 
	
		
			
				|  |  | +    std::complex<FloatType> c_i(0.0, 1.0);
 | 
	
		
			
				|  |  | +    std::vector<std::complex<FloatType> > D1(nmax_ + 1), D3(nmax_ + 1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // First, calculate the logarithmic derivatives
 | 
	
		
			
				|  |  | +    calcD1D3(z, D1, D3);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Now, use the upward recurrence to calculate Psi and Zeta - equations (20a) - (21b)
 | 
	
		
			
				|  |  | +    Psi[0] = std::sin(z);
 | 
	
		
			
				|  |  | +    Zeta[0] = std::sin(z) - c_i*std::cos(z);
 | 
	
		
			
				|  |  | +    for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | +      Psi[n]  =  Psi[n - 1]*(std::complex<FloatType>(n,0.0)/z - D1[n - 1]);
 | 
	
		
			
				|  |  | +      Zeta[n] = Zeta[n - 1]*(std::complex<FloatType>(n,0.0)/z - D3[n - 1]);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function calculates Pi and Tau for a given value of cos(Theta).             //
 | 
	
		
			
				|  |  | +  // Equations (26a) - (26c)                                                          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   nmax_: Maximum number of terms to calculate Pi and Tau                         //
 | 
	
		
			
				|  |  | +  //   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | +  //   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | +  //          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c)   //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::calcPiTau(const FloatType& costheta,
 | 
	
		
			
				|  |  | +                                std::vector<FloatType>& Pi, std::vector<FloatType>& Tau) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    int i;
 | 
	
		
			
				|  |  | +    //****************************************************//
 | 
	
		
			
				|  |  | +    // Equations (26a) - (26c)                            //
 | 
	
		
			
				|  |  | +    //****************************************************//
 | 
	
		
			
				|  |  | +    // Initialize Pi and Tau
 | 
	
		
			
				|  |  | +    Pi[0] = 1.0;  // n=1
 | 
	
		
			
				|  |  | +    Tau[0] = costheta;
 | 
	
		
			
				|  |  | +    // Calculate the actual values
 | 
	
		
			
				|  |  | +    if (nmax_ > 1) {
 | 
	
		
			
				|  |  | +      Pi[1] = 3*costheta*Pi[0]; //n=2
 | 
	
		
			
				|  |  | +      Tau[1] = 2*costheta*Pi[1] - 3*Pi[0];
 | 
	
		
			
				|  |  | +      for (i = 2; i < nmax_; i++) { //n=[3..nmax_]
 | 
	
		
			
				|  |  | +        Pi[i] = ((i + i + 1)*costheta*Pi[i - 1] - (i + 1)*Pi[i - 2])/i;
 | 
	
		
			
				|  |  | +        Tau[i] = (i + 1)*costheta*Pi[i] - (i + 2)*Pi[i - 1];
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +  }  // end of MultiLayerMie::calcPiTau(...)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function calculates vector spherical harmonics (eq. 4.50, p. 95 BH),        //
 | 
	
		
			
				|  |  | +  // required to calculate the near-field parameters.                                 //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   Rho: Radial distance                                                           //
 | 
	
		
			
				|  |  | +  //   Phi: Azimuthal angle                                                           //
 | 
	
		
			
				|  |  | +  //   Theta: Polar angle                                                             //
 | 
	
		
			
				|  |  | +  //   rn: Either the spherical Ricatti-Bessel function of first or third kind        //
 | 
	
		
			
				|  |  | +  //   Dn: Logarithmic derivative of rn                                               //
 | 
	
		
			
				|  |  | +  //   Pi, Tau: Angular functions Pi and Tau                                          //
 | 
	
		
			
				|  |  | +  //   n: Order of vector spherical harmonics                                         //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   Mo1n, Me1n, No1n, Ne1n: Complex vector spherical harmonics                     //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::calcSpherHarm(const std::complex<FloatType> Rho, const FloatType Theta, const FloatType Phi,
 | 
	
		
			
				|  |  | +                                    const std::complex<FloatType>& rn, const std::complex<FloatType>& Dn,
 | 
	
		
			
				|  |  | +                                    const FloatType& Pi, const FloatType& Tau, const FloatType& n,
 | 
	
		
			
				|  |  | +                                    std::vector<std::complex<FloatType> >& Mo1n, std::vector<std::complex<FloatType> >& Me1n, 
 | 
	
		
			
				|  |  | +                                    std::vector<std::complex<FloatType> >& No1n, std::vector<std::complex<FloatType> >& Ne1n) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // using eq 4.50 in BH
 | 
	
		
			
				|  |  | +    std::complex<FloatType> c_zero(0.0, 0.0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    using nmm::sin;
 | 
	
		
			
				|  |  | +    using nmm::cos;
 | 
	
		
			
				|  |  | +    Mo1n[0] = c_zero;
 | 
	
		
			
				|  |  | +    Mo1n[1] = cos(Phi)*Pi*rn/Rho;
 | 
	
		
			
				|  |  | +    Mo1n[2] = -sin(Phi)*Tau*rn/Rho;
 | 
	
		
			
				|  |  | +    Me1n[0] = c_zero;
 | 
	
		
			
				|  |  | +    Me1n[1] = -sin(Phi)*Pi*rn/Rho;
 | 
	
		
			
				|  |  | +    Me1n[2] = -cos(Phi)*Tau*rn/Rho;
 | 
	
		
			
				|  |  | +    No1n[0] = sin(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;
 | 
	
		
			
				|  |  | +    No1n[1] = sin(Phi)*Tau*Dn*rn/Rho;
 | 
	
		
			
				|  |  | +    No1n[2] = cos(Phi)*Pi*Dn*rn/Rho;
 | 
	
		
			
				|  |  | +    Ne1n[0] = cos(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;
 | 
	
		
			
				|  |  | +    Ne1n[1] = cos(Phi)*Tau*Dn*rn/Rho;
 | 
	
		
			
				|  |  | +    Ne1n[2] = -sin(Phi)*Pi*Dn*rn/Rho;
 | 
	
		
			
				|  |  | +  }  // end of MultiLayerMie::calcSpherHarm(...)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function calculates the scattering coefficients required to calculate       //
 | 
	
		
			
				|  |  | +  // both the near- and far-field parameters.                                         //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +  //   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | +  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | +  //         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | +  //         set this parameter to -1 and the function will calculate it.             //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   an, bn: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Return value:                                                                    //
 | 
	
		
			
				|  |  | +  //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::calcScattCoeffs() {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    isScaCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    const std::vector<FloatType>& x = size_param_;
 | 
	
		
			
				|  |  | +    const std::vector<std::complex<FloatType> >& m = refractive_index_;
 | 
	
		
			
				|  |  | +    const int& pl = PEC_layer_position_;
 | 
	
		
			
				|  |  | +    const int L = refractive_index_.size();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    //************************************************************************//
 | 
	
		
			
				|  |  | +    // Calculate the index of the first layer. It can be either 0 (default)   //
 | 
	
		
			
				|  |  | +    // or the index of the outermost PEC layer. In the latter case all layers //
 | 
	
		
			
				|  |  | +    // below the PEC are discarded.                                           //
 | 
	
		
			
				|  |  | +    // ***********************************************************************//
 | 
	
		
			
				|  |  | +    int fl = (pl > 0) ? pl : 0;
 | 
	
		
			
				|  |  | +    if (nmax_preset_ <= 0) calcNmax(fl);
 | 
	
		
			
				|  |  | +    else nmax_ = nmax_preset_;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::complex<FloatType> z1, z2;
 | 
	
		
			
				|  |  | +    //**************************************************************************//
 | 
	
		
			
				|  |  | +    // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which  //
 | 
	
		
			
				|  |  | +    // means that index = layer number - 1 or index = n - 1. The only exception //
 | 
	
		
			
				|  |  | +    // are the arrays for representing D1, D3 and Q because they need a value   //
 | 
	
		
			
				|  |  | +    // for the index 0 (zero), hence it is important to consider this shift     //
 | 
	
		
			
				|  |  | +    // between different arrays. The change was done to optimize memory usage.  //
 | 
	
		
			
				|  |  | +    //**************************************************************************//
 | 
	
		
			
				|  |  | +    // Allocate memory to the arrays
 | 
	
		
			
				|  |  | +    std::vector<std::complex<FloatType> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
 | 
	
		
			
				|  |  | +                                       D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::vector<std::vector<std::complex<FloatType> > > Q(L), Ha(L), Hb(L);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    for (int l = 0; l < L; l++) {
 | 
	
		
			
				|  |  | +      Q[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +      Ha[l].resize(nmax_);
 | 
	
		
			
				|  |  | +      Hb[l].resize(nmax_);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    an_.resize(nmax_);
 | 
	
		
			
				|  |  | +    bn_.resize(nmax_);
 | 
	
		
			
				|  |  | +    PsiZeta_.resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::vector<std::complex<FloatType> > PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    //*************************************************//
 | 
	
		
			
				|  |  | +    // Calculate D1 and D3 for z1 in the first layer   //
 | 
	
		
			
				|  |  | +    //*************************************************//
 | 
	
		
			
				|  |  | +    if (fl == pl) {  // PEC layer
 | 
	
		
			
				|  |  | +      for (int n = 0; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | +        D1_mlxl[n] = std::complex<FloatType>(0.0, - 1.0);
 | 
	
		
			
				|  |  | +        D3_mlxl[n] = std::complex<FloatType>(0.0, 1.0);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    } else { // Regular layer
 | 
	
		
			
				|  |  | +      z1 = x[fl]* m[fl];
 | 
	
		
			
				|  |  | +      // Calculate D1 and D3
 | 
	
		
			
				|  |  | +      calcD1D3(z1, D1_mlxl, D3_mlxl);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    //******************************************************************//
 | 
	
		
			
				|  |  | +    // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
 | 
	
		
			
				|  |  | +    //******************************************************************//
 | 
	
		
			
				|  |  | +    for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | +      Ha[fl][n] = D1_mlxl[n + 1];
 | 
	
		
			
				|  |  | +      Hb[fl][n] = D1_mlxl[n + 1];
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    //*****************************************************//
 | 
	
		
			
				|  |  | +    // Iteration from the second layer to the last one (L) //
 | 
	
		
			
				|  |  | +    //*****************************************************//
 | 
	
		
			
				|  |  | +    std::complex<FloatType> Temp, Num, Denom;
 | 
	
		
			
				|  |  | +    std::complex<FloatType> G1, G2;
 | 
	
		
			
				|  |  | +    for (int l = fl + 1; l < L; l++) {
 | 
	
		
			
				|  |  | +      //************************************************************//
 | 
	
		
			
				|  |  | +      //Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L   //
 | 
	
		
			
				|  |  | +      //************************************************************//
 | 
	
		
			
				|  |  | +      z1 = x[l]*m[l];
 | 
	
		
			
				|  |  | +      z2 = x[l - 1]*m[l];
 | 
	
		
			
				|  |  | +      //Calculate D1 and D3 for z1
 | 
	
		
			
				|  |  | +      calcD1D3(z1, D1_mlxl, D3_mlxl);
 | 
	
		
			
				|  |  | +      //Calculate D1 and D3 for z2
 | 
	
		
			
				|  |  | +      calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      //*************************************************//
 | 
	
		
			
				|  |  | +      //Calculate Q, Ha and Hb in the layers fl + 1..L   //
 | 
	
		
			
				|  |  | +      //*************************************************//
 | 
	
		
			
				|  |  | +      // Upward recurrence for Q - equations (19a) and (19b)
 | 
	
		
			
				|  |  | +      Num = std::complex<FloatType>(nmm::exp(-2.0*(z1.imag() - z2.imag())), 0.0)
 | 
	
		
			
				|  |  | +	*std::complex<FloatType>(nmm::cos(-2.0*z2.real()) - nmm::exp(-2.0*z2.imag()), nmm::sin(-2.0*z2.real()));
 | 
	
		
			
				|  |  | +      Denom = std::complex<FloatType>(nmm::cos(-2.0*z1.real()) - nmm::exp(-2.0*z1.imag()), nmm::sin(-2.0*z1.real()));
 | 
	
		
			
				|  |  | +      Q[l][0] = Num/Denom;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | +        Num = (z1*D1_mlxl[n] + FloatType(n))*(FloatType(n) - z1*D3_mlxl[n - 1]);
 | 
	
		
			
				|  |  | +        Denom = (z2*D1_mlxlM1[n] + FloatType(n))*(FloatType(n) - z2*D3_mlxlM1[n - 1]);
 | 
	
		
			
				|  |  | +        Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
 | 
	
		
			
				|  |  | +      for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | +        //Ha
 | 
	
		
			
				|  |  | +        if ((l - 1) == pl) { // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | +          G1 = -D1_mlxlM1[n];
 | 
	
		
			
				|  |  | +          G2 = -D3_mlxlM1[n];
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +          G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
 | 
	
		
			
				|  |  | +          G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
 | 
	
		
			
				|  |  | +        }  // end of if PEC
 | 
	
		
			
				|  |  | +        Temp = Q[l][n]*G1;
 | 
	
		
			
				|  |  | +        Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
 | 
	
		
			
				|  |  | +        Denom = G2 - Temp;
 | 
	
		
			
				|  |  | +        Ha[l][n - 1] = Num/Denom;
 | 
	
		
			
				|  |  | +        //Hb
 | 
	
		
			
				|  |  | +        if ((l - 1) == pl) { // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | +          G1 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | +          G2 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +          G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
 | 
	
		
			
				|  |  | +          G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
 | 
	
		
			
				|  |  | +        }  // end of if PEC
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Temp = Q[l][n]*G1;
 | 
	
		
			
				|  |  | +        Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
 | 
	
		
			
				|  |  | +        Denom = (G2- Temp);
 | 
	
		
			
				|  |  | +        Hb[l][n - 1] = (Num/ Denom);
 | 
	
		
			
				|  |  | +      }  // end of for Ha and Hb terms
 | 
	
		
			
				|  |  | +    }  // end of for layers iteration
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    //**************************************//
 | 
	
		
			
				|  |  | +    //Calculate Psi and Zeta for XL         //
 | 
	
		
			
				|  |  | +    //**************************************//
 | 
	
		
			
				|  |  | +    // Calculate PsiXL and ZetaXL
 | 
	
		
			
				|  |  | +    calcPsiZeta(std::complex<FloatType>(x[L - 1],0.0), PsiXL, ZetaXL);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    //*********************************************************************//
 | 
	
		
			
				|  |  | +    // Finally, we calculate the scattering coefficients (an and bn) and   //
 | 
	
		
			
				|  |  | +    // the angular functions (Pi and Tau). Note that for these arrays the  //
 | 
	
		
			
				|  |  | +    // first layer is 0 (zero), in future versions all arrays will follow  //
 | 
	
		
			
				|  |  | +    // this convention to save memory. (13 Nov, 2014)                      //
 | 
	
		
			
				|  |  | +    //*********************************************************************//
 | 
	
		
			
				|  |  | +    for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | +      //********************************************************************//
 | 
	
		
			
				|  |  | +      //Expressions for calculating an and bn coefficients are not valid if //
 | 
	
		
			
				|  |  | +      //there is only one PEC layer (ie, for a simple PEC sphere).          //
 | 
	
		
			
				|  |  | +      //********************************************************************//
 | 
	
		
			
				|  |  | +      if (pl < (L - 1)) {
 | 
	
		
			
				|  |  | +        an_[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | +        bn_[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | +      } else {
 | 
	
		
			
				|  |  | +        an_[n] = calc_an(n + 1, x[L - 1], std::complex<FloatType>(0.0, 0.0), std::complex<FloatType>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | +        bn_[n] = PsiXL[n + 1]/ZetaXL[n + 1];
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }  // end of for an and bn terms
 | 
	
		
			
				|  |  | +    isScaCoeffsCalc_ = true;
 | 
	
		
			
				|  |  | +  }  // end of MultiLayerMie::calcScattCoeffs()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function calculates the actual scattering parameters and amplitudes         //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +  //   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | +  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +  //   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | +  //   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | +  //          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | +  //   nmax_: Maximum number of multipolar expansion terms to be used for the         //
 | 
	
		
			
				|  |  | +  //         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | +  //         set this parameter to -1 and the function will calculate it              //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   Qext: Efficiency factor for extinction                                         //
 | 
	
		
			
				|  |  | +  //   Qsca: Efficiency factor for scattering                                         //
 | 
	
		
			
				|  |  | +  //   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
 | 
	
		
			
				|  |  | +  //   Qbk: Efficiency factor for backscattering                                      //
 | 
	
		
			
				|  |  | +  //   Qpr: Efficiency factor for the radiation pressure                              //
 | 
	
		
			
				|  |  | +  //   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
 | 
	
		
			
				|  |  | +  //   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
 | 
	
		
			
				|  |  | +  //   S1, S2: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Return value:                                                                    //
 | 
	
		
			
				|  |  | +  //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::RunMieCalculation() {
 | 
	
		
			
				|  |  | +    if (size_param_.size() != refractive_index_.size())
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("Each size parameter should have only one index!");
 | 
	
		
			
				|  |  | +    if (size_param_.size() == 0)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("Initialize model first!");
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    const std::vector<FloatType>& x = size_param_;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    MarkUncalculated();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Calculate scattering coefficients
 | 
	
		
			
				|  |  | +    calcScattCoeffs();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Initialize the scattering parameters
 | 
	
		
			
				|  |  | +    Qext_ = 0.0;
 | 
	
		
			
				|  |  | +    Qsca_ = 0.0;
 | 
	
		
			
				|  |  | +    Qabs_ = 0.0;
 | 
	
		
			
				|  |  | +    Qbk_ = 0.0;
 | 
	
		
			
				|  |  | +    Qpr_ = 0.0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    asymmetry_factor_ = 0.0;
 | 
	
		
			
				|  |  | +    albedo_ = 0.0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Initialize the scattering amplitudes
 | 
	
		
			
				|  |  | +    std::vector<std::complex<FloatType> > tmp1(theta_.size(),std::complex<FloatType>(0.0, 0.0));
 | 
	
		
			
				|  |  | +    S1_.swap(tmp1);
 | 
	
		
			
				|  |  | +    S2_ = S1_;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::vector<FloatType> Pi(nmax_), Tau(nmax_);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::complex<FloatType> Qbktmp(0.0, 0.0);
 | 
	
		
			
				|  |  | +    std::vector< std::complex<FloatType> > Qbktmp_ch(nmax_ - 1, Qbktmp);
 | 
	
		
			
				|  |  | +    // By using downward recurrence we avoid loss of precision due to float rounding errors
 | 
	
		
			
				|  |  | +    // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
 | 
	
		
			
				|  |  | +    //      http://en.wikipedia.org/wiki/Loss_of_significance
 | 
	
		
			
				|  |  | +    for (int i = nmax_ - 2; i >= 0; i--) {
 | 
	
		
			
				|  |  | +      const int n = i + 1;
 | 
	
		
			
				|  |  | +      // Equation (27)
 | 
	
		
			
				|  |  | +      Qext_ += (n + n + 1.0)*(an_[i].real() + bn_[i].real());
 | 
	
		
			
				|  |  | +      // Equation (28)
 | 
	
		
			
				|  |  | +      Qsca_ += (n + n + 1.0)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
 | 
	
		
			
				|  |  | +                            + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
 | 
	
		
			
				|  |  | +      // Equation (29)
 | 
	
		
			
				|  |  | +      Qpr_ += ((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real())
 | 
	
		
			
				|  |  | +               + ((FloatType)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real());
 | 
	
		
			
				|  |  | +      // Equation (33)
 | 
	
		
			
				|  |  | +      Qbktmp += (FloatType)(n + n + 1)*(1 - 2*(n % 2))*(an_[i]- bn_[i]);
 | 
	
		
			
				|  |  | +      // Calculate the scattering amplitudes (S1 and S2)    //
 | 
	
		
			
				|  |  | +      // Precalculate cos(theta) - gives about 5% speed up.
 | 
	
		
			
				|  |  | +      std::vector<FloatType> costheta(theta_.size(), 0.0);
 | 
	
		
			
				|  |  | +      for (int t = 0; t < theta_.size(); t++) {
 | 
	
		
			
				|  |  | +	costheta[t] = nmm::cos(theta_[t]);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      // Equations (25a) - (25b)                            //
 | 
	
		
			
				|  |  | +      for (unsigned int t = 0; t < theta_.size(); t++) {
 | 
	
		
			
				|  |  | +        calcPiTau(costheta[t], Pi, Tau);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[i], Tau[i]);
 | 
	
		
			
				|  |  | +        S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[i], Tau[i]);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    FloatType x2 = pow2(x.back());
 | 
	
		
			
				|  |  | +    Qext_ = 2.0*(Qext_)/x2;                                 // Equation (27)
 | 
	
		
			
				|  |  | +    Qsca_ = 2.0*(Qsca_)/x2;                                 // Equation (28)
 | 
	
		
			
				|  |  | +    Qpr_ = Qext_ - 4.0*(Qpr_)/x2;                           // Equation (29)
 | 
	
		
			
				|  |  | +    Qabs_ = Qext_ - Qsca_;                                  // Equation (30)
 | 
	
		
			
				|  |  | +    albedo_ = Qsca_/Qext_;                                  // Equation (31)
 | 
	
		
			
				|  |  | +    asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_;               // Equation (32)
 | 
	
		
			
				|  |  | +    Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2;    // Equation (33)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    isMieCalculated_ = true;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function calculates the expansion coefficients inside the particle,         //
 | 
	
		
			
				|  |  | +  // required to calculate the near-field parameters.                                 //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +  //   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | +  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | +  //         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | +  //         set this parameter to -1 and the function will calculate it.             //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   aln, bln, cln, dln: Complex scattering amplitudes inside the particle          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Return value:                                                                    //
 | 
	
		
			
				|  |  | +  //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::calcExpanCoeffs() {
 | 
	
		
			
				|  |  | +    if (!isScaCoeffsCalc_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("(calcExpanCoeffs) You should calculate external coefficients first!");
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    isExpCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::complex<FloatType> c_one(1.0, 0.0), c_zero(0.0, 0.0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    const int L = refractive_index_.size();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    aln_.resize(L + 1);
 | 
	
		
			
				|  |  | +    bln_.resize(L + 1);
 | 
	
		
			
				|  |  | +    cln_.resize(L + 1);
 | 
	
		
			
				|  |  | +    dln_.resize(L + 1);
 | 
	
		
			
				|  |  | +    for (int l = 0; l <= L; l++) {
 | 
	
		
			
				|  |  | +      aln_[l].resize(nmax_);
 | 
	
		
			
				|  |  | +      bln_[l].resize(nmax_);
 | 
	
		
			
				|  |  | +      cln_[l].resize(nmax_);
 | 
	
		
			
				|  |  | +      dln_[l].resize(nmax_);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Yang, paragraph under eq. A3
 | 
	
		
			
				|  |  | +    // a^(L + 1)_n = a_n, d^(L + 1) = 1 ...
 | 
	
		
			
				|  |  | +    for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | +      aln_[L][n] = an_[n];
 | 
	
		
			
				|  |  | +      bln_[L][n] = bn_[n];
 | 
	
		
			
				|  |  | +      cln_[L][n] = c_one;
 | 
	
		
			
				|  |  | +      dln_[L][n] = c_one;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::vector<std::complex<FloatType> > D1z(nmax_ + 1), D1z1(nmax_ + 1), D3z(nmax_ + 1), D3z1(nmax_ + 1);
 | 
	
		
			
				|  |  | +    std::vector<std::complex<FloatType> > Psiz(nmax_ + 1), Psiz1(nmax_ + 1), Zetaz(nmax_ + 1), Zetaz1(nmax_ + 1);
 | 
	
		
			
				|  |  | +    std::complex<FloatType> denomZeta, denomPsi, T1, T2, T3, T4;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    auto& m = refractive_index_;
 | 
	
		
			
				|  |  | +    std::vector< std::complex<FloatType> > m1(L);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    for (int l = 0; l < L - 1; l++) m1[l] = m[l + 1];
 | 
	
		
			
				|  |  | +    m1[L - 1] = std::complex<FloatType> (1.0, 0.0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::complex<FloatType> z, z1;
 | 
	
		
			
				|  |  | +    for (int l = L - 1; l >= 0; l--) {
 | 
	
		
			
				|  |  | +      if (l <= PEC_layer_position_) { // We are inside a PEC. All coefficients must be zero!!!
 | 
	
		
			
				|  |  | +        for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | +          // aln
 | 
	
		
			
				|  |  | +          aln_[l][n] = c_zero;
 | 
	
		
			
				|  |  | +          // bln
 | 
	
		
			
				|  |  | +          bln_[l][n] = c_zero;
 | 
	
		
			
				|  |  | +          // cln
 | 
	
		
			
				|  |  | +          cln_[l][n] = c_zero;
 | 
	
		
			
				|  |  | +          // dln
 | 
	
		
			
				|  |  | +          dln_[l][n] = c_zero;
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      } else { // Regular material, just do the calculation
 | 
	
		
			
				|  |  | +        z = size_param_[l]*m[l];
 | 
	
		
			
				|  |  | +        z1 = size_param_[l]*m1[l];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        calcD1D3(z, D1z, D3z);
 | 
	
		
			
				|  |  | +        calcD1D3(z1, D1z1, D3z1);
 | 
	
		
			
				|  |  | +        calcPsiZeta(z, Psiz, Zetaz);
 | 
	
		
			
				|  |  | +        calcPsiZeta(z1, Psiz1, Zetaz1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | +          int n1 = n + 1;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +          denomZeta = Zetaz[n1]*(D1z[n1] - D3z[n1]);
 | 
	
		
			
				|  |  | +          denomPsi  =  Psiz[n1]*(D1z[n1] - D3z[n1]);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +          T1 =  aln_[l + 1][n]*Zetaz1[n1] - dln_[l + 1][n]*Psiz1[n1];
 | 
	
		
			
				|  |  | +          T2 = (bln_[l + 1][n]*Zetaz1[n1] - cln_[l + 1][n]*Psiz1[n1])*m[l]/m1[l];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +          T3 = (dln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - aln_[l + 1][n]*D3z1[n1]*Zetaz1[n1])*m[l]/m1[l];
 | 
	
		
			
				|  |  | +          T4 =  cln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - bln_[l + 1][n]*D3z1[n1]*Zetaz1[n1];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +          // aln
 | 
	
		
			
				|  |  | +          aln_[l][n] = (D1z[n1]*T1 + T3)/denomZeta;
 | 
	
		
			
				|  |  | +          // bln
 | 
	
		
			
				|  |  | +          bln_[l][n] = (D1z[n1]*T2 + T4)/denomZeta;
 | 
	
		
			
				|  |  | +          // cln
 | 
	
		
			
				|  |  | +          cln_[l][n] = (D3z[n1]*T2 + T4)/denomPsi;
 | 
	
		
			
				|  |  | +          // dln
 | 
	
		
			
				|  |  | +          dln_[l][n] = (D3z[n1]*T1 + T3)/denomPsi;
 | 
	
		
			
				|  |  | +        }  // end of all n
 | 
	
		
			
				|  |  | +      }  // end PEC condition
 | 
	
		
			
				|  |  | +    }  // end of all l
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Check the result and change  aln_[0][n] and aln_[0][n] for exact zero
 | 
	
		
			
				|  |  | +    for (int n = 0; n < nmax_; ++n) {
 | 
	
		
			
				|  |  | +      if (cabs(aln_[0][n]) < 1e-10) aln_[0][n] = 0.0;
 | 
	
		
			
				|  |  | +      else {
 | 
	
		
			
				|  |  | +        //throw std::invalid_argument("Unstable calculation of aln_[0][n]!");
 | 
	
		
			
				|  |  | +	std::cout<< std::setprecision(100)
 | 
	
		
			
				|  |  | +		 << "Warning: Potentially unstable calculation of aln[0]["
 | 
	
		
			
				|  |  | +		 << n << "] = "<< aln_[0][n] <<std::endl;
 | 
	
		
			
				|  |  | +        aln_[0][n] = 0.0;
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      if (cabs(bln_[0][n]) < 1e-10) bln_[0][n] = 0.0;
 | 
	
		
			
				|  |  | +      else {
 | 
	
		
			
				|  |  | +        //throw std::invalid_argument("Unstable calculation of bln_[0][n]!");
 | 
	
		
			
				|  |  | +	std::cout<< std::setprecision(100)
 | 
	
		
			
				|  |  | +		 << "Warning: Potentially unstable calculation of bln[0]["
 | 
	
		
			
				|  |  | +		 << n << "] = "<< bln_[0][n] <<std::endl;
 | 
	
		
			
				|  |  | +        bln_[0][n] = 0.0;
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    isExpCoeffsCalc_ = true;
 | 
	
		
			
				|  |  | +  }  // end of   void MultiLayerMie::calcExpanCoeffs()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function calculates the electric (E) and magnetic (H) fields inside and     //
 | 
	
		
			
				|  |  | +  // around the particle.                                                             //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters (coordinates of the point):                                     //
 | 
	
		
			
				|  |  | +  //   Rho: Radial distance                                                           //
 | 
	
		
			
				|  |  | +  //   Phi: Azimuthal angle                                                           //
 | 
	
		
			
				|  |  | +  //   Theta: Polar angle                                                             //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   E, H: Complex electric and magnetic fields                                     //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::calcField(const FloatType Rho, const FloatType Theta, const FloatType Phi,
 | 
	
		
			
				|  |  | +                                std::vector<std::complex<FloatType> >& E, std::vector<std::complex<FloatType> >& H)  {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::complex<FloatType> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
 | 
	
		
			
				|  |  | +    std::vector<std::complex<FloatType> > ipow = {c_one, c_i, -c_one, -c_i}; // Vector containing precomputed integer powers of i to avoid computation
 | 
	
		
			
				|  |  | +    std::vector<std::complex<FloatType> > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3);
 | 
	
		
			
				|  |  | +    std::vector<std::complex<FloatType> > M1o1n(3), M1e1n(3), N1o1n(3), N1e1n(3);
 | 
	
		
			
				|  |  | +    std::vector<std::complex<FloatType> > Psi(nmax_ + 1), D1n(nmax_ + 1), Zeta(nmax_ + 1), D3n(nmax_ + 1);
 | 
	
		
			
				|  |  | +    std::vector<FloatType> Pi(nmax_), Tau(nmax_);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    int l = 0;  // Layer number
 | 
	
		
			
				|  |  | +    std::complex<FloatType> ml;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Initialize E and H
 | 
	
		
			
				|  |  | +    for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | +      E[i] = c_zero;
 | 
	
		
			
				|  |  | +      H[i] = c_zero;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    
 | 
	
		
			
				|  |  | +    if (Rho > size_param_.back()) {
 | 
	
		
			
				|  |  | +      l = size_param_.size();
 | 
	
		
			
				|  |  | +      ml = c_one;
 | 
	
		
			
				|  |  | +    } else {
 | 
	
		
			
				|  |  | +      for (int i = size_param_.size() - 1; i >= 0 ; i--) {
 | 
	
		
			
				|  |  | +        if (Rho <= size_param_[i]) {
 | 
	
		
			
				|  |  | +          l = i;
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      ml = refractive_index_[l];
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Calculate logarithmic derivative of the Ricatti-Bessel functions
 | 
	
		
			
				|  |  | +    calcD1D3(Rho*ml, D1n, D3n);
 | 
	
		
			
				|  |  | +    // Calculate Ricatti-Bessel functions
 | 
	
		
			
				|  |  | +    calcPsiZeta(Rho*ml, Psi, Zeta);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Calculate angular functions Pi and Tau
 | 
	
		
			
				|  |  | +    calcPiTau(nmm::cos(Theta), Pi, Tau);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    for (int n = nmax_ - 2; n >= 0; n--) {
 | 
	
		
			
				|  |  | +      int n1 = n + 1;
 | 
	
		
			
				|  |  | +      FloatType rn = static_cast<FloatType>(n1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // using BH 4.12 and 4.50
 | 
	
		
			
				|  |  | +      calcSpherHarm(Rho*ml, Theta, Phi, Psi[n1], D1n[n1], Pi[n], Tau[n], rn, M1o1n, M1e1n, N1o1n, N1e1n);
 | 
	
		
			
				|  |  | +      calcSpherHarm(Rho*ml, Theta, Phi, Zeta[n1], D3n[n1], Pi[n], Tau[n], rn, M3o1n, M3e1n, N3o1n, N3e1n);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // Total field in the lth layer: eqs. (1) and (2) in Yang, Appl. Opt., 42 (2003) 1710-1720
 | 
	
		
			
				|  |  | +      std::complex<FloatType> En = ipow[n1 % 4]
 | 
	
		
			
				|  |  | +	*static_cast<FloatType>((rn + rn + 1.0)/(rn*rn + rn));
 | 
	
		
			
				|  |  | +      for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | +        // electric field E [V m - 1] = EF*E0
 | 
	
		
			
				|  |  | +        E[i] += En*(cln_[l][n]*M1o1n[i] - c_i*dln_[l][n]*N1e1n[i]
 | 
	
		
			
				|  |  | +              + c_i*aln_[l][n]*N3e1n[i] -     bln_[l][n]*M3o1n[i]);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        H[i] += En*(-dln_[l][n]*M1e1n[i] - c_i*cln_[l][n]*N1o1n[i]
 | 
	
		
			
				|  |  | +              +  c_i*bln_[l][n]*N3o1n[i] +     aln_[l][n]*M3e1n[i]);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }  // end of for all n
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // magnetic field
 | 
	
		
			
				|  |  | +    std::complex<FloatType> hffact = ml/static_cast<FloatType>(cc_*mu_);
 | 
	
		
			
				|  |  | +    for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | +      H[i] = hffact*H[i];
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +   }  // end of MultiLayerMie::calcField(...)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function calculates complex electric and magnetic field in the surroundings //
 | 
	
		
			
				|  |  | +  // and inside the particle.                                                         //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +  //   pl: Index of PEC layer. If there is none just send 0 (zero)                    //
 | 
	
		
			
				|  |  | +  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | +  //         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | +  //         set this parameter to 0 (zero) and the function will calculate it.       //
 | 
	
		
			
				|  |  | +  //   ncoord: Number of coordinate points                                            //
 | 
	
		
			
				|  |  | +  //   Coords: Array containing all coordinates where the complex electric and        //
 | 
	
		
			
				|  |  | +  //           magnetic fields will be calculated                                     //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   E, H: Complex electric and magnetic field at the provided coordinates          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Return value:                                                                    //
 | 
	
		
			
				|  |  | +  //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  template <typename FloatType>
 | 
	
		
			
				|  |  | +  void MultiLayerMie<FloatType>::RunFieldCalculation() {
 | 
	
		
			
				|  |  | +    FloatType Rho, Theta, Phi;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Calculate scattering coefficients an_ and bn_
 | 
	
		
			
				|  |  | +    calcScattCoeffs();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Calculate expansion coefficients aln_,  bln_, cln_, and dln_
 | 
	
		
			
				|  |  | +    calcExpanCoeffs();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    long total_points = coords_[0].size();
 | 
	
		
			
				|  |  | +    E_.resize(total_points);
 | 
	
		
			
				|  |  | +    H_.resize(total_points);
 | 
	
		
			
				|  |  | +    for (auto& f : E_) f.resize(3);
 | 
	
		
			
				|  |  | +    for (auto& f : H_) f.resize(3);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    for (int point = 0; point < total_points; point++) {
 | 
	
		
			
				|  |  | +      const FloatType& Xp = coords_[0][point];
 | 
	
		
			
				|  |  | +      const FloatType& Yp = coords_[1][point];
 | 
	
		
			
				|  |  | +      const FloatType& Zp = coords_[2][point];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // Convert to spherical coordinates
 | 
	
		
			
				|  |  | +      Rho = nmm::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
 | 
	
		
			
				|  |  | +      Theta = (Rho > 0.0) ? nmm::acos(Zp/Rho) : 0.0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // If Xp=Yp=0 then Phi is undefined. Just set it to zero to avoid problems
 | 
	
		
			
				|  |  | +      if (Xp == 0.0)
 | 
	
		
			
				|  |  | +        Phi = (Yp != 0.0) ? nmm::asin(Yp/nmm::sqrt(pow2(Xp) + pow2(Yp))) : 0.0;
 | 
	
		
			
				|  |  | +      else
 | 
	
		
			
				|  |  | +        Phi = nmm::acos(Xp/nmm::sqrt(pow2(Xp) + pow2(Yp)));
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // Avoid convergence problems due to Rho too small
 | 
	
		
			
				|  |  | +      if (Rho < 1e-5) Rho = 1e-5;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      //*******************************************************//
 | 
	
		
			
				|  |  | +      // external scattering field = incident + scattered      //
 | 
	
		
			
				|  |  | +      // BH p.92 (4.37), 94 (4.45), 95 (4.50)                  //
 | 
	
		
			
				|  |  | +      // assume: medium is non-absorbing; refim = 0; Uabs = 0  //
 | 
	
		
			
				|  |  | +      //*******************************************************//
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // This array contains the fields in spherical coordinates
 | 
	
		
			
				|  |  | +      std::vector<std::complex<FloatType> > Es(3), Hs(3);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // Do the actual calculation of electric and magnetic field
 | 
	
		
			
				|  |  | +      calcField(Rho, Theta, Phi, Es, Hs);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      { //Now, convert the fields back to cartesian coordinates
 | 
	
		
			
				|  |  | +        using nmm::sin;
 | 
	
		
			
				|  |  | +        using nmm::cos;
 | 
	
		
			
				|  |  | +        E_[point][0] = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];
 | 
	
		
			
				|  |  | +        E_[point][1] = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];
 | 
	
		
			
				|  |  | +        E_[point][2] = cos(Theta)*Es[0] - sin(Theta)*Es[1];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        H_[point][0] = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];
 | 
	
		
			
				|  |  | +        H_[point][1] = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
 | 
	
		
			
				|  |  | +        H_[point][2] = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }  // end of for all field coordinates
 | 
	
		
			
				|  |  | +  }  //  end of MultiLayerMie::RunFieldCalculation()
 | 
	
		
			
				|  |  | +}  // end of namespace nmie
 | 
	
		
			
				|  |  | +#endif  // SRC_NMIE_IMPL_H_
 |