|
@@ -542,8 +542,8 @@ namespace nmie {
|
|
|
// equation (4.56) and (4.57) BH //
|
|
|
// ********************************************************************** //
|
|
|
void MultiLayerMie::calc_an_bn_bulk(std::vector<std::complex<double> >& an,
|
|
|
- std::vector<std::complex<double> >& bn,
|
|
|
- double x, std::complex<double> m) {
|
|
|
+ std::vector<std::complex<double> >& bn,
|
|
|
+ double x, std::complex<double> m) {
|
|
|
|
|
|
//printf("==========\n m = %g,%g, x= %g\n", std::real(m), std::imag(m), x);
|
|
|
std::vector<std::complex<double> > PsiX(nmax_ + 1), ZetaX(nmax_ + 1);
|
|
@@ -710,33 +710,23 @@ namespace nmie {
|
|
|
std::vector<std::complex<double> >& jn, std::vector<std::complex<double> >& jnp,
|
|
|
std::vector<std::complex<double> >& h1n, std::vector<std::complex<double> >& h1np) {
|
|
|
|
|
|
- // std::vector<std::complex<double> > Psi(nmax_ + 1), Zeta(nmax_ + 1);
|
|
|
+ std::vector<std::complex<double> > Psi(nmax_ + 1), Zeta(nmax_ + 1);
|
|
|
|
|
|
- // // First, calculate the Riccati-Bessel functions
|
|
|
- // calcPsiZeta(z, Psi, Zeta);
|
|
|
+ // First, calculate the Riccati-Bessel functions
|
|
|
+ calcPsiZeta(z, Psi, Zeta);
|
|
|
|
|
|
- // // Now, calculate Spherical Bessel and Hankel functions and their derivatives
|
|
|
- // for (int n = 0; n <= nmax_; n++) {
|
|
|
- // jn[n] = Psi[n]/z;
|
|
|
- // h1n[n] = Zeta[n]/z;
|
|
|
+ // Now, calculate Spherical Bessel and Hankel functions and their derivatives
|
|
|
+ for (int n = 0; n <= nmax_; n++) {
|
|
|
+ jn[n] = Psi[n]/z;
|
|
|
+ h1n[n] = Zeta[n]/z;
|
|
|
|
|
|
- // if (n == 0) {
|
|
|
- // jnp[0] = -Psi[1]/z - jn[0]/z;
|
|
|
- // h1np[0] = -Zeta[1]/z - h1n[0]/z;
|
|
|
- // } else {
|
|
|
- // jnp[n] = jn[n - 1] - static_cast<double>(n + 1)*jn[n]/z;
|
|
|
- // h1np[n] = h1n[n - 1] - static_cast<double>(n + 1)*h1n[n]/z;
|
|
|
- // }
|
|
|
- // }
|
|
|
- std::vector< std::complex<double> > yn, ynp;
|
|
|
- int nm;
|
|
|
- bessel::csphjy (nmax_, z, nm, jn, jnp, yn, ynp );
|
|
|
- auto c_i = std::complex<double>(0.0,1.0);
|
|
|
- h1n.resize(nmax_+1);
|
|
|
- h1np.resize(nmax_+1);
|
|
|
- for (int i = 0; i < nmax_+1; ++i) {
|
|
|
- h1n[i] = jn[i] + c_i*yn[i];
|
|
|
- h1np[i] = jnp[i] + c_i*ynp[i];
|
|
|
+ if (n == 0) {
|
|
|
+ jnp[0] = -Psi[1]/z - jn[0]/z;
|
|
|
+ h1np[0] = -Zeta[1]/z - h1n[0]/z;
|
|
|
+ } else {
|
|
|
+ jnp[n] = jn[n - 1] - static_cast<double>(n + 1)*jn[n]/z;
|
|
|
+ h1np[n] = h1n[n - 1] - static_cast<double>(n + 1)*h1n[n]/z;
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -1063,7 +1053,7 @@ namespace nmie {
|
|
|
Qext_ += (n + n + 1.0)*(an_[i].real() + bn_[i].real());
|
|
|
// Equation (28)
|
|
|
Qsca_ += (n + n + 1.0)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
|
|
|
- + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
|
|
|
+ + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
|
|
|
// Equation (29)
|
|
|
Qpr_ += ((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real())
|
|
|
+ ((double)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real());
|
|
@@ -1165,23 +1155,23 @@ namespace nmie {
|
|
|
for (int n = 0; n < nmax_; n++) {
|
|
|
int n1 = n + 1;
|
|
|
|
|
|
- denomZeta = m1[l]*Zetaz[n1]*(D1z[n1] - D3z[n1]);
|
|
|
- denomPsi = m1[l]*Psiz[n1]*(D1z[n1] - D3z[n1]);
|
|
|
+ denomZeta = Zetaz[n1]*(D1z[n1] - D3z[n1]);
|
|
|
+ denomPsi = Psiz[n1]*(D1z[n1] - D3z[n1]);
|
|
|
|
|
|
T1 = aln_[l + 1][n]*Zetaz1[n1] - dln_[l + 1][n]*Psiz1[n1];
|
|
|
- T2 = bln_[l + 1][n]*Zetaz1[n1] - cln_[l + 1][n]*Psiz1[n1];
|
|
|
+ T2 = (bln_[l + 1][n]*Zetaz1[n1] - cln_[l + 1][n]*Psiz1[n1])*m[l]/m1[l];
|
|
|
|
|
|
- T3 = D1z1[n1]*dln_[l + 1][n]*Psiz1[n1] - D3z1[n1]*aln_[l + 1][n]*Zetaz1[n1];
|
|
|
+ T3 = (D1z1[n1]*dln_[l + 1][n]*Psiz1[n1] - D3z1[n1]*aln_[l + 1][n]*Zetaz1[n1])*m[l]/m1[l];
|
|
|
T4 = D1z1[n1]*cln_[l + 1][n]*Psiz1[n1] - D3z1[n1]*bln_[l + 1][n]*Zetaz1[n1];
|
|
|
|
|
|
// aln
|
|
|
- aln_[l][n] = (D1z[n1]*m1[l]*T1 + m[l]*T3)/denomZeta;
|
|
|
+ aln_[l][n] = (D1z[n1]*T1 + T3)/denomZeta;
|
|
|
// bln
|
|
|
- bln_[l][n] = (D1z[n1]*m[l]*T2 + m1[l]*T4)/denomZeta;
|
|
|
+ bln_[l][n] = (D1z[n1]*T2 + T4)/denomZeta;
|
|
|
// cln
|
|
|
- cln_[l][n] = (D3z[n1]*m[l]*T2 + m1[l]*T4)/denomPsi;
|
|
|
+ cln_[l][n] = (D3z[n1]*T2 + T4)/denomPsi;
|
|
|
// dln
|
|
|
- dln_[l][n] = (D3z[n1]*m1[l]*T1 + m[l]*T3)/denomPsi;
|
|
|
+ dln_[l][n] = (D3z[n1]*T1 + T3)/denomPsi;
|
|
|
|
|
|
printf("aln_[%02i, %02i] = %g,%g; bln_[%02i, %02i] = %g,%g; cln_[%02i, %02i] = %g,%g; dln_[%02i, %02i] = %g,%g\n", l, n, real(aln_[l][n]), imag(aln_[l][n]), l, n, real(bln_[l][n]), imag(bln_[l][n]), l, n, real(cln_[l][n]), imag(cln_[l][n]), l, n, real(dln_[l][n]), imag(dln_[l][n]));
|
|
|
} // end of all n
|
|
@@ -1190,7 +1180,7 @@ namespace nmie {
|
|
|
// Check the result and change aln_[0][n] and aln_[0][n] for exact zero
|
|
|
for (int n = 0; n < nmax_; ++n) {
|
|
|
// printf("n=%d, aln_=%g,%g, bln_=%g,%g \n", n, real(aln_[0][n]), imag(aln_[0][n]),
|
|
|
-// real(bln_[0][n]), imag(bln_[0][n]));
|
|
|
+// real(bln_[0][n]), imag(bln_[0][n]));
|
|
|
if (std::abs(aln_[0][n]) < 1e-10) aln_[0][n] = 0.0;
|
|
|
else throw std::invalid_argument("Unstable calculation of aln_[0][n]!");
|
|
|
if (std::abs(bln_[0][n]) < 1e-10) bln_[0][n] = 0.0;
|
|
@@ -1322,7 +1312,7 @@ namespace nmie {
|
|
|
// Check the result and change aln_[0][n] and aln_[0][n] for exact zero
|
|
|
for (int n = 0; n < nmax_; ++n) {
|
|
|
// printf("n=%d, aln_=%g,%g, bln_=%g,%g \n", n, real(aln_[0][n]), imag(aln_[0][n]),
|
|
|
-// real(bln_[0][n]), imag(bln_[0][n]));
|
|
|
+// real(bln_[0][n]), imag(bln_[0][n]));
|
|
|
if (std::abs(aln_[0][n]) < 1e-1) aln_[0][n] = 0.0;
|
|
|
else throw std::invalid_argument("Unstable calculation of aln_[0][n]!");
|
|
|
if (std::abs(bln_[0][n]) < 1e-1) bln_[0][n] = 0.0;
|
|
@@ -1457,7 +1447,7 @@ namespace nmie {
|
|
|
for (int i = size_param_.size() - 1; i >= 0 ; i--) {
|
|
|
if (Rho <= size_param_[i]) {
|
|
|
l = i;
|
|
|
- break;
|
|
|
+ break;
|
|
|
}
|
|
|
}
|
|
|
ml = refractive_index_[l];
|
|
@@ -1517,7 +1507,7 @@ namespace nmie {
|
|
|
for (int i = 0; i < 3; i++) {
|
|
|
H[i] = hffact*H[i];
|
|
|
Hi[i] *= hffact;
|
|
|
- printf("E[%i] = %10.5er%+10.5ei; Ei[%i] = %10.5er%+10.5ei; H[%i] = %10.5er%+10.5ei; Hi[%i] = %10.5er%+10.5ei\n", i, std::real(E[i]), std::imag(E[i]), i, std::real(Ei[i]), std::imag(Ei[i]), i, std::real(H[i]), std::imag(H[i]), i, std::real(Hi[i]), std::imag(Hi[i]));
|
|
|
+ //printf("E[%i] = %10.5er%+10.5ei; Ei[%i] = %10.5er%+10.5ei; H[%i] = %10.5er%+10.5ei; Hi[%i] = %10.5er%+10.5ei\n", i, std::real(E[i]), std::imag(E[i]), i, std::real(Ei[i]), std::imag(Ei[i]), i, std::real(H[i]), std::imag(H[i]), i, std::real(Hi[i]), std::imag(Hi[i]));
|
|
|
}
|
|
|
} // end of MultiLayerMie::calcField(...)
|
|
|
|
|
@@ -1561,7 +1551,7 @@ namespace nmie {
|
|
|
ExpanCoeffs();
|
|
|
// for (int i = 0; i < nmax_; ++i) {
|
|
|
// printf("cln_[%i] = %11.4er%+10.5ei; dln_[%i] = %11.4er%+10.5ei\n", i, std::real(cln_[0][i]), std::imag(cln_[0][i]),
|
|
|
- // i, std::real(dln_[0][i]), std::imag(dln_[0][i]));
|
|
|
+ // i, std::real(dln_[0][i]), std::imag(dln_[0][i]));
|
|
|
// }
|
|
|
|
|
|
|