|  | @@ -74,9 +74,14 @@ def GetFlow3D(x0, y0, z0, max_length, max_angle, x, m):
 | 
	
		
			
				|  |  |      Ec, Hc = E[0, 0, :], H[0, 0, :]
 | 
	
		
			
				|  |  |      S = np.cross(Ec, Hc.conjugate()).real
 | 
	
		
			
				|  |  |      Snorm_prev = S/np.linalg.norm(S)
 | 
	
		
			
				|  |  | +    Sprev = S
 | 
	
		
			
				|  |  |      length = 0
 | 
	
		
			
				|  |  |      dpos = step
 | 
	
		
			
				|  |  | +    count = 0
 | 
	
		
			
				|  |  |      while length < max_length:
 | 
	
		
			
				|  |  | +        count = count + 1
 | 
	
		
			
				|  |  | +        if (count>3000): # Limit length of the absorbed power streamlines
 | 
	
		
			
				|  |  | +            break
 | 
	
		
			
				|  |  |          if step<max_step:
 | 
	
		
			
				|  |  |                  step = step*2.0
 | 
	
		
			
				|  |  |          r = np.sqrt(flow_x[-1]**2 + flow_y[-1]**2 + flow_z[-1]**2)
 | 
	
	
		
			
				|  | @@ -86,7 +91,7 @@ def GetFlow3D(x0, y0, z0, max_length, max_angle, x, m):
 | 
	
		
			
				|  |  |              dx = dpos*Snorm_prev[0];
 | 
	
		
			
				|  |  |              dy = dpos*Snorm_prev[1];
 | 
	
		
			
				|  |  |              dz = dpos*Snorm_prev[2];
 | 
	
		
			
				|  |  | -            #Test the next position not to turn more than max_angle
 | 
	
		
			
				|  |  | +            #Test the next position not to turn\chang size for more than max_angle
 | 
	
		
			
				|  |  |              coord = np.vstack(([flow_x[-1]+dx], [flow_y[-1]+dy], [flow_z[-1]+dz])).transpose()
 | 
	
		
			
				|  |  |              terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord)
 | 
	
		
			
				|  |  |              Ec, Hc = E[0, 0, :], H[0, 0, :]
 | 
	
	
		
			
				|  | @@ -99,13 +104,14 @@ def GetFlow3D(x0, y0, z0, max_length, max_angle, x, m):
 | 
	
		
			
				|  |  |                      Hc[i] = 0+0j
 | 
	
		
			
				|  |  |              S = np.cross(Ec, Hc.conjugate()).real
 | 
	
		
			
				|  |  |              Snorm = S/np.linalg.norm(S)
 | 
	
		
			
				|  |  | -            # diff = Snorm-Snorm_prev
 | 
	
		
			
				|  |  | -            # if np.linalg.norm(diff)<0.05:
 | 
	
		
			
				|  |  | -            angle = angle_between(Snorm, Snorm_prev)
 | 
	
		
			
				|  |  | -            if abs(angle) < max_angle:
 | 
	
		
			
				|  |  | +            diff = (S-Sprev)/max(np.linalg.norm(S), np.linalg.norm(Sprev))
 | 
	
		
			
				|  |  | +            if np.linalg.norm(diff)<max_angle:
 | 
	
		
			
				|  |  | +            # angle = angle_between(Snorm, Snorm_prev)
 | 
	
		
			
				|  |  | +            # if abs(angle) < max_angle:
 | 
	
		
			
				|  |  |                  break
 | 
	
		
			
				|  |  |              step = step/2.0
 | 
	
		
			
				|  |  |          #3. Save result
 | 
	
		
			
				|  |  | +        Sprev = S
 | 
	
		
			
				|  |  |          Snorm_prev = Snorm
 | 
	
		
			
				|  |  |          dx = dpos*Snorm_prev[0];
 | 
	
		
			
				|  |  |          dy = dpos*Snorm_prev[1];
 | 
	
	
		
			
				|  | @@ -114,7 +120,6 @@ def GetFlow3D(x0, y0, z0, max_length, max_angle, x, m):
 | 
	
		
			
				|  |  |          flow_x.append(flow_x[-1] + dx)
 | 
	
		
			
				|  |  |          flow_y.append(flow_y[-1] + dy)
 | 
	
		
			
				|  |  |          flow_z.append(flow_z[-1] + dz)
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  |      return np.array(flow_x), np.array(flow_y), np.array(flow_z)
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  
 | 
	
	
		
			
				|  | @@ -162,5 +167,144 @@ def GetField(crossplane, npts, factor, x, m):
 | 
	
		
			
				|  |  |      # for n in range(0, len(E[0])):
 | 
	
		
			
				|  |  |      #     P.append(np.linalg.norm( np.cross(Ec[n], np.conjugate(Hc[n]) ).real/2 ))
 | 
	
		
			
				|  |  |      return Ec, Hc, P, coordPlot1, coordPlot2
 | 
	
		
			
				|  |  | +###############################################################################
 | 
	
		
			
				|  |  | +def fieldplot(x,m, WL, comment='', WL_units=' ', crossplane='XZ', field_to_plot='Pabs',npts=101, factor=2.1, flow_total=11):
 | 
	
		
			
				|  |  | +    Ec, Hc, P, coordX, coordZ = GetField(crossplane, npts, factor, x, m)
 | 
	
		
			
				|  |  | +    Er = np.absolute(Ec)
 | 
	
		
			
				|  |  | +    Hr = np.absolute(Hc)
 | 
	
		
			
				|  |  | +    try:
 | 
	
		
			
				|  |  | +        import matplotlib.pyplot as plt
 | 
	
		
			
				|  |  | +        from matplotlib import cm
 | 
	
		
			
				|  |  | +        from matplotlib.colors import LogNorm
 | 
	
		
			
				|  |  | +        if field_to_plot == 'Pabs':
 | 
	
		
			
				|  |  | +            Eabs_data = np.resize(P, (npts, npts)).T 
 | 
	
		
			
				|  |  | +            label = r'$\operatorname{Re}(E \times H)$'
 | 
	
		
			
				|  |  | +        elif field_to_plot == 'Eabs':
 | 
	
		
			
				|  |  | +            Eabs = np.sqrt(Er[ :, 0]**2 + Er[ :, 1]**2 + Er[ :, 2]**2)
 | 
	
		
			
				|  |  | +            Eabs_data = np.resize(Eabs, (npts, npts)).T 
 | 
	
		
			
				|  |  | +            label = r'$|E|$'
 | 
	
		
			
				|  |  | +        elif field_to_plot == 'Habs':
 | 
	
		
			
				|  |  | +            Habs= np.sqrt(Hr[ :, 0]**2 + Hr[ :, 1]**2 + Hr[ :, 2]**2)
 | 
	
		
			
				|  |  | +            Eabs_data = np.resize(Habs, (npts, npts)).T 
 | 
	
		
			
				|  |  | +            label = r'$|H|$'
 | 
	
		
			
				|  |  | +        elif field_to_plot == 'angleEx':
 | 
	
		
			
				|  |  | +            Eangle = np.angle(Ec[ :, 0])/np.pi*180
 | 
	
		
			
				|  |  | +            Eabs_data = np.resize(Eangle, (npts, npts)).T 
 | 
	
		
			
				|  |  | +            label = r'$arg(E_x)$'
 | 
	
		
			
				|  |  | +        elif field_to_plot == 'angleHy':
 | 
	
		
			
				|  |  | +            Hangle = np.angle(Hc[ :, 1])/np.pi*180
 | 
	
		
			
				|  |  | +            Eabs_data = np.resize(Hangle, (npts, npts)).T 
 | 
	
		
			
				|  |  | +            label = r'$arg(H_y)$'
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        fig, ax = plt.subplots(1,1)
 | 
	
		
			
				|  |  | +        # Rescale to better show the axes
 | 
	
		
			
				|  |  | +        scale_x = np.linspace(min(coordX)*WL/2.0/np.pi, max(coordX)*WL/2.0/np.pi, npts)
 | 
	
		
			
				|  |  | +        scale_z = np.linspace(min(coordZ)*WL/2.0/np.pi, max(coordZ)*WL/2.0/np.pi, npts)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        # Define scale ticks
 | 
	
		
			
				|  |  | +        min_tick = np.amin(Eabs_data[~np.isnan(Eabs_data)])
 | 
	
		
			
				|  |  | +        max_tick = np.amax(Eabs_data[~np.isnan(Eabs_data)])
 | 
	
		
			
				|  |  | +        scale_ticks = np.linspace(min_tick, max_tick, 6)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
 | 
	
		
			
				|  |  | +        ax.set_title(label)
 | 
	
		
			
				|  |  | +        cax = ax.imshow(Eabs_data, interpolation = 'nearest', cmap = cm.jet,
 | 
	
		
			
				|  |  | +                        origin = 'lower'
 | 
	
		
			
				|  |  | +                        , vmin = min_tick, vmax = max_tick
 | 
	
		
			
				|  |  | +                        , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
 | 
	
		
			
				|  |  | +                        #,norm = LogNorm()
 | 
	
		
			
				|  |  | +                        )
 | 
	
		
			
				|  |  | +        ax.axis("image")
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        # Add colorbar
 | 
	
		
			
				|  |  | +        cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
 | 
	
		
			
				|  |  | +        cbar.ax.set_yticklabels(['%5.3g' % (a) for a in scale_ticks]) # vertically oriented colorbar
 | 
	
		
			
				|  |  | +        pos = list(cbar.ax.get_position().bounds)
 | 
	
		
			
				|  |  | +        #fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
 | 
	
		
			
				|  |  | +        if crossplane=='XZ':
 | 
	
		
			
				|  |  | +            plt.xlabel('Z, '+WL_units)
 | 
	
		
			
				|  |  | +            plt.ylabel('X, '+WL_units)
 | 
	
		
			
				|  |  | +        elif crossplane=='YZ':
 | 
	
		
			
				|  |  | +            plt.xlabel('Z, '+WL_units)
 | 
	
		
			
				|  |  | +            plt.ylabel('Y, '+WL_units)
 | 
	
		
			
				|  |  | +        elif crossplane=='XY':
 | 
	
		
			
				|  |  | +            plt.xlabel('Y, '+WL_units)
 | 
	
		
			
				|  |  | +            plt.ylabel('X, '+WL_units)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        # # This part draws the nanoshell
 | 
	
		
			
				|  |  | +        from matplotlib import patches
 | 
	
		
			
				|  |  | +        from matplotlib.path import Path
 | 
	
		
			
				|  |  | +        for xx in x:
 | 
	
		
			
				|  |  | +            r= xx*WL/2.0/np.pi
 | 
	
		
			
				|  |  | +            s1 = patches.Arc((0, 0), 2.0*r, 2.0*r,  angle=0.0, zorder=1.8,
 | 
	
		
			
				|  |  | +                             theta1=0.0, theta2=360.0, linewidth=1, color='black')
 | 
	
		
			
				|  |  | +            ax.add_patch(s1)
 | 
	
		
			
				|  |  | +        # 
 | 
	
		
			
				|  |  | +        # for flow in range(0,flow_total):
 | 
	
		
			
				|  |  | +        #     flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
 | 
	
		
			
				|  |  | +        #                              min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
 | 
	
		
			
				|  |  | +        #                              min(scale_z),
 | 
	
		
			
				|  |  | +        #                              #0.0,
 | 
	
		
			
				|  |  | +        #                              npts*16)
 | 
	
		
			
				|  |  | +        #     verts = np.vstack((flow_z, flow_x)).transpose().tolist()
 | 
	
		
			
				|  |  | +        #     #codes = [Path.CURVE4]*len(verts)
 | 
	
		
			
				|  |  | +        #     codes = [Path.LINETO]*len(verts)
 | 
	
		
			
				|  |  | +        #     codes[0] = Path.MOVETO
 | 
	
		
			
				|  |  | +        #     path = Path(verts, codes)
 | 
	
		
			
				|  |  | +        #     patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='yellow')
 | 
	
		
			
				|  |  | +        #     ax.add_patch(patch)
 | 
	
		
			
				|  |  | +        if (crossplane=='XZ' or crossplane=='YZ') and flow_total>0:
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            from matplotlib.path import Path
 | 
	
		
			
				|  |  | +            scanSP = np.linspace(-factor*x[-1], factor*x[-1], npts)
 | 
	
		
			
				|  |  | +            min_SP = -factor*x[-1]
 | 
	
		
			
				|  |  | +            step_SP = 2.0*factor*x[-1]/(flow_total-1)
 | 
	
		
			
				|  |  | +            x0, y0, z0 = 0, 0, 0
 | 
	
		
			
				|  |  | +            max_length=factor*x[-1]*8
 | 
	
		
			
				|  |  | +            #max_length=factor*x[-1]*5
 | 
	
		
			
				|  |  | +            max_angle = np.pi/160
 | 
	
		
			
				|  |  | +            for flow in range(0,flow_total*2+1):
 | 
	
		
			
				|  |  | +            #for flow in range(0,flow_total):
 | 
	
		
			
				|  |  | +                if crossplane=='XZ':
 | 
	
		
			
				|  |  | +                    x0 = min_SP*2 + flow*step_SP
 | 
	
		
			
				|  |  | +                    #x0 = min_SP + flow*step_SP
 | 
	
		
			
				|  |  | +                    z0 = min_SP
 | 
	
		
			
				|  |  | +                    #y0 = x[-1]/20 
 | 
	
		
			
				|  |  | +                elif crossplane=='YZ':
 | 
	
		
			
				|  |  | +                    y0 = min_SP*2 + flow*step_SP
 | 
	
		
			
				|  |  | +                    #y0 = min_SP + flow*step_SP
 | 
	
		
			
				|  |  | +                    z0 = min_SP
 | 
	
		
			
				|  |  | +                    #x0 = x[-1]/20
 | 
	
		
			
				|  |  | +                flow_xSP, flow_ySP, flow_zSP = GetFlow3D(x0, y0, z0, max_length, max_angle, x, m)
 | 
	
		
			
				|  |  | +                if crossplane=='XZ':
 | 
	
		
			
				|  |  | +                    flow_z_plot = flow_zSP*WL/2.0/np.pi
 | 
	
		
			
				|  |  | +                    flow_f_plot = flow_xSP*WL/2.0/np.pi
 | 
	
		
			
				|  |  | +                elif crossplane=='YZ':
 | 
	
		
			
				|  |  | +                    flow_z_plot = flow_zSP*WL/2.0/np.pi
 | 
	
		
			
				|  |  | +                    flow_f_plot = flow_ySP*WL/2.0/np.pi
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +                verts = np.vstack((flow_z_plot, flow_f_plot)).transpose().tolist()
 | 
	
		
			
				|  |  | +                codes = [Path.LINETO]*len(verts)
 | 
	
		
			
				|  |  | +                codes[0] = Path.MOVETO
 | 
	
		
			
				|  |  | +                path = Path(verts, codes)
 | 
	
		
			
				|  |  | +                #patch = patches.PathPatch(path, facecolor='none', lw=0.2, edgecolor='white',zorder = 2.7)
 | 
	
		
			
				|  |  | +                patch = patches.PathPatch(path, facecolor='none', lw=0.7, edgecolor='white',zorder = 1.9)
 | 
	
		
			
				|  |  | +                ax.add_patch(patch)
 | 
	
		
			
				|  |  | +                #ax.plot(flow_z_plot, flow_f_plot, 'x',ms=2, mew=0.1, linewidth=0.5, color='k', fillstyle='none')
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        plt.savefig(comment+"-R"+str(int(round(x[-1]*WL/2.0/np.pi)))+"-"+crossplane+"-"
 | 
	
		
			
				|  |  | +                    +field_to_plot+".pdf")
 | 
	
		
			
				|  |  | +        plt.draw()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #    plt.show()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        plt.clf()
 | 
	
		
			
				|  |  | +        plt.close()
 | 
	
		
			
				|  |  | +    finally:
 | 
	
		
			
				|  |  | +        terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(np.array([x]),
 | 
	
		
			
				|  |  | +                                                                         np.array([m]))
 | 
	
		
			
				|  |  | +        print("Qabs = "+str(Qabs));
 | 
	
		
			
				|  |  | +    #
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  
 |