|
@@ -0,0 +1,85 @@
|
|
|
+#!/usr/bin/env python
|
|
|
+# -*- coding: UTF-8 -*-
|
|
|
+#
|
|
|
+# Copyright (C) 2009-2017 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
|
|
|
+# Copyright (C) 2013-2017 Konstantin Ladutenko <kostyfisik@gmail.com>
|
|
|
+#
|
|
|
+# This file is part of scattnlay
|
|
|
+#
|
|
|
+# This program is free software: you can redistribute it and/or modify
|
|
|
+# it under the terms of the GNU General Public License as published by
|
|
|
+# the Free Software Foundation, either version 3 of the License, or
|
|
|
+# (at your option) any later version.
|
|
|
+#
|
|
|
+# This program is distributed in the hope that it will be useful,
|
|
|
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
+# GNU General Public License for more details.
|
|
|
+#
|
|
|
+# The only additional remark is that we expect that all publications
|
|
|
+# describing work using this software, or all commercial products
|
|
|
+# using it, cite at least one of the following references:
|
|
|
+# [1] O. Peña and U. Pal, "Scattering of electromagnetic radiation by
|
|
|
+# a multilayered sphere," Computer Physics Communications,
|
|
|
+# vol. 180, Nov. 2009, pp. 2348-2354.
|
|
|
+# [2] K. Ladutenko, U. Pal, A. Rivera, and O. Peña-Rodríguez, "Mie
|
|
|
+# calculation of electromagnetic near-field for a multilayered
|
|
|
+# sphere," Computer Physics Communications, vol. 214, May 2017,
|
|
|
+# pp. 225-230.
|
|
|
+#
|
|
|
+# You should have received a copy of the GNU General Public License
|
|
|
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
+
|
|
|
+# This test case calculates the optical force over a silver nanoparticle,
|
|
|
+# as a function of the irradiance and the radius.
|
|
|
+
|
|
|
+from scattnlay import scattnlay
|
|
|
+import numpy as np
|
|
|
+from scipy.constants import pi, c
|
|
|
+
|
|
|
+radius = np.linspace(0.5, 180.0, 360)
|
|
|
+nAg = np.sqrt(-4.0 + 0.7j)
|
|
|
+wl = 400.0
|
|
|
+
|
|
|
+x = np.ones((len(radius), 1), dtype = np.float64)
|
|
|
+x[:, 0] = 2.0*pi*radius/wl
|
|
|
+
|
|
|
+m = np.ones((len(radius), 1), dtype = np.complex128)
|
|
|
+m[:, 0] *= nAg
|
|
|
+
|
|
|
+terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m)
|
|
|
+F = pi*Qpr*radius*radius/c/1e9
|
|
|
+
|
|
|
+result = np.vstack((radius, 1e11*F, 1e13*F, 1e15*F)).transpose()
|
|
|
+
|
|
|
+try:
|
|
|
+ import matplotlib.pyplot as plt
|
|
|
+
|
|
|
+ plt.figure(1)
|
|
|
+ plt.subplot(311)
|
|
|
+ plt.plot(radius, 1e11*F, 'k', label = '10$^{11}$ W/m$^2$')
|
|
|
+ plt.plot(radius, 1e13*F, 'b', label = '10$^{13}$ W/m$^2$')
|
|
|
+ plt.plot(radius, 1e15*F, 'g', label = '10$^{15}$ W/m$^2$')
|
|
|
+ plt.ylabel('F (nN)')
|
|
|
+ plt.legend(loc = 4)
|
|
|
+ ax = plt.gca()
|
|
|
+ ax.set_yscale('log')
|
|
|
+
|
|
|
+ plt.subplot(312)
|
|
|
+ plt.plot(radius, g, 'r', label = 'g')
|
|
|
+ plt.ylabel('g')
|
|
|
+
|
|
|
+ plt.subplot(313)
|
|
|
+ plt.plot(radius, Qext, 'k', label = 'Q$_{ext}$')
|
|
|
+ plt.plot(radius, Qsca, 'b', label = 'Q$_{sca}$')
|
|
|
+ plt.plot(radius, Qpr, 'g', label = 'Q$_{pr}$')
|
|
|
+ plt.ylabel('Q')
|
|
|
+ plt.legend()
|
|
|
+
|
|
|
+ plt.xlabel('R (nm)')
|
|
|
+
|
|
|
+ plt.show()
|
|
|
+finally:
|
|
|
+ #np.savetxt("test_force.txt", result, fmt = "%.5e")
|
|
|
+ print result
|
|
|
+
|