|
@@ -39,96 +39,34 @@
|
|
|
#include <math.h>
|
|
|
#include <stdlib.h>
|
|
|
#include <stdio.h>
|
|
|
-#include "ucomplex.h"
|
|
|
#include "nmie.h"
|
|
|
|
|
|
-// TODO should be replaced with std::round() or std::lround()
|
|
|
#define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
|
|
|
|
|
|
-complex C_ZERO = {0.0, 0.0};
|
|
|
-complex C_ONE = {1.0, 0.0};
|
|
|
-complex C_I = {0.0, 1.0};
|
|
|
-
|
|
|
-int compare(std::string operation, complex *a, std::vector< std::complex<double> > b) {
|
|
|
- for (int i = 0; i < b.size(); ++i) {
|
|
|
- //if (i > 50) continue;
|
|
|
- double diff_r = std::abs((a[i].r - b[i].real())/a[i].r);
|
|
|
- double diff_i = std::abs((a[i].i - b[i].imag())/a[i].i);
|
|
|
- double epsilon= 1e-16;
|
|
|
- if (diff_r > epsilon ||diff_i > epsilon) {
|
|
|
- printf("\n*** WARNING!! Non-zero diff!!! ***\n");
|
|
|
- printf("Op: %s at i=%i, diff_r=%g, diff_i=%g, a_r=%g, a_i = %g\n",
|
|
|
- operation.c_str(), i, diff_r, diff_i, a[i].r, a[i].i);
|
|
|
- }
|
|
|
- double factor = 1.0;
|
|
|
- if ((diff_r > epsilon * factor && a[i].r/a[0].r > epsilon)
|
|
|
- || (diff_i > epsilon*factor && a[i].i/a[0].i > epsilon)) {
|
|
|
- printf("\n******** ERROR!! Non-zero diff!!! ********\n");
|
|
|
- printf("Op: %s at i=%i, diff_r=%g, diff_i=%g, a_r=%g, a_i = %g\n",
|
|
|
- operation.c_str(), i, diff_r, diff_i, a[i].r, a[i].i);
|
|
|
- }
|
|
|
- }
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-int firstLayer(int L, int pl) {
|
|
|
- if (pl >= 0) {
|
|
|
- return pl;
|
|
|
- } else {
|
|
|
- return 0;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
// Calculate Nstop - equation (17)
|
|
|
int Nstop(double xL) {
|
|
|
int result;
|
|
|
|
|
|
if (xL <= 8) {
|
|
|
- result = std::lround(xL + 4*pow(xL, 1/3) + 1);
|
|
|
+ result = round(xL + 4*pow(xL, 1/3) + 1);
|
|
|
} else if (xL <= 4200) {
|
|
|
- result = std::lround(xL + 4.05*pow(xL, 1/3) + 2);
|
|
|
+ result = round(xL + 4.05*pow(xL, 1/3) + 2);
|
|
|
} else {
|
|
|
- result = std::lround(xL + 4*pow(xL, 1/3) + 2);
|
|
|
+ result = round(xL + 4*pow(xL, 1/3) + 2);
|
|
|
}
|
|
|
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
-int Nmax(int L, int fl, int pl, double x[], complex m[]) {
|
|
|
- int i, result, ri, riM1;
|
|
|
-
|
|
|
- result = Nstop(x[L - 1]);
|
|
|
- for (i = fl; i < L; i++) {
|
|
|
- if (i > pl) {
|
|
|
- ri = round(Cabs(RCmul(x[i], m[i])));
|
|
|
- } else {
|
|
|
- ri = 0;
|
|
|
- }
|
|
|
- if (result < ri) {
|
|
|
- result = ri;
|
|
|
- }
|
|
|
-
|
|
|
- if ((i > fl) && ((i - 1) > pl)) {
|
|
|
- riM1 = round(Cabs(RCmul(x[i - 1], m[i])));
|
|
|
- } else {
|
|
|
- riM1 = 0;
|
|
|
- }
|
|
|
- if (result < riM1) {
|
|
|
- result = riM1;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return result + 15;
|
|
|
-}
|
|
|
-
|
|
|
//**********************************************************************************//
|
|
|
-int Nmax_std(int L, int fl, int pl, std::vector<double> x,
|
|
|
- std::vector<std::complex<double> > m) {
|
|
|
+int Nmax(int L, int fl, int pl,
|
|
|
+ std::vector<double> x,
|
|
|
+ std::vector<std::complex<double> > m) {
|
|
|
int i, result, ri, riM1;
|
|
|
result = Nstop(x[L - 1]);
|
|
|
for (i = fl; i < L; i++) {
|
|
|
if (i > pl) {
|
|
|
- ri = std::lround(std::abs(x[i]*m[i]));
|
|
|
+ ri = round(std::abs(x[i]*m[i]));
|
|
|
} else {
|
|
|
ri = 0;
|
|
|
}
|
|
@@ -137,7 +75,7 @@ int Nmax_std(int L, int fl, int pl, std::vector<double> x,
|
|
|
}
|
|
|
|
|
|
if ((i > fl) && ((i - 1) > pl)) {
|
|
|
- riM1 = std::lround(std::abs(x[i - 1]* m[i]));
|
|
|
+ riM1 = round(std::abs(x[i - 1]* m[i]));
|
|
|
} else {
|
|
|
riM1 = 0;
|
|
|
}
|
|
@@ -147,156 +85,125 @@ int Nmax_std(int L, int fl, int pl, std::vector<double> x,
|
|
|
}
|
|
|
return result + 15;
|
|
|
}
|
|
|
+
|
|
|
//**********************************************************************************//
|
|
|
// This function calculates the spherical Bessel functions (jn and hn) for a given //
|
|
|
-// value of r. //
|
|
|
+// value of z. //
|
|
|
// //
|
|
|
// Input parameters: //
|
|
|
-// r: Real argument to evaluate jn and hn //
|
|
|
+// z: Real argument to evaluate jn and hn //
|
|
|
// n_max: Maximum number of terms to calculate jn and hn //
|
|
|
// //
|
|
|
// Output parameters: //
|
|
|
-// jn, hn: Spherical Bessel functions (double) //
|
|
|
+// jn, hn: Spherical Bessel functions (complex) //
|
|
|
//**********************************************************************************//
|
|
|
-void sphericalBessel(double r, int n_max, double **j, double **h) {
|
|
|
+void sphericalBessel(std::complex<double> r, int n_max, std::vector<std::complex<double> > &j, std::vector<std::complex<double> > &h) {
|
|
|
int n;
|
|
|
|
|
|
- (*j)[0] = sin(r)/r;
|
|
|
- (*j)[1] = sin(r)/r/r - cos(r)/r;
|
|
|
- (*h)[0] = -cos(r)/r;
|
|
|
- (*h)[1] = -cos(r)/r/r - sin(r)/r;
|
|
|
+ j[0] = sin(r)/r;
|
|
|
+ j[1] = sin(r)/r/r - cos(r)/r;
|
|
|
+ h[0] = -cos(r)/r;
|
|
|
+ h[1] = -cos(r)/r/r - sin(r)/r;
|
|
|
for (n = 2; n < n_max; n++) {
|
|
|
- (*j)[n] = (n + n + 1)*(*j)[n - 1]/r - (*j)[n - 2];
|
|
|
- (*h)[n] = (n + n + 1)*(*h)[n - 1]/r - (*h)[n - 2];
|
|
|
+ j[n] = double(n + n + 1)*j[n - 1]/r - j[n - 2];
|
|
|
+ h[n] = double(n + n + 1)*h[n - 1]/r - h[n - 2];
|
|
|
}
|
|
|
}
|
|
|
|
|
|
//**********************************************************************************//
|
|
|
// This function calculates the spherical Bessel functions (jn and hn) for a given //
|
|
|
-// value of z. //
|
|
|
+// value of r. //
|
|
|
// //
|
|
|
// Input parameters: //
|
|
|
-// z: Real argument to evaluate jn and hn //
|
|
|
+// r: Real argument to evaluate jn and hn //
|
|
|
// n_max: Maximum number of terms to calculate jn and hn //
|
|
|
// //
|
|
|
// Output parameters: //
|
|
|
-// jn, hn: Spherical Bessel functions (complex) //
|
|
|
+// jn, hn: Spherical Bessel functions (double) //
|
|
|
//**********************************************************************************//
|
|
|
-void CsphericalBessel(complex z, int n_max, complex **j, complex **h) {
|
|
|
+void sphericalBessel(double r, int n_max, std::vector<double> &j, std::vector<double> &h) {
|
|
|
int n;
|
|
|
|
|
|
- (*j)[0] = Cdiv(Csin(z), z);
|
|
|
- (*j)[1] = Csub(Cdiv(Cdiv(Csin(z), z), z), Cdiv(Ccos(z), z));
|
|
|
- (*h)[0] = Csub(C_ZERO, Cdiv(Ccos(z), z));
|
|
|
- (*h)[1] = Csub(C_ZERO, Cadd(Cdiv(Cdiv(Ccos(z), z), z), Cdiv(Csin(z), z)));
|
|
|
+ j[0] = sin(r)/r;
|
|
|
+ j[1] = sin(r)/r/r - cos(r)/r;
|
|
|
+ h[0] = -cos(r)/r;
|
|
|
+ h[1] = -cos(r)/r/r - sin(r)/r;
|
|
|
for (n = 2; n < n_max; n++) {
|
|
|
- (*j)[n] = Csub(RCmul(n + n + 1, Cdiv((*j)[n - 1], z)), (*j)[n - 2]);
|
|
|
- (*h)[n] = Csub(RCmul(n + n + 1, Cdiv((*h)[n - 1], z)), (*h)[n - 2]);
|
|
|
+ j[n] = double(n + n + 1)*j[n - 1]/r - j[n - 2];
|
|
|
+ h[n] = double(n + n + 1)*h[n - 1]/r - h[n - 2];
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// Calculate an - equation (5)
|
|
|
-complex calc_an(int n, double XL, complex Ha, complex mL, complex PsiXL, complex ZetaXL, complex PsiXLM1, complex ZetaXLM1) {
|
|
|
- complex Num = Csub(Cmul(Cadd(Cdiv(Ha, mL), Complex(n/XL, 0)), PsiXL), PsiXLM1);
|
|
|
- complex Denom = Csub(Cmul(Cadd(Cdiv(Ha, mL), Complex(n/XL, 0)), ZetaXL), ZetaXLM1);
|
|
|
+std::complex<double> calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
|
|
|
+ std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
+ std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
+
|
|
|
+ std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
|
|
|
+ std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
|
|
|
|
|
|
- return Cdiv(Num, Denom);
|
|
|
-}
|
|
|
-/////////////////////////////////////////////
|
|
|
-std::complex<double>
|
|
|
-calc_an_std(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
|
|
|
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
- std::complex<double> Num = (( (Ha/mL) + std::complex<double>(n/XL, 0) ) * PsiXL) - PsiXLM1;
|
|
|
- std::complex<double> Denom = (( (Ha/mL) + std::complex<double>(n/XL, 0) ) * ZetaXL) - ZetaXLM1;
|
|
|
return Num/Denom;
|
|
|
}
|
|
|
|
|
|
// Calculate bn - equation (6)
|
|
|
-complex calc_bn(int n, double XL, complex Hb, complex mL, complex PsiXL, complex ZetaXL, complex PsiXLM1, complex ZetaXLM1) {
|
|
|
- complex Num = Csub(Cmul(Cadd(Cmul(Hb, mL), Complex(n/XL, 0)), PsiXL), PsiXLM1);
|
|
|
- complex Denom = Csub(Cmul(Cadd(Cmul(Hb, mL), Complex(n/XL, 0)), ZetaXL), ZetaXLM1);
|
|
|
+std::complex<double> calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
|
|
|
+ std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
+ std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
|
|
|
- return Cdiv(Num, Denom);
|
|
|
-}
|
|
|
-// Calculate bn - equation (6)
|
|
|
-std::complex<double>
|
|
|
-calc_bn_std(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
|
|
|
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
- std::complex<double> Num = (( (Hb*mL) + std::complex<double>(n/XL,0) ) * PsiXL) - PsiXLM1;
|
|
|
- std::complex<double> Denom = (( (Hb*mL) + std::complex<double>(n/XL,0) ) * ZetaXL) - ZetaXLM1;
|
|
|
+ std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
|
|
|
+ std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
|
|
|
|
|
|
return Num/Denom;
|
|
|
}
|
|
|
|
|
|
-// Calculates S1_n - equation (25a)
|
|
|
-complex calc_S1_n(int n, complex an, complex bn, double Pin, double Taun) {
|
|
|
- return RCmul((double)(n + n + 1)/(double)(n*n + n), Cadd(RCmul(Pin, an), RCmul(Taun, bn)));
|
|
|
-}
|
|
|
-//////////////////////
|
|
|
-std::complex<double> calc_S1_n_std(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
- double Pin, double Taun) {
|
|
|
- return (double)(n + n + 1)/(double)(n*n + n) * ((Pin*an) + (Taun*bn));
|
|
|
-}
|
|
|
+// Calculates S1 - equation (25a)
|
|
|
+std::complex<double> calc_S1(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
+ double Pi, double Tau) {
|
|
|
|
|
|
-// Calculates S2_n - equation (25b) (it's the same as (25a), just switches Pin and Taun)
|
|
|
-complex calc_S2_n(int n, complex an, complex bn, double Pin, double Taun) {
|
|
|
- return calc_S1_n(n, an, bn, Taun, Pin);
|
|
|
+ return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
|
|
|
}
|
|
|
-//////////////////////
|
|
|
-std::complex<double> calc_S2_n_std(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
- double Pin, double Taun) {
|
|
|
- return calc_S1_n_std(n, an, bn, Taun, Pin);
|
|
|
+
|
|
|
+// Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
|
|
|
+std::complex<double> calc_S2(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
+ double Pi, double Tau) {
|
|
|
+
|
|
|
+ return calc_S1(n, an, bn, Tau, Pi);
|
|
|
}
|
|
|
|
|
|
|
|
|
//**********************************************************************************//
|
|
|
// This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
|
|
|
-// given value of z. //
|
|
|
+// real argument (x). //
|
|
|
+// Equations (20a) - (21b) //
|
|
|
// //
|
|
|
// Input parameters: //
|
|
|
-// z: Complex argument to evaluate Psi and Zeta //
|
|
|
+// x: Real argument to evaluate Psi and Zeta //
|
|
|
// n_max: Maximum number of terms to calculate Psi and Zeta //
|
|
|
// //
|
|
|
// Output parameters: //
|
|
|
// Psi, Zeta: Riccati-Bessel functions //
|
|
|
//**********************************************************************************//
|
|
|
-void calcPsiZeta(complex z, int n_max, complex *D1, complex *D3, complex **Psi, complex **Zeta) {
|
|
|
- int n;
|
|
|
- complex cn;
|
|
|
+void calcPsiZeta(double x, int n_max,
|
|
|
+ std::vector<std::complex<double> > D1,
|
|
|
+ std::vector<std::complex<double> > D3,
|
|
|
+ std::vector<std::complex<double> > &Psi,
|
|
|
+ std::vector<std::complex<double> > &Zeta) {
|
|
|
|
|
|
- //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
|
|
|
- (*Psi)[0] = Complex(sin(z.r), 0);
|
|
|
- (*Zeta)[0] = Complex(sin(z.r), -cos(z.r));
|
|
|
- for (n = 1; n <= n_max; n++) {
|
|
|
- cn = Complex(n, 0);
|
|
|
- (*Psi)[n] = Cmul((*Psi)[n - 1], Csub(Cdiv(cn, z), D1[n - 1]));
|
|
|
- (*Zeta)[n] = Cmul((*Zeta)[n - 1], Csub(Cdiv(cn, z), D3[n - 1]));
|
|
|
- }
|
|
|
-}
|
|
|
-//**********************************************************************************//
|
|
|
-void calcPsiZeta_std(std::complex<double> z, int n_max,
|
|
|
- std::vector< std::complex<double> > D1,
|
|
|
- std::vector< std::complex<double> > D3,
|
|
|
- std::vector< std::complex<double> > &Psi,
|
|
|
- std::vector< std::complex<double> > &Zeta) {
|
|
|
int n;
|
|
|
- std::complex<double> cn;
|
|
|
|
|
|
//Upward recurrence for Psi and Zeta - equations (20a) - (21b)
|
|
|
- Psi[0] = std::complex<double>(sin(z.real()), 0);
|
|
|
- Zeta[0] = std::complex<double>(sin(z.real()), -cos(z.real()));
|
|
|
+ Psi[0] = std::complex<double>(sin(x), 0);
|
|
|
+ Zeta[0] = std::complex<double>(sin(x), -cos(x));
|
|
|
for (n = 1; n <= n_max; n++) {
|
|
|
- cn = std::complex<double>(n, 0);
|
|
|
- Psi[n] = Psi[n-1] * ( (cn/z) - D1[n-1] );
|
|
|
- Zeta[n] = Zeta[n-1] * ( (cn/z) - D3[n-1] );
|
|
|
+ Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
|
|
|
+ Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
//**********************************************************************************//
|
|
|
// This function calculates the logarithmic derivatives of the Riccati-Bessel //
|
|
|
-// functions (D1 and D3) for a given value of z. //
|
|
|
+// functions (D1 and D3) for a complex argument (z). //
|
|
|
+// Equations (16a), (16b) and (18a) - (18d) //
|
|
|
// //
|
|
|
// Input parameters: //
|
|
|
// z: Complex argument to evaluate D1 and D3 //
|
|
@@ -305,59 +212,32 @@ void calcPsiZeta_std(std::complex<double> z, int n_max,
|
|
|
// Output parameters: //
|
|
|
// D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
|
|
|
//**********************************************************************************//
|
|
|
-void calcD1D3(complex z, int n_max, complex **D1, complex **D3) {
|
|
|
- int n;
|
|
|
- complex cn;
|
|
|
- complex *PsiZeta = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
-
|
|
|
- // Downward recurrence for D1 - equations (16a) and (16b)
|
|
|
- (*D1)[n_max] = C_ZERO;
|
|
|
- for (n = n_max; n > 0; n--) {
|
|
|
- cn = Complex(n, 0);
|
|
|
- (*D1)[n - 1] = Csub(Cdiv(cn, z), Cdiv(C_ONE, Cadd((*D1)[n], Cdiv(cn, z))));
|
|
|
- }
|
|
|
+void calcD1D3(std::complex<double> z, int n_max,
|
|
|
+ std::vector<std::complex<double> > &D1,
|
|
|
+ std::vector<std::complex<double> > &D3) {
|
|
|
|
|
|
- // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
|
|
|
- PsiZeta[0] = RCmul(0.5, Csub(C_ONE, Cmul(Complex(cos(2*z.r), sin(2*z.r)), Complex(exp(-2*z.i), 0))));
|
|
|
- (*D3)[0] = C_I;
|
|
|
- for (n = 1; n <= n_max; n++) {
|
|
|
- cn = Complex(n, 0);
|
|
|
- PsiZeta[n] = Cmul(PsiZeta[n - 1], Cmul(Csub(Cdiv(cn, z), (*D1)[n - 1]), Csub(Cdiv(cn, z), (*D3)[n - 1])));
|
|
|
- (*D3)[n] = Cadd((*D1)[n], Cdiv(C_I, PsiZeta[n]));
|
|
|
- }
|
|
|
-
|
|
|
- free(PsiZeta);
|
|
|
-}
|
|
|
-//**********************************************************************************//
|
|
|
-void calcD1D3_std(std::complex<double> z, int n_max,
|
|
|
- std::vector< std::complex<double> > &D1,
|
|
|
- std::vector< std::complex<double> > &D3) {
|
|
|
int n;
|
|
|
- std::complex<double> cn;
|
|
|
- //complex *PsiZeta = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
- std::vector< std::complex<double> > PsiZeta;
|
|
|
+ std::vector<std::complex<double> > PsiZeta;
|
|
|
PsiZeta.resize(n_max + 1);
|
|
|
+
|
|
|
// Downward recurrence for D1 - equations (16a) and (16b)
|
|
|
D1[n_max] = std::complex<double>(0.0, 0.0);
|
|
|
for (n = n_max; n > 0; n--) {
|
|
|
- cn = std::complex<double>(n, 0.0);
|
|
|
- D1[n - 1] = cn/z - 1.0/(D1[n] + (cn/z));
|
|
|
+ D1[n - 1] = double(n)/z - 1.0/(D1[n] + double(n)/z);
|
|
|
}
|
|
|
|
|
|
// Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
|
|
|
- PsiZeta[0] = 0.5 * (1.0 - (std::complex<double>(cos(2*z.real()), sin(2*z.real()))
|
|
|
- * std::complex<double>(exp(-2*z.imag()), 0)));
|
|
|
+ PsiZeta[0] = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
|
|
|
D3[0] = std::complex<double>(0.0, 1.0);
|
|
|
for (n = 1; n <= n_max; n++) {
|
|
|
- cn = std::complex<double>(n, 0.0);
|
|
|
- PsiZeta[n] = PsiZeta[n-1] * (((cn/ z) - D1[n - 1]) * ((cn/ z)- D3[n - 1]));
|
|
|
- D3[n] = D1[n]+ (std::complex<double>(0.0, 1.0)/ PsiZeta[n]);
|
|
|
+ PsiZeta[n] = PsiZeta[n - 1]*(double(n)/z - D1[n - 1])*(double(n)/z- D3[n - 1]);
|
|
|
+ D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta[n];
|
|
|
}
|
|
|
- // free(PsiZeta);
|
|
|
}
|
|
|
|
|
|
//**********************************************************************************//
|
|
|
// This function calculates Pi and Tau for all values of Theta. //
|
|
|
+// Equations (26a) - (26c) //
|
|
|
// //
|
|
|
// Input parameters: //
|
|
|
// n_max: Maximum number of terms to calculate Pi and Tau //
|
|
@@ -368,31 +248,10 @@ void calcD1D3_std(std::complex<double> z, int n_max,
|
|
|
// Output parameters: //
|
|
|
// Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
|
|
|
//**********************************************************************************//
|
|
|
-void calcPiTau(int n_max, int nTheta, double Theta[], double ***Pi, double ***Tau) {
|
|
|
- int n, t;
|
|
|
+void calcPiTau(int n_max, int nTheta, std::vector<double> Theta,
|
|
|
+ std::vector< std::vector<double> > &Pi,
|
|
|
+ std::vector< std::vector<double> > &Tau) {
|
|
|
|
|
|
- for (n = 0; n < n_max; n++) {
|
|
|
- //****************************************************//
|
|
|
- // Equations (26a) - (26c) //
|
|
|
- //****************************************************//
|
|
|
- for (t = 0; t < nTheta; t++) {
|
|
|
- if (n == 0) {
|
|
|
- // Initialize Pi and Tau
|
|
|
- (*Pi)[n][t] = 1.0;
|
|
|
- (*Tau)[n][t] = (n + 1)*cos(Theta[t]);
|
|
|
- } else {
|
|
|
- // Calculate the actual values
|
|
|
- (*Pi)[n][t] = ((n == 1) ? ((n + n + 1)*cos(Theta[t])*(*Pi)[n - 1][t]/n)
|
|
|
- : (((n + n + 1)*cos(Theta[t])*(*Pi)[n - 1][t] - (n + 1)*(*Pi)[n - 2][t])/n));
|
|
|
- (*Tau)[n][t] = (n + 1)*cos(Theta[t])*(*Pi)[n][t] - (n + 2)*(*Pi)[n - 1][t];
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-//**********************************************************************************//
|
|
|
-void calcPiTau_std(int n_max, int nTheta, std::vector<double> Theta,
|
|
|
- std::vector< std::vector<double> > &Pi,
|
|
|
- std::vector< std::vector<double> > &Tau) {
|
|
|
int n, t;
|
|
|
for (n = 0; n < n_max; n++) {
|
|
|
//****************************************************//
|
|
@@ -405,9 +264,8 @@ void calcPiTau_std(int n_max, int nTheta, std::vector<double> Theta,
|
|
|
Tau[n][t] = (n + 1)*cos(Theta[t]);
|
|
|
} else {
|
|
|
// Calculate the actual values
|
|
|
- Pi[n][t] = ((n == 1) ? ((n + n + 1)*cos(Theta[t])*Pi[n - 1][t]/n)
|
|
|
- :
|
|
|
- (((n + n + 1)*cos(Theta[t])*Pi[n - 1][t] - (n + 1)*Pi[n - 2][t])/n));
|
|
|
+ Pi[n][t] = ((n == 1) ? ((n + n + 1)*cos(Theta[t])*Pi[n - 1][t]/n)
|
|
|
+ : (((n + n + 1)*cos(Theta[t])*Pi[n - 1][t] - (n + 1)*Pi[n - 2][t])/n));
|
|
|
Tau[n][t] = (n + 1)*cos(Theta[t])*Pi[n][t] - (n + 2)*Pi[n - 1][t];
|
|
|
}
|
|
|
}
|
|
@@ -433,262 +291,26 @@ void calcPiTau_std(int n_max, int nTheta, std::vector<double> Theta,
|
|
|
// Return value: //
|
|
|
// Number of multipolar expansion terms used for the calculations //
|
|
|
//**********************************************************************************//
|
|
|
-int ScattCoeff(int L, int pl, double x[], complex m[], int n_max, complex **an, complex **bn){
|
|
|
+int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int n_max,
|
|
|
+ std::vector<std::complex<double> > &an, std::vector<std::complex<double> > &bn) {
|
|
|
//************************************************************************//
|
|
|
// Calculate the index of the first layer. It can be either 0 (default) //
|
|
|
// or the index of the outermost PEC layer. In the latter case all layers //
|
|
|
// below the PEC are discarded. //
|
|
|
//************************************************************************//
|
|
|
- int fl = firstLayer(L, pl);
|
|
|
-
|
|
|
- if (n_max <= 0) {
|
|
|
- n_max = Nmax(L, fl, pl, x, m);
|
|
|
- }
|
|
|
-
|
|
|
- complex z1, z2, cn;
|
|
|
- complex Num, Denom;
|
|
|
- complex G1, G2;
|
|
|
- complex Temp;
|
|
|
- double Tmp;
|
|
|
-
|
|
|
- int n, l, t;
|
|
|
-
|
|
|
- //**************************************************************************//
|
|
|
- // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
|
|
|
- // means that index = layer number - 1 or index = n - 1. The only exception //
|
|
|
- // are the arrays for representing D1, D3 and Q because they need a value //
|
|
|
- // for the index 0 (zero), hence it is important to consider this shift //
|
|
|
- // between different arrays. The change was done to optimize memory usage. //
|
|
|
- //**************************************************************************//
|
|
|
-
|
|
|
- // Allocate memory to the arrays
|
|
|
- complex **D1_mlxl = (complex **) malloc(L*sizeof(complex *));
|
|
|
- complex **D1_mlxlM1 = (complex **) malloc(L*sizeof(complex *));
|
|
|
-
|
|
|
- complex **D3_mlxl = (complex **) malloc(L*sizeof(complex *));
|
|
|
- complex **D3_mlxlM1 = (complex **) malloc(L*sizeof(complex *));
|
|
|
-
|
|
|
- complex **Q = (complex **) malloc(L*sizeof(complex *));
|
|
|
-
|
|
|
- complex **Ha = (complex **) malloc(L*sizeof(complex *));
|
|
|
- complex **Hb = (complex **) malloc(L*sizeof(complex *));
|
|
|
-
|
|
|
- for (l = 0; l < L; l++) {
|
|
|
- D1_mlxl[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
- D1_mlxlM1[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
-
|
|
|
- D3_mlxl[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
- D3_mlxlM1[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
-
|
|
|
- Q[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
-
|
|
|
- Ha[l] = (complex *) malloc(n_max*sizeof(complex));
|
|
|
- Hb[l] = (complex *) malloc(n_max*sizeof(complex));
|
|
|
- }
|
|
|
-
|
|
|
- (*an) = (complex *) malloc(n_max*sizeof(complex));
|
|
|
- (*bn) = (complex *) malloc(n_max*sizeof(complex));
|
|
|
-
|
|
|
- complex *D1XL = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
- complex *D3XL = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
-
|
|
|
- complex *PsiXL = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
- complex *ZetaXL = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
-
|
|
|
- //*************************************************//
|
|
|
- // Calculate D1 and D3 for z1 in the first layer //
|
|
|
- //*************************************************//
|
|
|
- if (fl == pl) { // PEC layer
|
|
|
- for (n = 0; n <= n_max; n++) {
|
|
|
- D1_mlxl[fl][n] = Complex(0, -1);
|
|
|
- D3_mlxl[fl][n] = C_I;
|
|
|
- }
|
|
|
- } else { // Regular layer
|
|
|
- z1 = RCmul(x[fl], m[fl]);
|
|
|
-
|
|
|
- // Calculate D1 and D3
|
|
|
- calcD1D3(z1, n_max, &(D1_mlxl[fl]), &(D3_mlxl[fl]));
|
|
|
- }
|
|
|
-
|
|
|
- //******************************************************************//
|
|
|
- // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
|
|
|
- //******************************************************************//
|
|
|
- for (n = 0; n < n_max; n++) {
|
|
|
- Ha[fl][n] = D1_mlxl[fl][n + 1];
|
|
|
- Hb[fl][n] = D1_mlxl[fl][n + 1];
|
|
|
- }
|
|
|
-
|
|
|
- //*****************************************************//
|
|
|
- // Iteration from the second layer to the last one (L) //
|
|
|
- //*****************************************************//
|
|
|
- for (l = fl + 1; l < L; l++) {
|
|
|
- //************************************************************//
|
|
|
- //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L //
|
|
|
- //************************************************************//
|
|
|
- z1 = RCmul(x[l], m[l]);
|
|
|
- z2 = RCmul(x[l - 1], m[l]);
|
|
|
-
|
|
|
- //Calculate D1 and D3 for z1
|
|
|
- calcD1D3(z1, n_max, &(D1_mlxl[l]), &(D3_mlxl[l]));
|
|
|
-
|
|
|
- //Calculate D1 and D3 for z2
|
|
|
- calcD1D3(z2, n_max, &(D1_mlxlM1[l]), &(D3_mlxlM1[l]));
|
|
|
-
|
|
|
- //*********************************************//
|
|
|
- //Calculate Q, Ha and Hb in the layers fl+1..L //
|
|
|
- //*********************************************//
|
|
|
-
|
|
|
- // Upward recurrence for Q - equations (19a) and (19b)
|
|
|
- Num = RCmul(exp(-2*(z1.i - z2.i)), Complex(cos(-2*z2.r) - exp(-2*z2.i), sin(-2*z2.r)));
|
|
|
- Denom = Complex(cos(-2*z1.r) - exp(-2*z1.i), sin(-2*z1.r));
|
|
|
- Q[l][0] = Cdiv(Num, Denom);
|
|
|
-
|
|
|
- for (n = 1; n <= n_max; n++) {
|
|
|
- cn = Complex(n, 0);
|
|
|
- Num = Cmul(Cadd(Cmul(z1, D1_mlxl[l][n]), cn), Csub(cn, Cmul(z1, D3_mlxl[l][n - 1])));
|
|
|
- Denom = Cmul(Cadd(Cmul(z2, D1_mlxlM1[l][n]), cn), Csub(cn, Cmul(z2, D3_mlxlM1[l][n - 1])));
|
|
|
-
|
|
|
- Q[l][n] = Cdiv(Cmul(RCmul((x[l - 1]*x[l - 1])/(x[l]*x[l]), Q[l][n - 1]), Num), Denom);
|
|
|
- }
|
|
|
-
|
|
|
- // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
|
|
|
- for (n = 1; n <= n_max; n++) {
|
|
|
- //Ha
|
|
|
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
- G1 = RCmul(-1.0, D1_mlxlM1[l][n]);
|
|
|
- G2 = RCmul(-1.0, D3_mlxlM1[l][n]);
|
|
|
- } else {
|
|
|
- G1 = Csub(Cmul(m[l], Ha[l - 1][n - 1]), Cmul(m[l - 1], D1_mlxlM1[l][n]));
|
|
|
- G2 = Csub(Cmul(m[l], Ha[l - 1][n - 1]), Cmul(m[l - 1], D3_mlxlM1[l][n]));
|
|
|
- }
|
|
|
-
|
|
|
- Temp = Cmul(Q[l][n], G1);
|
|
|
-
|
|
|
- Num = Csub(Cmul(G2, D1_mlxl[l][n]), Cmul(Temp, D3_mlxl[l][n]));
|
|
|
- Denom = Csub(G2, Temp);
|
|
|
-
|
|
|
- Ha[l][n - 1] = Cdiv(Num, Denom);
|
|
|
-
|
|
|
- //Hb
|
|
|
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
- G1 = Hb[l - 1][n - 1];
|
|
|
- G2 = Hb[l - 1][n - 1];
|
|
|
- } else {
|
|
|
- G1 = Csub(Cmul(m[l - 1], Hb[l - 1][n - 1]), Cmul(m[l], D1_mlxlM1[l][n]));
|
|
|
- G2 = Csub(Cmul(m[l - 1], Hb[l - 1][n - 1]), Cmul(m[l], D3_mlxlM1[l][n]));
|
|
|
- }
|
|
|
-
|
|
|
- Temp = Cmul(Q[l][n], G1);
|
|
|
-
|
|
|
- Num = Csub(Cmul(G2, D1_mlxl[l][n]), Cmul(Temp, D3_mlxl[l][n]));
|
|
|
- Denom = Csub(G2, Temp);
|
|
|
-
|
|
|
- Hb[l][n - 1] = Cdiv(Num, Denom);
|
|
|
- }
|
|
|
- }
|
|
|
|
|
|
- //**************************************//
|
|
|
- //Calculate D1, D3, Psi and Zeta for XL //
|
|
|
- //**************************************//
|
|
|
- z1 = Complex(x[L - 1], 0);
|
|
|
-
|
|
|
- // Calculate D1XL and D3XL
|
|
|
- calcD1D3(z1, n_max, &D1XL, &D3XL);
|
|
|
-
|
|
|
- // Calculate PsiXL and ZetaXL
|
|
|
- calcPsiZeta(z1, n_max, D1XL, D3XL, &PsiXL, &ZetaXL);
|
|
|
-
|
|
|
- //*********************************************************************//
|
|
|
- // Finally, we calculate the scattering coefficients (an and bn) and //
|
|
|
- // the angular functions (Pi and Tau). Note that for these arrays the //
|
|
|
- // first layer is 0 (zero), in future versions all arrays will follow //
|
|
|
- // this convention to save memory. (13 Nov, 2014) //
|
|
|
- //*********************************************************************//
|
|
|
- for (n = 0; n < n_max; n++) {
|
|
|
- //********************************************************************//
|
|
|
- //Expressions for calculating an and bn coefficients are not valid if //
|
|
|
- //there is only one PEC layer (ie, for a simple PEC sphere). //
|
|
|
- //********************************************************************//
|
|
|
- if (pl < (L - 1)) {
|
|
|
- (*an)[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
- (*bn)[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
- } else {
|
|
|
- (*an)[n] = calc_an(n + 1, x[L - 1], C_ZERO, C_ONE, PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
- (*bn)[n] = Cdiv(PsiXL[n + 1], ZetaXL[n + 1]);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Free the memory used for the arrays
|
|
|
- for (l = 0; l < L; l++) {
|
|
|
- free(D1_mlxl[l]);
|
|
|
- free(D1_mlxlM1[l]);
|
|
|
-
|
|
|
- free(D3_mlxl[l]);
|
|
|
- free(D3_mlxlM1[l]);
|
|
|
-
|
|
|
- free(Q[l]);
|
|
|
-
|
|
|
- free(Ha[l]);
|
|
|
- free(Hb[l]);
|
|
|
- }
|
|
|
-
|
|
|
- free(D1_mlxl);
|
|
|
- free(D1_mlxlM1);
|
|
|
-
|
|
|
- free(D3_mlxl);
|
|
|
- free(D3_mlxlM1);
|
|
|
-
|
|
|
- free(Q);
|
|
|
-
|
|
|
- free(Ha);
|
|
|
- free(Hb);
|
|
|
-
|
|
|
- free(D1XL);
|
|
|
- free(D3XL);
|
|
|
-
|
|
|
- free(PsiXL);
|
|
|
- free(ZetaXL);
|
|
|
-
|
|
|
- return n_max;
|
|
|
-}
|
|
|
-//**********************************************************************************//
|
|
|
-//**********************************************************************************//
|
|
|
-//**********************************************************************************//
|
|
|
-int ScattCoeff_std(double x[], complex m[],
|
|
|
- int L, int pl, std::vector<double> x_std,
|
|
|
- std::vector<std::complex<double> > m_std, int n_max,
|
|
|
- std::vector< std::complex<double> > &an_std,
|
|
|
- std::vector< std::complex<double> > &bn_std){
|
|
|
- //************************************************************************//
|
|
|
- // Calculate the index of the first layer. It can be either 0 (default) //
|
|
|
- // or the index of the outermost PEC layer. In the latter case all layers //
|
|
|
- // below the PEC are discarded. //
|
|
|
- //************************************************************************//
|
|
|
-
|
|
|
- //TODO: Why?
|
|
|
- // int fl = firstLayer(L, pl);
|
|
|
- // instead of
|
|
|
int fl = (pl > 0) ? pl : 0;
|
|
|
- // fl - first layer, pl - pec layer.
|
|
|
|
|
|
if (n_max <= 0) {
|
|
|
- int tmp_n_max = Nmax(L, fl, pl, x, m);
|
|
|
- n_max = Nmax_std(L, fl, pl, x_std, m_std);
|
|
|
- if (n_max != tmp_n_max) printf("n_max mismatch 2\n");
|
|
|
+ n_max = Nmax(L, fl, pl, x, m);
|
|
|
}
|
|
|
-
|
|
|
- // complex z1, z2, cn;
|
|
|
- // complex Num, Denom;
|
|
|
- // complex G1, G2;
|
|
|
- // complex Temp;
|
|
|
- std::complex<double> z1, z2, cn;
|
|
|
+
|
|
|
+ std::complex<double> z1, z2;
|
|
|
std::complex<double> Num, Denom;
|
|
|
std::complex<double> G1, G2;
|
|
|
std::complex<double> Temp;
|
|
|
|
|
|
- double Tmp;
|
|
|
-
|
|
|
- int n, l, t;
|
|
|
+ int n, l;
|
|
|
|
|
|
//**************************************************************************//
|
|
|
// Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
|
|
@@ -699,84 +321,59 @@ int ScattCoeff_std(double x[], complex m[],
|
|
|
//**************************************************************************//
|
|
|
|
|
|
// Allocate memory to the arrays
|
|
|
- //complex **D1_mlxl = (complex **) malloc(L*sizeof(complex *));
|
|
|
- //complex **D1_mlxlM1 = (complex **) malloc(L*sizeof(complex *));
|
|
|
- std::vector< std::vector< std::complex<double> > > D1_mlxl;
|
|
|
+ std::vector<std::vector<std::complex<double> > > D1_mlxl, D1_mlxlM1;
|
|
|
D1_mlxl.resize(L);
|
|
|
- std::vector< std::vector< std::complex<double> > >D1_mlxlM1;
|
|
|
D1_mlxlM1.resize(L);
|
|
|
|
|
|
- // complex **D3_mlxl = (complex **) malloc(L*sizeof(complex *));
|
|
|
- // complex **D3_mlxlM1 = (complex **) malloc(L*sizeof(complex *));
|
|
|
- std::vector< std::vector< std::complex<double> > > D3_mlxl;
|
|
|
+ std::vector<std::vector<std::complex<double> > > D3_mlxl, D3_mlxlM1;
|
|
|
D3_mlxl.resize(L);
|
|
|
- std::vector< std::vector< std::complex<double> > > D3_mlxlM1;
|
|
|
D3_mlxlM1.resize(L);
|
|
|
|
|
|
- //complex **Q = (complex **) malloc(L*sizeof(complex *));
|
|
|
- std::vector< std::vector< std::complex<double> > > Q;
|
|
|
+ std::vector<std::vector<std::complex<double> > > Q;
|
|
|
Q.resize(L);
|
|
|
|
|
|
- //complex **Ha = (complex **) malloc(L*sizeof(complex *));
|
|
|
- std::vector< std::vector< std::complex<double> > > Ha;
|
|
|
+ std::vector<std::vector<std::complex<double> > > Ha, Hb;
|
|
|
Ha.resize(L);
|
|
|
- //complex **Hb = (complex **) malloc(L*sizeof(complex *));
|
|
|
- std::vector< std::vector< std::complex<double> > > Hb;
|
|
|
Hb.resize(L);
|
|
|
|
|
|
for (l = 0; l < L; l++) {
|
|
|
- // D1_mlxl[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
- // D1_mlxlM1[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
- D1_mlxl[l].resize(n_max +1);
|
|
|
- D1_mlxlM1[l].resize(n_max +1);
|
|
|
+ D1_mlxl[l].resize(n_max + 1);
|
|
|
+ D1_mlxlM1[l].resize(n_max + 1);
|
|
|
|
|
|
- // D3_mlxl[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
- // D3_mlxlM1[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
- D3_mlxl[l].resize(n_max +1);
|
|
|
- D3_mlxlM1[l].resize(n_max +1);
|
|
|
+ D3_mlxl[l].resize(n_max + 1);
|
|
|
+ D3_mlxlM1[l].resize(n_max + 1);
|
|
|
|
|
|
- //Q[l] = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
Q[l].resize(n_max + 1);
|
|
|
|
|
|
- // Ha[l] = (complex *) malloc(n_max*sizeof(complex));
|
|
|
- // Hb[l] = (complex *) malloc(n_max*sizeof(complex));
|
|
|
Ha[l].resize(n_max);
|
|
|
Hb[l].resize(n_max);
|
|
|
}
|
|
|
|
|
|
- // (*an) = (complex *) malloc(n_max*sizeof(complex));
|
|
|
- // (*bn) = (complex *) malloc(n_max*sizeof(complex));
|
|
|
- an_std.resize(n_max);
|
|
|
- bn_std.resize(n_max);
|
|
|
+ an.resize(n_max);
|
|
|
+ bn.resize(n_max);
|
|
|
|
|
|
- // complex *D1XL = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
- // complex *D3XL = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
- std::vector< std::complex<double> > D1XL;
|
|
|
- D1XL.resize(n_max+1);
|
|
|
- std::vector< std::complex<double> > D3XL;
|
|
|
- D3XL.resize(n_max+1);
|
|
|
+ std::vector<std::complex<double> > D1XL, D3XL;
|
|
|
+ D1XL.resize(n_max + 1);
|
|
|
+ D3XL.resize(n_max + 1);
|
|
|
|
|
|
|
|
|
- // complex *PsiXL = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
- // complex *ZetaXL = (complex *) malloc((n_max + 1)*sizeof(complex));
|
|
|
- std::vector< std::complex<double> > PsiXL;
|
|
|
- PsiXL.resize(n_max+1);
|
|
|
- std::vector< std::complex<double> > ZetaXL;
|
|
|
- ZetaXL.resize(n_max+1);
|
|
|
+ std::vector<std::complex<double> > PsiXL, ZetaXL;
|
|
|
+ PsiXL.resize(n_max + 1);
|
|
|
+ ZetaXL.resize(n_max + 1);
|
|
|
|
|
|
//*************************************************//
|
|
|
// Calculate D1 and D3 for z1 in the first layer //
|
|
|
//*************************************************//
|
|
|
if (fl == pl) { // PEC layer
|
|
|
for (n = 0; n <= n_max; n++) {
|
|
|
- D1_mlxl[fl][n] = std::complex<double>(0, -1);
|
|
|
- D3_mlxl[fl][n] = std::complex<double>(0, 1);
|
|
|
+ D1_mlxl[fl][n] = std::complex<double>(0.0, -1.0);
|
|
|
+ D3_mlxl[fl][n] = std::complex<double>(0.0, 1.0);
|
|
|
}
|
|
|
} else { // Regular layer
|
|
|
- z1 = x_std[fl]* m_std[fl];
|
|
|
+ z1 = x[fl]* m[fl];
|
|
|
|
|
|
// Calculate D1 and D3
|
|
|
- calcD1D3_std(z1, n_max, D1_mlxl[fl], D3_mlxl[fl]);
|
|
|
+ calcD1D3(z1, n_max, D1_mlxl[fl], D3_mlxl[fl]);
|
|
|
}
|
|
|
|
|
|
//******************************************************************//
|
|
@@ -794,63 +391,59 @@ int ScattCoeff_std(double x[], complex m[],
|
|
|
//************************************************************//
|
|
|
//Calculate D1 and D3 for z1 and z2 in the layers fl+1..L //
|
|
|
//************************************************************//
|
|
|
- z1 = x_std[l] * m_std[l];
|
|
|
- z2 = x_std[l - 1] * m_std[l];
|
|
|
+ z1 = x[l]*m[l];
|
|
|
+ z2 = x[l - 1]*m[l];
|
|
|
|
|
|
//Calculate D1 and D3 for z1
|
|
|
- calcD1D3_std(z1, n_max, D1_mlxl[l], D3_mlxl[l]);
|
|
|
+ calcD1D3(z1, n_max, D1_mlxl[l], D3_mlxl[l]);
|
|
|
|
|
|
//Calculate D1 and D3 for z2
|
|
|
- calcD1D3_std(z2, n_max, D1_mlxlM1[l], D3_mlxlM1[l]);
|
|
|
+ calcD1D3(z2, n_max, D1_mlxlM1[l], D3_mlxlM1[l]);
|
|
|
|
|
|
//*********************************************//
|
|
|
//Calculate Q, Ha and Hb in the layers fl+1..L //
|
|
|
//*********************************************//
|
|
|
|
|
|
// Upward recurrence for Q - equations (19a) and (19b)
|
|
|
- //Num = RCmul(exp(-2*(z1.i - z2.i)), Complex(cos(-2*z2.r) - exp(-2*z2.i), sin(-2*z2.r)));
|
|
|
- Num = exp( -2.0 * ( z1.imag() - z2.imag() ) ) *
|
|
|
- std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
|
|
|
- Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()),
|
|
|
- sin(-2.0*z1.real()));
|
|
|
+ Num = exp(-2.0*(z1.imag() - z2.imag()))*std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
|
|
|
+ Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
|
|
|
Q[l][0] = Num/Denom;
|
|
|
|
|
|
for (n = 1; n <= n_max; n++) {
|
|
|
- cn = std::complex<double>(n, 0);
|
|
|
- Num = ( (z1*D1_mlxl[l][n]) + cn) * (cn - (z1*D3_mlxl[l][n - 1]) );
|
|
|
- Denom = ( (z2*D1_mlxlM1[l][n]) + cn) * (cn- (z2* D3_mlxlM1[l][n - 1]) );
|
|
|
+ Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]);
|
|
|
+ Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]);
|
|
|
|
|
|
- Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1]) * Num)/Denom;
|
|
|
+ Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom;
|
|
|
}
|
|
|
|
|
|
// Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
|
|
|
for (n = 1; n <= n_max; n++) {
|
|
|
//Ha
|
|
|
if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
- G1 = -1.0 * D1_mlxlM1[l][n];
|
|
|
- G2 = -1.0 * D3_mlxlM1[l][n];
|
|
|
+ G1 = -D1_mlxlM1[l][n];
|
|
|
+ G2 = -D3_mlxlM1[l][n];
|
|
|
} else {
|
|
|
- G1 = (m_std[l] * Ha[l - 1][n - 1]) - (m_std[l - 1] * D1_mlxlM1[l][n]);
|
|
|
- G2 = (m_std[l] * Ha[l - 1][n - 1]) - (m_std[l - 1] * D3_mlxlM1[l][n]);
|
|
|
+ G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]);
|
|
|
+ G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]);
|
|
|
}
|
|
|
|
|
|
- Temp = Q[l][n] * G1;
|
|
|
+ Temp = Q[l][n]*G1;
|
|
|
|
|
|
Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]);
|
|
|
Denom = G2 - Temp;
|
|
|
|
|
|
- Ha[l][n - 1] = Num / Denom;
|
|
|
+ Ha[l][n - 1] = Num/Denom;
|
|
|
|
|
|
//Hb
|
|
|
if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
G1 = Hb[l - 1][n - 1];
|
|
|
G2 = Hb[l - 1][n - 1];
|
|
|
} else {
|
|
|
- G1 = (m_std[l - 1] * Hb[l - 1][n - 1]) - (m_std[l] * D1_mlxlM1[l][n]);
|
|
|
- G2 = (m_std[l - 1] * Hb[l - 1][n - 1]) - (m_std[l] * D3_mlxlM1[l][n]);
|
|
|
+ G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]);
|
|
|
+ G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]);
|
|
|
}
|
|
|
|
|
|
- Temp = Q[l][n] * G1;
|
|
|
+ Temp = Q[l][n]*G1;
|
|
|
|
|
|
Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]);
|
|
|
Denom = (G2- Temp);
|
|
@@ -862,13 +455,12 @@ int ScattCoeff_std(double x[], complex m[],
|
|
|
//**************************************//
|
|
|
//Calculate D1, D3, Psi and Zeta for XL //
|
|
|
//**************************************//
|
|
|
- z1 = std::complex<double>(x_std[L - 1], 0);
|
|
|
|
|
|
// Calculate D1XL and D3XL
|
|
|
- calcD1D3_std(z1, n_max, D1XL, D3XL);
|
|
|
+ calcD1D3(x[L - 1], n_max, D1XL, D3XL);
|
|
|
|
|
|
// Calculate PsiXL and ZetaXL
|
|
|
- calcPsiZeta_std(z1, n_max, D1XL, D3XL, PsiXL, ZetaXL);
|
|
|
+ calcPsiZeta(x[L - 1], n_max, D1XL, D3XL, PsiXL, ZetaXL);
|
|
|
|
|
|
//*********************************************************************//
|
|
|
// Finally, we calculate the scattering coefficients (an and bn) and //
|
|
@@ -882,109 +474,17 @@ int ScattCoeff_std(double x[], complex m[],
|
|
|
//there is only one PEC layer (ie, for a simple PEC sphere). //
|
|
|
//********************************************************************//
|
|
|
if (pl < (L - 1)) {
|
|
|
- an_std[n] = calc_an_std(n + 1, x_std[L-1], Ha[L-1][n], m_std[L-1],
|
|
|
- PsiXL[n + 1], ZetaXL[n+1], PsiXL[n], ZetaXL[n]);
|
|
|
- bn_std[n] = calc_bn_std(n + 1, x_std[L-1], Hb[L-1][n], m_std[L-1],
|
|
|
- PsiXL[n+1], ZetaXL[n+1], PsiXL[n], ZetaXL[n]);
|
|
|
+ an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
+ bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
} else {
|
|
|
- an_std[n] = calc_an_std(n+1, x_std[L-1], std::complex<double>(0.0,0.0),
|
|
|
- std::complex<double>(1.0,0.0),
|
|
|
- PsiXL[n+1], ZetaXL[n+1], PsiXL[n], ZetaXL[n]);
|
|
|
- bn_std[n] = PsiXL[n+1] / ZetaXL[n+1];
|
|
|
+ an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
+ bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
|
|
|
}
|
|
|
}
|
|
|
|
|
|
return n_max;
|
|
|
}
|
|
|
|
|
|
-
|
|
|
-//**********************************************************************************//
|
|
|
-// This function is just a wrapper to call the function 'nMieScatt' with fewer //
|
|
|
-// parameters, it is here mainly for compatibility with older versions of the //
|
|
|
-// program. Also, you can use it if you neither have a PEC layer nor want to define //
|
|
|
-// any limit for the maximum number of terms. //
|
|
|
-//**********************************************************************************//
|
|
|
-
|
|
|
-int nMie(int L, double x[], complex m[], int nTheta, double Theta[], double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, complex S1[], complex S2[]) {
|
|
|
-
|
|
|
- return nMieScatt(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-int nMie_std(double x[], complex m[], double Theta[], complex S1[], complex S2[],
|
|
|
-int L, std::vector<double> &x_std, std::vector<std::complex<double> > &m_std, int nTheta, std::vector<double> &Theta_std, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector< std::complex<double> > &S1_std, std::vector< std::complex<double> > &S2_std) {
|
|
|
- return nMieScatt_std(x, m, Theta, S1, S2, L, -1, x_std, m_std, nTheta, Theta_std, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1_std, S2_std);
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-//**********************************************************************************//
|
|
|
-// This function is just a wrapper to call the function 'nMieScatt' with fewer //
|
|
|
-// parameters, it is useful if you want to include a PEC layer but not a limit //
|
|
|
-// for the maximum number of terms. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// L: Number of layers //
|
|
|
-// pl: Index of PEC layer. If there is none just send -1 //
|
|
|
-// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
-// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// nTheta: Number of scattering angles //
|
|
|
-// Theta: Array containing all the scattering angles where the scattering //
|
|
|
-// amplitudes will be calculated //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// Qext: Efficiency factor for extinction //
|
|
|
-// Qsca: Efficiency factor for scattering //
|
|
|
-// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
-// Qbk: Efficiency factor for backscattering //
|
|
|
-// Qpr: Efficiency factor for the radiation pressure //
|
|
|
-// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
-// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
-// S1, S2: Complex scattering amplitudes //
|
|
|
-// //
|
|
|
-// Return value: //
|
|
|
-// Number of multipolar expansion terms used for the calculations //
|
|
|
-//**********************************************************************************//
|
|
|
-
|
|
|
-int nMiePEC(int L, int pl, double x[], complex m[], int nTheta, double Theta[], double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, complex S1[], complex S2[]) {
|
|
|
-
|
|
|
- return nMieScatt(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
-}
|
|
|
-
|
|
|
-//**********************************************************************************//
|
|
|
-// This function is just a wrapper to call the function 'nMieScatt' with fewer //
|
|
|
-// parameters, it is useful if you want to include a limit for the maximum number //
|
|
|
-// of terms but not a PEC layer. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// L: Number of layers //
|
|
|
-// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
-// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// nTheta: Number of scattering angles //
|
|
|
-// Theta: Array containing all the scattering angles where the scattering //
|
|
|
-// amplitudes will be calculated //
|
|
|
-// n_max: Maximum number of multipolar expansion terms to be used for the //
|
|
|
-// calculations. Only used if you know what you are doing, otherwise set //
|
|
|
-// this parameter to -1 and the function will calculate it //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// Qext: Efficiency factor for extinction //
|
|
|
-// Qsca: Efficiency factor for scattering //
|
|
|
-// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
-// Qbk: Efficiency factor for backscattering //
|
|
|
-// Qpr: Efficiency factor for the radiation pressure //
|
|
|
-// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
-// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
-// S1, S2: Complex scattering amplitudes //
|
|
|
-// //
|
|
|
-// Return value: //
|
|
|
-// Number of multipolar expansion terms used for the calculations //
|
|
|
-//**********************************************************************************//
|
|
|
-
|
|
|
-int nMieMax(int L, double x[], complex m[], int nTheta, double Theta[], int n_max, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, complex S1[], complex S2[]) {
|
|
|
-
|
|
|
- return nMieScatt(L, -1, x, m, nTheta, Theta, n_max, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
-}
|
|
|
-
|
|
|
//**********************************************************************************//
|
|
|
// This function calculates the actual scattering parameters and amplitudes //
|
|
|
// //
|
|
@@ -1014,22 +514,28 @@ int nMieMax(int L, double x[], complex m[], int nTheta, double Theta[], int n_ma
|
|
|
// Number of multipolar expansion terms used for the calculations //
|
|
|
//**********************************************************************************//
|
|
|
|
|
|
-int nMieScatt(int L, int pl, double x[], complex m[], int nTheta, double Theta[], int n_max, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, complex S1[], complex S2[]) {
|
|
|
+int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
+ int nTheta, std::vector<double> Theta, int n_max,
|
|
|
+ double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
+ std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
|
|
|
+
|
|
|
int i, n, t;
|
|
|
- double **Pi, **Tau;
|
|
|
- complex *an, *bn;
|
|
|
- complex Qbktmp;
|
|
|
+ std::vector<std::complex<double> > an, bn;
|
|
|
+ std::complex<double> Qbktmp;
|
|
|
|
|
|
- n_max = ScattCoeff(L, pl, x, m, n_max, &an, &bn);
|
|
|
+ // Calculate scattering coefficients
|
|
|
+ n_max = ScattCoeffs(L, pl, x, m, n_max, an, bn);
|
|
|
|
|
|
- Pi = (double **) malloc(n_max*sizeof(double *));
|
|
|
- Tau = (double **) malloc(n_max*sizeof(double *));
|
|
|
+ std::vector< std::vector<double> > Pi;
|
|
|
+ Pi.resize(n_max);
|
|
|
+ std::vector< std::vector<double> > Tau;
|
|
|
+ Tau.resize(n_max);
|
|
|
for (n = 0; n < n_max; n++) {
|
|
|
- Pi[n] = (double *) malloc(nTheta*sizeof(double));
|
|
|
- Tau[n] = (double *) malloc(nTheta*sizeof(double));
|
|
|
+ Pi[n].resize(nTheta);
|
|
|
+ Tau[n].resize(nTheta);
|
|
|
}
|
|
|
|
|
|
- calcPiTau(n_max, nTheta, Theta, &Pi, &Tau);
|
|
|
+ calcPiTau(n_max, nTheta, Theta, Pi, Tau);
|
|
|
|
|
|
double x2 = x[L - 1]*x[L - 1];
|
|
|
|
|
@@ -1038,15 +544,15 @@ int nMieScatt(int L, int pl, double x[], complex m[], int nTheta, double Theta[]
|
|
|
*Qsca = 0;
|
|
|
*Qabs = 0;
|
|
|
*Qbk = 0;
|
|
|
- Qbktmp = C_ZERO;
|
|
|
+ Qbktmp = std::complex<double>(0.0, 0.0);
|
|
|
*Qpr = 0;
|
|
|
*g = 0;
|
|
|
*Albedo = 0;
|
|
|
|
|
|
// Initialize the scattering amplitudes
|
|
|
for (t = 0; t < nTheta; t++) {
|
|
|
- S1[t] = C_ZERO;
|
|
|
- S2[t] = C_ZERO;
|
|
|
+ S1[t] = std::complex<double>(0.0, 0.0);
|
|
|
+ S2[t] = std::complex<double>(0.0, 0.0);
|
|
|
}
|
|
|
|
|
|
// By using downward recurrence we avoid loss of precision due to float rounding errors
|
|
@@ -1055,22 +561,22 @@ int nMieScatt(int L, int pl, double x[], complex m[], int nTheta, double Theta[]
|
|
|
for (i = n_max - 2; i >= 0; i--) {
|
|
|
n = i + 1;
|
|
|
// Equation (27)
|
|
|
- *Qext = *Qext + (double)(n + n + 1)*(an[i].r + bn[i].r);
|
|
|
+ *Qext += (n + n + 1)*(an[i].real() + bn[i].real());
|
|
|
// Equation (28)
|
|
|
- *Qsca = *Qsca + (double)(n + n + 1)*(an[i].r*an[i].r + an[i].i*an[i].i + bn[i].r*bn[i].r + bn[i].i*bn[i].i);
|
|
|
+ *Qsca += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
|
|
|
// Equation (29)
|
|
|
- *Qpr = *Qpr + ((n*(n + 2)/(n + 1))*((Cadd(Cmul(an[i], Conjg(an[n])), Cmul(bn[i], Conjg(bn[n])))).r) + ((double)(n + n + 1)/(n*(n + 1)))*(Cmul(an[i], Conjg(bn[i])).r));
|
|
|
-
|
|
|
+ // We must check carefully this equation. If we remove the typecast to double then the result changes. Which is the correct one??? Ovidio (2014/12/10)
|
|
|
+ *Qpr += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
|
|
|
// Equation (33)
|
|
|
- Qbktmp = Cadd(Qbktmp, RCmul((double)((n + n + 1)*(1 - 2*(n % 2))), Csub(an[i], bn[i])));
|
|
|
+ Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
|
|
|
|
|
|
//****************************************************//
|
|
|
// Calculate the scattering amplitudes (S1 and S2) //
|
|
|
// Equations (25a) - (25b) //
|
|
|
//****************************************************//
|
|
|
for (t = 0; t < nTheta; t++) {
|
|
|
- S1[t] = Cadd(S1[t], calc_S1_n(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
|
|
|
- S2[t] = Cadd(S2[t], calc_S2_n(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
|
|
|
+ S1[t] += calc_S1(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
|
|
|
+ S2[t] += calc_S2(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -1082,142 +588,120 @@ int nMieScatt(int L, int pl, double x[], complex m[], int nTheta, double Theta[]
|
|
|
*Albedo = *Qsca / *Qext; // Equation (31)
|
|
|
*g = (*Qext - *Qpr) / *Qsca; // Equation (32)
|
|
|
|
|
|
- *Qbk = (Qbktmp.r*Qbktmp.r + Qbktmp.i*Qbktmp.i)/x2; // Equation (33)
|
|
|
-
|
|
|
- // Free the memory used for the arrays
|
|
|
- for (n = 0; n < n_max; n++) {
|
|
|
- free(Pi[n]);
|
|
|
- free(Tau[n]);
|
|
|
- }
|
|
|
-
|
|
|
- free(Pi);
|
|
|
- free(Tau);
|
|
|
-
|
|
|
- free(an);
|
|
|
- free(bn);
|
|
|
+ *Qbk = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
|
|
|
|
|
|
return n_max;
|
|
|
}
|
|
|
|
|
|
+//**********************************************************************************//
|
|
|
+// This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
+// parameters, it is here mainly for compatibility with older versions of the //
|
|
|
+// program. Also, you can use it if you neither have a PEC layer nor want to define //
|
|
|
+// any limit for the maximum number of terms. //
|
|
|
+// //
|
|
|
+// Input parameters: //
|
|
|
+// L: Number of layers //
|
|
|
+// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+// nTheta: Number of scattering angles //
|
|
|
+// Theta: Array containing all the scattering angles where the scattering //
|
|
|
+// amplitudes will be calculated //
|
|
|
+// //
|
|
|
+// Output parameters: //
|
|
|
+// Qext: Efficiency factor for extinction //
|
|
|
+// Qsca: Efficiency factor for scattering //
|
|
|
+// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
+// Qbk: Efficiency factor for backscattering //
|
|
|
+// Qpr: Efficiency factor for the radiation pressure //
|
|
|
+// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
+// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
+// S1, S2: Complex scattering amplitudes //
|
|
|
+// //
|
|
|
+// Return value: //
|
|
|
+// Number of multipolar expansion terms used for the calculations //
|
|
|
+//**********************************************************************************//
|
|
|
|
|
|
+int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
+ int nTheta, std::vector<double> Theta,
|
|
|
+ double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
+ std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
|
|
|
|
|
|
-int nMieScatt_std(double x[], complex m[], double Theta[], complex S1[], complex S2[],
|
|
|
- int L, int pl,
|
|
|
- std::vector<double> &x_std, std::vector<std::complex<double> > &m_std,
|
|
|
- int nTheta, std::vector<double> &Theta_std,
|
|
|
- int n_max, double *Qext, double *Qsca, double *Qabs, double *Qbk,
|
|
|
- double *Qpr, double *g, double *Albedo,
|
|
|
- std::vector< std::complex<double> > &S1_std,
|
|
|
- std::vector< std::complex<double> > &S2_std) {
|
|
|
- int i, n, t;
|
|
|
- // double **Pi, **Tau;
|
|
|
- std::vector< std::vector<double> > Pi_std, Tau_std;
|
|
|
- complex *an, *bn;
|
|
|
- std::vector< std::complex<double> > an_std, bn_std;
|
|
|
- //complex Qbktmp;
|
|
|
- std::complex<double> Qbktmp;
|
|
|
- {
|
|
|
- int tmp_n_max = ScattCoeff(L, pl, x, m, n_max, &an, &bn);
|
|
|
- n_max = ScattCoeff_std(x, m, L, pl, x_std, m_std, n_max, an_std, bn_std);
|
|
|
- if (n_max != tmp_n_max) printf("n_max mismatch\n");
|
|
|
- compare("an vs an_std: ", an, an_std);
|
|
|
- compare("bn vs bn_std: ", an, an_std);
|
|
|
- }
|
|
|
- // Pi = (double **) malloc(n_max*sizeof(double *));
|
|
|
- // Tau = (double **) malloc(n_max*sizeof(double *));
|
|
|
- std::vector< std::vector<double> > Pi;
|
|
|
- Pi.resize(n_max);
|
|
|
- std::vector< std::vector<double> > Tau;
|
|
|
- Tau.resize(n_max);
|
|
|
- for (n = 0; n < n_max; n++) {
|
|
|
- // Pi[n] = (double *) malloc(nTheta*sizeof(double));
|
|
|
- // Tau[n] = (double *) malloc(nTheta*sizeof(double));
|
|
|
- Pi[n].resize(nTheta);
|
|
|
- Tau[n].resize(nTheta);
|
|
|
- }
|
|
|
-
|
|
|
- calcPiTau_std(n_max, nTheta, Theta_std, Pi, Tau);
|
|
|
-
|
|
|
- double x2 = x[L - 1]*x[L - 1];
|
|
|
-
|
|
|
- // Initialize the scattering parameters
|
|
|
- *Qext = 0;
|
|
|
- *Qsca = 0;
|
|
|
- *Qabs = 0;
|
|
|
- *Qbk = 0;
|
|
|
- Qbktmp = std::complex<double>(0.0, 0.0);
|
|
|
- *Qpr = 0;
|
|
|
- *g = 0;
|
|
|
- *Albedo = 0;
|
|
|
-
|
|
|
- // Initialize the scattering amplitudes
|
|
|
- for (t = 0; t < nTheta; t++) {
|
|
|
- S1_std[t] = std::complex<double>(0.0, 0.0);
|
|
|
- S2_std[t] = std::complex<double>(0.0, 0.0);
|
|
|
- }
|
|
|
-
|
|
|
- // By using downward recurrence we avoid loss of precision due to float rounding errors
|
|
|
- // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
|
|
|
- // http://en.wikipedia.org/wiki/Loss_of_significance
|
|
|
- for (i = n_max - 2; i >= 0; i--) {
|
|
|
- n = i + 1;
|
|
|
- // Equation (27)
|
|
|
- *Qext = *Qext + (double)(n + n + 1)*(an_std[i].real() + bn_std[i].real());
|
|
|
- // Equation (28)
|
|
|
- *Qsca = *Qsca + (double)(n + n + 1)*(an_std[i].real()*an_std[i].real() + an_std[i].imag()*an_std[i].imag() + bn_std[i].real()*bn_std[i].real() + bn_std[i].imag()*bn_std[i].imag());
|
|
|
- // Equation (29)
|
|
|
- // Qpr = *Qpr + ((n*(n + 2)/(n + 1))*((Cadd(Cmul(an[i], Conjg(an[n])), Cmul(bn[i], Conjg(bn[n])))).r) + ((double)(n + n + 1)/(n*(n + 1)))*(Cmul(an[i], Conjg(bn[i])).r));
|
|
|
- *Qpr = *Qpr +
|
|
|
- (
|
|
|
- (n*(n + 2)/(n + 1))
|
|
|
- *(
|
|
|
- (
|
|
|
- (an_std[i]*std::conj(an_std[n]))
|
|
|
- + (bn_std[i]*std::conj(bn_std[n]))
|
|
|
- ).real()
|
|
|
- )
|
|
|
- + ((double)(n + n + 1)/(n*(n + 1)))
|
|
|
- *(
|
|
|
- (an_std[i] * std::conj(bn_std[i])
|
|
|
- ).real()
|
|
|
- )
|
|
|
- );
|
|
|
- // Equation (33)
|
|
|
- Qbktmp = Qbktmp + ((double)((n + n + 1)*(1 - 2*(n % 2))) * (an_std[i]- bn_std[i]));
|
|
|
-
|
|
|
- //****************************************************//
|
|
|
- // Calculate the scattering amplitudes (S1 and S2) //
|
|
|
- // Equations (25a) - (25b) //
|
|
|
- //****************************************************//
|
|
|
- for (t = 0; t < nTheta; t++) {
|
|
|
- S1_std[t] = S1_std[t] + calc_S1_n_std(n, an_std[i], bn_std[i], Pi[i][t], Tau[i][t]);
|
|
|
- S2_std[t] = S2_std[t] + calc_S2_n_std(n, an_std[i], bn_std[i], Pi[i][t], Tau[i][t]);
|
|
|
- }
|
|
|
- }
|
|
|
+ return nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
+}
|
|
|
|
|
|
- *Qext = 2*(*Qext)/x2; // Equation (27)
|
|
|
- *Qsca = 2*(*Qsca)/x2; // Equation (28)
|
|
|
- *Qpr = *Qext - 4*(*Qpr)/x2; // Equation (29)
|
|
|
|
|
|
- *Qabs = *Qext - *Qsca; // Equation (30)
|
|
|
- *Albedo = *Qsca / *Qext; // Equation (31)
|
|
|
- *g = (*Qext - *Qpr) / *Qsca; // Equation (32)
|
|
|
+//**********************************************************************************//
|
|
|
+// This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
+// parameters, it is useful if you want to include a PEC layer but not a limit //
|
|
|
+// for the maximum number of terms. //
|
|
|
+// //
|
|
|
+// Input parameters: //
|
|
|
+// L: Number of layers //
|
|
|
+// pl: Index of PEC layer. If there is none just send -1 //
|
|
|
+// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+// nTheta: Number of scattering angles //
|
|
|
+// Theta: Array containing all the scattering angles where the scattering //
|
|
|
+// amplitudes will be calculated //
|
|
|
+// //
|
|
|
+// Output parameters: //
|
|
|
+// Qext: Efficiency factor for extinction //
|
|
|
+// Qsca: Efficiency factor for scattering //
|
|
|
+// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
+// Qbk: Efficiency factor for backscattering //
|
|
|
+// Qpr: Efficiency factor for the radiation pressure //
|
|
|
+// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
+// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
+// S1, S2: Complex scattering amplitudes //
|
|
|
+// //
|
|
|
+// Return value: //
|
|
|
+// Number of multipolar expansion terms used for the calculations //
|
|
|
+//**********************************************************************************//
|
|
|
|
|
|
- *Qbk = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
|
|
|
+int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
+ int nTheta, std::vector<double> Theta,
|
|
|
+ double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
+ std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
|
|
|
|
|
|
- // Free the memory used for the arrays
|
|
|
- // for (n = 0; n < n_max; n++) {
|
|
|
- // free(Pi[n]);
|
|
|
- // free(Tau[n]);
|
|
|
- // }
|
|
|
+ return nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
+}
|
|
|
|
|
|
- // free(Pi);
|
|
|
- // free(Tau);
|
|
|
+//**********************************************************************************//
|
|
|
+// This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
+// parameters, it is useful if you want to include a limit for the maximum number //
|
|
|
+// of terms but not a PEC layer. //
|
|
|
+// //
|
|
|
+// Input parameters: //
|
|
|
+// L: Number of layers //
|
|
|
+// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+// nTheta: Number of scattering angles //
|
|
|
+// Theta: Array containing all the scattering angles where the scattering //
|
|
|
+// amplitudes will be calculated //
|
|
|
+// n_max: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+// calculations. Only used if you know what you are doing, otherwise set //
|
|
|
+// this parameter to -1 and the function will calculate it //
|
|
|
+// //
|
|
|
+// Output parameters: //
|
|
|
+// Qext: Efficiency factor for extinction //
|
|
|
+// Qsca: Efficiency factor for scattering //
|
|
|
+// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
+// Qbk: Efficiency factor for backscattering //
|
|
|
+// Qpr: Efficiency factor for the radiation pressure //
|
|
|
+// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
+// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
+// S1, S2: Complex scattering amplitudes //
|
|
|
+// //
|
|
|
+// Return value: //
|
|
|
+// Number of multipolar expansion terms used for the calculations //
|
|
|
+//**********************************************************************************//
|
|
|
|
|
|
- free(an);
|
|
|
- free(bn);
|
|
|
+int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
+ int nTheta, std::vector<double> Theta, int n_max,
|
|
|
+ double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
+ std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
|
|
|
|
|
|
- return n_max;
|
|
|
+ return nMie(L, -1, x, m, nTheta, Theta, n_max, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
}
|
|
|
|
|
|
|
|
@@ -1244,9 +728,12 @@ int nMieScatt_std(double x[], complex m[], double Theta[], complex S1[], complex
|
|
|
// Number of multipolar expansion terms used for the calculations //
|
|
|
//**********************************************************************************//
|
|
|
|
|
|
-int nMieField(int L, int pl, double x[], complex m[], int n_max, int nCoords, double Xp[], double Yp[], double Zp[], complex E[], complex H[]){
|
|
|
+int nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int n_max,
|
|
|
+ int nCoords, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
|
|
|
+ std::vector<std::complex<double> > &E, std::vector<std::complex<double> > &H) {
|
|
|
+
|
|
|
int i, n, c;
|
|
|
- double **Pi, **Tau;
|
|
|
+/* double **Pi, **Tau;
|
|
|
complex *an, *bn;
|
|
|
double *Rho = (double *) malloc(nCoords*sizeof(double));
|
|
|
double *Phi = (double *) malloc(nCoords*sizeof(double));
|
|
@@ -1261,7 +748,7 @@ int nMieField(int L, int pl, double x[], complex m[], int n_max, int nCoords, do
|
|
|
Theta[c] = acos(Xp[c]/Rho[c]);
|
|
|
}
|
|
|
|
|
|
- n_max = ScattCoeff(L, pl, x, m, n_max, &an, &bn);
|
|
|
+ n_max = ScattCoeffs(L, pl, x, m, n_max, an, bn);
|
|
|
|
|
|
Pi = (double **) malloc(n_max*sizeof(double *));
|
|
|
Tau = (double **) malloc(n_max*sizeof(double *));
|
|
@@ -1278,7 +765,7 @@ int nMieField(int L, int pl, double x[], complex m[], int n_max, int nCoords, do
|
|
|
for (c = 0; c < nCoords; c++) {
|
|
|
E[c] = C_ZERO;
|
|
|
H[c] = C_ZERO;
|
|
|
- }
|
|
|
+ }*/
|
|
|
|
|
|
//*******************************************************//
|
|
|
// external scattering field = incident + scattered //
|
|
@@ -1287,16 +774,16 @@ int nMieField(int L, int pl, double x[], complex m[], int n_max, int nCoords, do
|
|
|
//*******************************************************//
|
|
|
|
|
|
// Firstly the easiest case, we want the field outside the particle
|
|
|
- if (Rho[c] >= x[L - 1]) {
|
|
|
- }
|
|
|
-// for (i = 1; i < (n_max - 1); i++) {
|
|
|
+// if (Rho[c] >= x[L - 1]) {
|
|
|
+// }
|
|
|
+ for (i = 1; i < (n_max - 1); i++) {
|
|
|
// n = i - 1;
|
|
|
/* // Equation (27)
|
|
|
*Qext = *Qext + (double)(n + n + 1)*(an[i].r + bn[i].r);
|
|
|
// Equation (28)
|
|
|
*Qsca = *Qsca + (double)(n + n + 1)*(an[i].r*an[i].r + an[i].i*an[i].i + bn[i].r*bn[i].r + bn[i].i*bn[i].i);
|
|
|
// Equation (29)
|
|
|
- *Qpr = *Qpr + ((n*(n + 2)/(n + 1))*((Cadd(Cmul(an[i], Conjg(an[n])), Cmul(bn[i], Conjg(bn[n])))).r) + ((double)(n + n + 1)/(n*(n + 1)))*(Cmul(an[i], Conjg(bn[i])).r));
|
|
|
+ *Qpr = *Qpr + ((n*(n + 2)/(n + 1))*((Cadd(Cmul(an[i], std::conj(an[n])), Cmul(bn[i], std::conj(bn[n])))).r) + ((double)(n + n + 1)/(n*(n + 1)))*(Cmul(an[i], std::conj(bn[i])).r));
|
|
|
|
|
|
// Equation (33)
|
|
|
Qbktmp = Cadd(Qbktmp, RCmul((double)((n + n + 1)*(1 - 2*(n % 2))), Csub(an[i], bn[i])));
|
|
@@ -1306,27 +793,11 @@ int nMieField(int L, int pl, double x[], complex m[], int n_max, int nCoords, do
|
|
|
// Equations (25a) - (25b) //
|
|
|
//****************************************************//
|
|
|
/* for (t = 0; t < nTheta; t++) {
|
|
|
- S1[t] = Cadd(S1[t], calc_S1_n(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
|
|
|
- S2[t] = Cadd(S2[t], calc_S2_n(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
|
|
|
+ S1[t] = Cadd(S1[t], calc_S1(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
|
|
|
+ S2[t] = Cadd(S2[t], calc_S2(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
|
|
|
}*/
|
|
|
-// }
|
|
|
-
|
|
|
- // Free the memory used for the arrays
|
|
|
- for (n = 0; n < n_max; n++) {
|
|
|
- free(Pi[n]);
|
|
|
- free(Tau[n]);
|
|
|
}
|
|
|
|
|
|
- free(Pi);
|
|
|
- free(Tau);
|
|
|
-
|
|
|
- free(an);
|
|
|
- free(bn);
|
|
|
-
|
|
|
- free(Rho);
|
|
|
- free(Phi);
|
|
|
- free(Theta);
|
|
|
-
|
|
|
return n_max;
|
|
|
}
|
|
|
|