|
@@ -725,30 +725,34 @@ namespace nmie {
|
|
|
std::vector<std::complex<double> >& jn, std::vector<std::complex<double> >& jnp,
|
|
|
std::vector<std::complex<double> >& h1n, std::vector<std::complex<double> >& h1np) {
|
|
|
|
|
|
- std::vector<std::complex<double> > Psi(nmax_ + 1), Zeta(nmax_ + 1);
|
|
|
-
|
|
|
- // First, calculate the Riccati-Bessel functions
|
|
|
- calcPsiZeta(z, Psi, Zeta);
|
|
|
-
|
|
|
- // Now, calculate Spherical Bessel and Hankel functions and their derivatives
|
|
|
- for (int n = 0; n <= nmax_; n++) {
|
|
|
- jn[n] = Psi[n]/z;
|
|
|
- h1n[n] = Zeta[n]/z;
|
|
|
-
|
|
|
- if (n == 0) {
|
|
|
- jnp[0] = -Psi[1]/z - jn[0]/z;
|
|
|
- h1np[0] = -Zeta[1]/z - h1n[0]/z;
|
|
|
- } else {
|
|
|
- jnp[n] = jn[n - 1] - static_cast<double>(n + 1)*jn[n]/z;
|
|
|
- h1np[n] = h1n[n - 1] - static_cast<double>(n + 1)*h1n[n]/z;
|
|
|
- }
|
|
|
+ // std::vector<std::complex<double> > Psi(nmax_ + 1), Zeta(nmax_ + 1);
|
|
|
+
|
|
|
+ // // First, calculate the Riccati-Bessel functions
|
|
|
+ // calcPsiZeta(z, Psi, Zeta);
|
|
|
+
|
|
|
+ // // Now, calculate Spherical Bessel and Hankel functions and their derivatives
|
|
|
+ // for (int n = 0; n <= nmax_; n++) {
|
|
|
+ // jn[n] = Psi[n]/z;
|
|
|
+ // h1n[n] = Zeta[n]/z;
|
|
|
+
|
|
|
+ // if (n == 0) {
|
|
|
+ // jnp[0] = -Psi[1]/z - jn[0]/z;
|
|
|
+ // h1np[0] = -Zeta[1]/z - h1n[0]/z;
|
|
|
+ // } else {
|
|
|
+ // jnp[n] = jn[n - 1] - static_cast<double>(n + 1)*jn[n]/z;
|
|
|
+ // h1np[n] = h1n[n - 1] - static_cast<double>(n + 1)*h1n[n]/z;
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+ std::vector< std::complex<double> > yn, ynp;
|
|
|
+ int nm;
|
|
|
+ bessel::csphjy (nmax_, z, nm, jn, jnp, yn, ynp );
|
|
|
+ auto c_i = std::complex<double>(0.0,1.0);
|
|
|
+ h1n.resize(nmax_+1);
|
|
|
+ h1np.resize(nmax_+1);
|
|
|
+ for (int i = 0; i < nmax_+1; ++i) {
|
|
|
+ h1n[i] = jn[i] + c_i*yn[i];
|
|
|
+ h1np[i] = jnp[i] + c_i*ynp[i];
|
|
|
}
|
|
|
- // std::vector< std::complex<double> > yn, ynp;
|
|
|
- // int nm;
|
|
|
- // csphjy (nmax_, z, nm, jn, jnp, yn, ynp );
|
|
|
- // auto c_i = std::complex<double>(0.0,1.0);
|
|
|
-
|
|
|
-
|
|
|
}
|
|
|
|
|
|
|
|
@@ -768,20 +772,20 @@ namespace nmie {
|
|
|
void MultiLayerMie::calcPiTau(const double& costheta,
|
|
|
std::vector<double>& Pi, std::vector<double>& Tau) {
|
|
|
|
|
|
- int n;
|
|
|
+ int i;
|
|
|
//****************************************************//
|
|
|
// Equations (26a) - (26c) //
|
|
|
//****************************************************//
|
|
|
// Initialize Pi and Tau
|
|
|
- Pi[0] = 1.0;
|
|
|
+ Pi[0] = 1.0; // n=1
|
|
|
Tau[0] = costheta;
|
|
|
// Calculate the actual values
|
|
|
if (nmax_ > 1) {
|
|
|
- Pi[1] = 3*costheta*Pi[0];
|
|
|
+ Pi[1] = 3*costheta*Pi[0]; //n=2
|
|
|
Tau[1] = 2*costheta*Pi[1] - 3*Pi[0];
|
|
|
- for (n = 2; n < nmax_; n++) {
|
|
|
- Pi[n] = ((n + n + 1)*costheta*Pi[n - 1] - (n + 1)*Pi[n - 2])/n;
|
|
|
- Tau[n] = (n + 1)*costheta*Pi[n] - (n + 2)*Pi[n - 1];
|
|
|
+ for (i = 2; i < nmax_; i++) { //n=[3..nmax_]
|
|
|
+ Pi[i] = ((i + i + 1)*costheta*Pi[i - 1] - (i + 1)*Pi[i - 2])/i;
|
|
|
+ Tau[i] = (i + 1)*costheta*Pi[i] - (i + 2)*Pi[i - 1];
|
|
|
}
|
|
|
}
|
|
|
} // end of MultiLayerMie::calcPiTau(...)
|
|
@@ -1329,6 +1333,11 @@ namespace nmie {
|
|
|
|
|
|
// Calculate angular functions Pi and Tau
|
|
|
calcPiTau(std::cos(Theta), Pi, Tau);
|
|
|
+ printf("Thetd = %g, cos(Theta) = %g\n", Theta, std::cos(Theta));
|
|
|
+ printf("Pi:\n");
|
|
|
+ for (auto p : Pi) printf("%11.4e\n",p);
|
|
|
+ printf("Tau:\n");
|
|
|
+ for (auto p : Tau) printf("%11.4e\n",p);
|
|
|
|
|
|
for (int n = nmax_ - 2; n >= 0; n--) {
|
|
|
int n1 = n + 1;
|