|
@@ -37,7 +37,8 @@
|
|
|
// //
|
|
|
// Hereinafter all equations numbers refer to [2] //
|
|
|
//**********************************************************************************//
|
|
|
-#include "nmie.h"
|
|
|
+#include "nmie.hpp"
|
|
|
+#include "nmie-impl.hpp"
|
|
|
#include <array>
|
|
|
#include <algorithm>
|
|
|
#include <cstdio>
|
|
@@ -46,13 +47,6 @@
|
|
|
#include <vector>
|
|
|
|
|
|
namespace nmie {
|
|
|
- //helpers
|
|
|
- template<class T> inline T pow2(const T value) {return value*value;}
|
|
|
- int round(double x) {
|
|
|
- return x >= 0 ? (int)(x + 0.5):(int)(x - 0.5);
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
//**********************************************************************************//
|
|
|
// This function emulates a C call to calculate the scattering coefficients //
|
|
|
// required to calculate both the near- and far-field parameters. //
|
|
@@ -77,7 +71,7 @@ namespace nmie {
|
|
|
if (x.size() != L || m.size() != L)
|
|
|
throw std::invalid_argument("Declared number of layers do not fit x and m!");
|
|
|
try {
|
|
|
- MultiLayerMie ml_mie;
|
|
|
+ MultiLayerMie<double> ml_mie;
|
|
|
ml_mie.SetLayersSize(x);
|
|
|
ml_mie.SetLayersIndex(m);
|
|
|
ml_mie.SetPECLayer(pl);
|
|
@@ -134,7 +128,8 @@ namespace nmie {
|
|
|
if (Theta.size() != nTheta)
|
|
|
throw std::invalid_argument("Declared number of sample for Theta is not correct!");
|
|
|
try {
|
|
|
- MultiLayerMie ml_mie;
|
|
|
+ typedef double FloatType;
|
|
|
+ MultiLayerMie<double> ml_mie;
|
|
|
ml_mie.SetLayersSize(x);
|
|
|
ml_mie.SetLayersIndex(m);
|
|
|
ml_mie.SetAngles(Theta);
|
|
@@ -297,7 +292,7 @@ namespace nmie {
|
|
|
if (f.size() != 3)
|
|
|
throw std::invalid_argument("Field H is not 3D!");
|
|
|
try {
|
|
|
- MultiLayerMie ml_mie;
|
|
|
+ MultiLayerMie<double> ml_mie;
|
|
|
ml_mie.SetPECLayer(pl);
|
|
|
ml_mie.SetLayersSize(x);
|
|
|
ml_mie.SetLayersIndex(m);
|
|
@@ -317,997 +312,4 @@ namespace nmie {
|
|
|
}
|
|
|
|
|
|
|
|
|
- // ********************************************************************** //
|
|
|
- // Returns previously calculated Qext //
|
|
|
- // ********************************************************************** //
|
|
|
- double MultiLayerMie::GetQext() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result request!");
|
|
|
- return Qext_;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Returns previously calculated Qabs //
|
|
|
- // ********************************************************************** //
|
|
|
- double MultiLayerMie::GetQabs() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result request!");
|
|
|
- return Qabs_;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Returns previously calculated Qsca //
|
|
|
- // ********************************************************************** //
|
|
|
- double MultiLayerMie::GetQsca() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result request!");
|
|
|
- return Qsca_;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Returns previously calculated Qbk //
|
|
|
- // ********************************************************************** //
|
|
|
- double MultiLayerMie::GetQbk() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result request!");
|
|
|
- return Qbk_;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Returns previously calculated Qpr //
|
|
|
- // ********************************************************************** //
|
|
|
- double MultiLayerMie::GetQpr() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result request!");
|
|
|
- return Qpr_;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Returns previously calculated assymetry factor //
|
|
|
- // ********************************************************************** //
|
|
|
- double MultiLayerMie::GetAsymmetryFactor() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result request!");
|
|
|
- return asymmetry_factor_;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Returns previously calculated Albedo //
|
|
|
- // ********************************************************************** //
|
|
|
- double MultiLayerMie::GetAlbedo() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result request!");
|
|
|
- return albedo_;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Returns previously calculated S1 //
|
|
|
- // ********************************************************************** //
|
|
|
- std::vector<std::complex<double> > MultiLayerMie::GetS1() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result request!");
|
|
|
- return S1_;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Returns previously calculated S2 //
|
|
|
- // ********************************************************************** //
|
|
|
- std::vector<std::complex<double> > MultiLayerMie::GetS2() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result request!");
|
|
|
- return S2_;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Modify scattering (theta) angles //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::SetAngles(const std::vector<double>& angles) {
|
|
|
- MarkUncalculated();
|
|
|
- theta_ = angles;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Modify size of all layers //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::SetLayersSize(const std::vector<double>& layer_size) {
|
|
|
- MarkUncalculated();
|
|
|
- size_param_.clear();
|
|
|
- double prev_layer_size = 0.0;
|
|
|
- for (auto curr_layer_size : layer_size) {
|
|
|
- if (curr_layer_size <= 0.0)
|
|
|
- throw std::invalid_argument("Size parameter should be positive!");
|
|
|
- if (prev_layer_size > curr_layer_size)
|
|
|
- throw std::invalid_argument
|
|
|
- ("Size parameter for next layer should be larger than the previous one!");
|
|
|
- prev_layer_size = curr_layer_size;
|
|
|
- size_param_.push_back(curr_layer_size);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Modify refractive index of all layers //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::SetLayersIndex(const std::vector< std::complex<double> >& index) {
|
|
|
- MarkUncalculated();
|
|
|
- refractive_index_ = index;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Modify coordinates for field calculation //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::SetFieldCoords(const std::vector< std::vector<double> >& coords) {
|
|
|
- if (coords.size() != 3)
|
|
|
- throw std::invalid_argument("Error! Wrong dimension of field monitor points!");
|
|
|
- if (coords[0].size() != coords[1].size() || coords[0].size() != coords[2].size())
|
|
|
- throw std::invalid_argument("Error! Missing coordinates for field monitor points!");
|
|
|
- coords_ = coords;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Modify index of PEC layer //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::SetPECLayer(int layer_position) {
|
|
|
- MarkUncalculated();
|
|
|
- if (layer_position < 0 && layer_position != -1)
|
|
|
- throw std::invalid_argument("Error! Layers are numbered from 0!");
|
|
|
- PEC_layer_position_ = layer_position;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Set maximun number of terms to be used //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::SetMaxTerms(int nmax) {
|
|
|
- MarkUncalculated();
|
|
|
- nmax_preset_ = nmax;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Get total size parameter of particle //
|
|
|
- // ********************************************************************** //
|
|
|
- double MultiLayerMie::GetSizeParameter() {
|
|
|
- if (size_param_.size() > 0)
|
|
|
- return size_param_.back();
|
|
|
- else
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Mark uncalculated //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::MarkUncalculated() {
|
|
|
- isExpCoeffsCalc_ = false;
|
|
|
- isScaCoeffsCalc_ = false;
|
|
|
-
|
|
|
- isMieCalculated_ = false;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // Clear layer information //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::ClearLayers() {
|
|
|
- MarkUncalculated();
|
|
|
- size_param_.clear();
|
|
|
- refractive_index_.clear();
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // Computational core
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Calculate calcNstop - equation (17) //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::calcNstop() {
|
|
|
- const double& xL = size_param_.back();
|
|
|
- if (xL <= 8) {
|
|
|
- nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 1);
|
|
|
- } else if (xL <= 4200) {
|
|
|
- nmax_ = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
|
|
|
- } else {
|
|
|
- nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 2);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Maximum number of terms required for the calculation //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::calcNmax(unsigned int first_layer) {
|
|
|
- int ri, riM1;
|
|
|
- const std::vector<double>& x = size_param_;
|
|
|
- const std::vector<std::complex<double> >& m = refractive_index_;
|
|
|
- calcNstop(); // Set initial nmax_ value
|
|
|
- for (unsigned int i = first_layer; i < x.size(); i++) {
|
|
|
- if (static_cast<int>(i) > PEC_layer_position_) // static_cast used to avoid warning
|
|
|
- ri = round(std::abs(x[i]*m[i]));
|
|
|
- else
|
|
|
- ri = 0;
|
|
|
- nmax_ = std::max(nmax_, ri);
|
|
|
- // first layer is pec, if pec is present
|
|
|
- if ((i > first_layer) && (static_cast<int>(i - 1) > PEC_layer_position_))
|
|
|
- riM1 = round(std::abs(x[i - 1]* m[i]));
|
|
|
- else
|
|
|
- riM1 = 0;
|
|
|
- nmax_ = std::max(nmax_, riM1);
|
|
|
- }
|
|
|
- nmax_ += 15; // Final nmax_ value
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Calculate an - equation (5) //
|
|
|
- // ********************************************************************** //
|
|
|
- std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
|
|
|
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
-
|
|
|
- std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
|
|
|
- std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
|
|
|
-
|
|
|
- return Num/Denom;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Calculate bn - equation (6) //
|
|
|
- // ********************************************************************** //
|
|
|
- std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
|
|
|
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
-
|
|
|
- std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
|
|
|
- std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
|
|
|
-
|
|
|
- return Num/Denom;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Calculates S1 - equation (25a) //
|
|
|
- // ********************************************************************** //
|
|
|
- std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
- double Pi, double Tau) {
|
|
|
- return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // Calculates S2 - equation (25b) (it's the same as (25a), just switches //
|
|
|
- // Pi and Tau) //
|
|
|
- // ********************************************************************** //
|
|
|
- std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
- double Pi, double Tau) {
|
|
|
- return calc_S1(n, an, bn, Tau, Pi);
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- //**********************************************************************************//
|
|
|
- // This function calculates the logarithmic derivatives of the Riccati-Bessel //
|
|
|
- // functions (D1 and D3) for a complex argument (z). //
|
|
|
- // Equations (16a), (16b) and (18a) - (18d) //
|
|
|
- // //
|
|
|
- // Input parameters: //
|
|
|
- // z: Complex argument to evaluate D1 and D3 //
|
|
|
- // nmax_: Maximum number of terms to calculate D1 and D3 //
|
|
|
- // //
|
|
|
- // Output parameters: //
|
|
|
- // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
|
|
|
- //**********************************************************************************//
|
|
|
- void MultiLayerMie::calcD1D3(const std::complex<double> z,
|
|
|
- std::vector<std::complex<double> >& D1,
|
|
|
- std::vector<std::complex<double> >& D3) {
|
|
|
-
|
|
|
- // Downward recurrence for D1 - equations (16a) and (16b)
|
|
|
- D1[nmax_] = std::complex<double>(0.0, 0.0);
|
|
|
- const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
|
|
|
-
|
|
|
- for (int n = nmax_; n > 0; n--) {
|
|
|
- D1[n - 1] = static_cast<double>(n)*zinv - 1.0/(D1[n] + static_cast<double>(n)*zinv);
|
|
|
- }
|
|
|
-
|
|
|
- if (std::abs(D1[0]) > 1.0e15) {
|
|
|
- throw std::invalid_argument("Unstable D1! Please, try to change input parameters!\n");
|
|
|
- //printf("Warning: Potentially unstable D1! Please, try to change input parameters!\n");
|
|
|
- }
|
|
|
-
|
|
|
- // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
|
|
|
- PsiZeta_[0] = 0.5*(1.0 - std::complex<double>(std::cos(2.0*z.real()), std::sin(2.0*z.real()))
|
|
|
- *std::exp(-2.0*z.imag()));
|
|
|
- D3[0] = std::complex<double>(0.0, 1.0);
|
|
|
- for (int n = 1; n <= nmax_; n++) {
|
|
|
- PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<double>(n)*zinv - D1[n - 1])
|
|
|
- *(static_cast<double>(n)*zinv - D3[n - 1]);
|
|
|
- D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta_[n];
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- //**********************************************************************************//
|
|
|
- // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
|
|
|
- // complex argument (z). //
|
|
|
- // Equations (20a) - (21b) //
|
|
|
- // //
|
|
|
- // Input parameters: //
|
|
|
- // z: Complex argument to evaluate Psi and Zeta //
|
|
|
- // nmax: Maximum number of terms to calculate Psi and Zeta //
|
|
|
- // //
|
|
|
- // Output parameters: //
|
|
|
- // Psi, Zeta: Riccati-Bessel functions //
|
|
|
- //**********************************************************************************//
|
|
|
- void MultiLayerMie::calcPsiZeta(std::complex<double> z,
|
|
|
- std::vector<std::complex<double> >& Psi,
|
|
|
- std::vector<std::complex<double> >& Zeta) {
|
|
|
-
|
|
|
- std::complex<double> c_i(0.0, 1.0);
|
|
|
- std::vector<std::complex<double> > D1(nmax_ + 1), D3(nmax_ + 1);
|
|
|
-
|
|
|
- // First, calculate the logarithmic derivatives
|
|
|
- calcD1D3(z, D1, D3);
|
|
|
-
|
|
|
- // Now, use the upward recurrence to calculate Psi and Zeta - equations (20a) - (21b)
|
|
|
- Psi[0] = std::sin(z);
|
|
|
- Zeta[0] = std::sin(z) - c_i*std::cos(z);
|
|
|
- for (int n = 1; n <= nmax_; n++) {
|
|
|
- Psi[n] = Psi[n - 1]*(static_cast<double>(n)/z - D1[n - 1]);
|
|
|
- Zeta[n] = Zeta[n - 1]*(static_cast<double>(n)/z - D3[n - 1]);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- //**********************************************************************************//
|
|
|
- // This function calculates Pi and Tau for a given value of cos(Theta). //
|
|
|
- // Equations (26a) - (26c) //
|
|
|
- // //
|
|
|
- // Input parameters: //
|
|
|
- // nmax_: Maximum number of terms to calculate Pi and Tau //
|
|
|
- // nTheta: Number of scattering angles //
|
|
|
- // Theta: Array containing all the scattering angles where the scattering //
|
|
|
- // amplitudes will be calculated //
|
|
|
- // //
|
|
|
- // Output parameters: //
|
|
|
- // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
|
|
|
- //**********************************************************************************//
|
|
|
- void MultiLayerMie::calcPiTau(const double& costheta,
|
|
|
- std::vector<double>& Pi, std::vector<double>& Tau) {
|
|
|
-
|
|
|
- int i;
|
|
|
- //****************************************************//
|
|
|
- // Equations (26a) - (26c) //
|
|
|
- //****************************************************//
|
|
|
- // Initialize Pi and Tau
|
|
|
- Pi[0] = 1.0; // n=1
|
|
|
- Tau[0] = costheta;
|
|
|
- // Calculate the actual values
|
|
|
- if (nmax_ > 1) {
|
|
|
- Pi[1] = 3*costheta*Pi[0]; //n=2
|
|
|
- Tau[1] = 2*costheta*Pi[1] - 3*Pi[0];
|
|
|
- for (i = 2; i < nmax_; i++) { //n=[3..nmax_]
|
|
|
- Pi[i] = ((i + i + 1)*costheta*Pi[i - 1] - (i + 1)*Pi[i - 2])/i;
|
|
|
- Tau[i] = (i + 1)*costheta*Pi[i] - (i + 2)*Pi[i - 1];
|
|
|
- }
|
|
|
- }
|
|
|
- } // end of MultiLayerMie::calcPiTau(...)
|
|
|
-
|
|
|
-
|
|
|
- //**********************************************************************************//
|
|
|
- // This function calculates vector spherical harmonics (eq. 4.50, p. 95 BH), //
|
|
|
- // required to calculate the near-field parameters. //
|
|
|
- // //
|
|
|
- // Input parameters: //
|
|
|
- // Rho: Radial distance //
|
|
|
- // Phi: Azimuthal angle //
|
|
|
- // Theta: Polar angle //
|
|
|
- // rn: Either the spherical Ricatti-Bessel function of first or third kind //
|
|
|
- // Dn: Logarithmic derivative of rn //
|
|
|
- // Pi, Tau: Angular functions Pi and Tau //
|
|
|
- // n: Order of vector spherical harmonics //
|
|
|
- // //
|
|
|
- // Output parameters: //
|
|
|
- // Mo1n, Me1n, No1n, Ne1n: Complex vector spherical harmonics //
|
|
|
- //**********************************************************************************//
|
|
|
- void MultiLayerMie::calcSpherHarm(const std::complex<double> Rho, const double Theta, const double Phi,
|
|
|
- const std::complex<double>& rn, const std::complex<double>& Dn,
|
|
|
- const double& Pi, const double& Tau, const double& n,
|
|
|
- std::vector<std::complex<double> >& Mo1n, std::vector<std::complex<double> >& Me1n,
|
|
|
- std::vector<std::complex<double> >& No1n, std::vector<std::complex<double> >& Ne1n) {
|
|
|
-
|
|
|
- // using eq 4.50 in BH
|
|
|
- std::complex<double> c_zero(0.0, 0.0);
|
|
|
-
|
|
|
- using std::sin;
|
|
|
- using std::cos;
|
|
|
- Mo1n[0] = c_zero;
|
|
|
- Mo1n[1] = cos(Phi)*Pi*rn/Rho;
|
|
|
- Mo1n[2] = -sin(Phi)*Tau*rn/Rho;
|
|
|
- Me1n[0] = c_zero;
|
|
|
- Me1n[1] = -sin(Phi)*Pi*rn/Rho;
|
|
|
- Me1n[2] = -cos(Phi)*Tau*rn/Rho;
|
|
|
- No1n[0] = sin(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;
|
|
|
- No1n[1] = sin(Phi)*Tau*Dn*rn/Rho;
|
|
|
- No1n[2] = cos(Phi)*Pi*Dn*rn/Rho;
|
|
|
- Ne1n[0] = cos(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;
|
|
|
- Ne1n[1] = cos(Phi)*Tau*Dn*rn/Rho;
|
|
|
- Ne1n[2] = -sin(Phi)*Pi*Dn*rn/Rho;
|
|
|
- } // end of MultiLayerMie::calcSpherHarm(...)
|
|
|
-
|
|
|
-
|
|
|
- //**********************************************************************************//
|
|
|
- // This function calculates the scattering coefficients required to calculate //
|
|
|
- // both the near- and far-field parameters. //
|
|
|
- // //
|
|
|
- // Input parameters: //
|
|
|
- // L: Number of layers //
|
|
|
- // pl: Index of PEC layer. If there is none just send -1 //
|
|
|
- // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
- // nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
- // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
- // set this parameter to -1 and the function will calculate it. //
|
|
|
- // //
|
|
|
- // Output parameters: //
|
|
|
- // an, bn: Complex scattering amplitudes //
|
|
|
- // //
|
|
|
- // Return value: //
|
|
|
- // Number of multipolar expansion terms used for the calculations //
|
|
|
- //**********************************************************************************//
|
|
|
- void MultiLayerMie::calcScattCoeffs() {
|
|
|
-
|
|
|
- isScaCoeffsCalc_ = false;
|
|
|
-
|
|
|
- const std::vector<double>& x = size_param_;
|
|
|
- const std::vector<std::complex<double> >& m = refractive_index_;
|
|
|
- const int& pl = PEC_layer_position_;
|
|
|
- const int L = refractive_index_.size();
|
|
|
-
|
|
|
- //************************************************************************//
|
|
|
- // Calculate the index of the first layer. It can be either 0 (default) //
|
|
|
- // or the index of the outermost PEC layer. In the latter case all layers //
|
|
|
- // below the PEC are discarded. //
|
|
|
- // ***********************************************************************//
|
|
|
- int fl = (pl > 0) ? pl : 0;
|
|
|
- if (nmax_preset_ <= 0) calcNmax(fl);
|
|
|
- else nmax_ = nmax_preset_;
|
|
|
-
|
|
|
- std::complex<double> z1, z2;
|
|
|
- //**************************************************************************//
|
|
|
- // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
|
|
|
- // means that index = layer number - 1 or index = n - 1. The only exception //
|
|
|
- // are the arrays for representing D1, D3 and Q because they need a value //
|
|
|
- // for the index 0 (zero), hence it is important to consider this shift //
|
|
|
- // between different arrays. The change was done to optimize memory usage. //
|
|
|
- //**************************************************************************//
|
|
|
- // Allocate memory to the arrays
|
|
|
- std::vector<std::complex<double> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
|
|
|
- D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
|
|
|
-
|
|
|
- std::vector<std::vector<std::complex<double> > > Q(L), Ha(L), Hb(L);
|
|
|
-
|
|
|
- for (int l = 0; l < L; l++) {
|
|
|
- Q[l].resize(nmax_ + 1);
|
|
|
- Ha[l].resize(nmax_);
|
|
|
- Hb[l].resize(nmax_);
|
|
|
- }
|
|
|
-
|
|
|
- an_.resize(nmax_);
|
|
|
- bn_.resize(nmax_);
|
|
|
- PsiZeta_.resize(nmax_ + 1);
|
|
|
-
|
|
|
- std::vector<std::complex<double> > PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
|
|
|
-
|
|
|
- //*************************************************//
|
|
|
- // Calculate D1 and D3 for z1 in the first layer //
|
|
|
- //*************************************************//
|
|
|
- if (fl == pl) { // PEC layer
|
|
|
- for (int n = 0; n <= nmax_; n++) {
|
|
|
- D1_mlxl[n] = std::complex<double>(0.0, - 1.0);
|
|
|
- D3_mlxl[n] = std::complex<double>(0.0, 1.0);
|
|
|
- }
|
|
|
- } else { // Regular layer
|
|
|
- z1 = x[fl]* m[fl];
|
|
|
- // Calculate D1 and D3
|
|
|
- calcD1D3(z1, D1_mlxl, D3_mlxl);
|
|
|
- }
|
|
|
-
|
|
|
- //******************************************************************//
|
|
|
- // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
|
|
|
- //******************************************************************//
|
|
|
- for (int n = 0; n < nmax_; n++) {
|
|
|
- Ha[fl][n] = D1_mlxl[n + 1];
|
|
|
- Hb[fl][n] = D1_mlxl[n + 1];
|
|
|
- }
|
|
|
- //*****************************************************//
|
|
|
- // Iteration from the second layer to the last one (L) //
|
|
|
- //*****************************************************//
|
|
|
- std::complex<double> Temp, Num, Denom;
|
|
|
- std::complex<double> G1, G2;
|
|
|
- for (int l = fl + 1; l < L; l++) {
|
|
|
- //************************************************************//
|
|
|
- //Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L //
|
|
|
- //************************************************************//
|
|
|
- z1 = x[l]*m[l];
|
|
|
- z2 = x[l - 1]*m[l];
|
|
|
- //Calculate D1 and D3 for z1
|
|
|
- calcD1D3(z1, D1_mlxl, D3_mlxl);
|
|
|
- //Calculate D1 and D3 for z2
|
|
|
- calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
|
|
|
-
|
|
|
- //*************************************************//
|
|
|
- //Calculate Q, Ha and Hb in the layers fl + 1..L //
|
|
|
- //*************************************************//
|
|
|
- // Upward recurrence for Q - equations (19a) and (19b)
|
|
|
- Num = std::exp(-2.0*(z1.imag() - z2.imag()))
|
|
|
- *std::complex<double>(std::cos(-2.0*z2.real()) - std::exp(-2.0*z2.imag()), std::sin(-2.0*z2.real()));
|
|
|
- Denom = std::complex<double>(std::cos(-2.0*z1.real()) - std::exp(-2.0*z1.imag()), std::sin(-2.0*z1.real()));
|
|
|
- Q[l][0] = Num/Denom;
|
|
|
- for (int n = 1; n <= nmax_; n++) {
|
|
|
- Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]);
|
|
|
- Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]);
|
|
|
- Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
|
|
|
- }
|
|
|
- // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
|
|
|
- for (int n = 1; n <= nmax_; n++) {
|
|
|
- //Ha
|
|
|
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
- G1 = -D1_mlxlM1[n];
|
|
|
- G2 = -D3_mlxlM1[n];
|
|
|
- } else {
|
|
|
- G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
|
|
|
- G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
|
|
|
- } // end of if PEC
|
|
|
- Temp = Q[l][n]*G1;
|
|
|
- Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
|
|
|
- Denom = G2 - Temp;
|
|
|
- Ha[l][n - 1] = Num/Denom;
|
|
|
- //Hb
|
|
|
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
- G1 = Hb[l - 1][n - 1];
|
|
|
- G2 = Hb[l - 1][n - 1];
|
|
|
- } else {
|
|
|
- G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
|
|
|
- G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
|
|
|
- } // end of if PEC
|
|
|
-
|
|
|
- Temp = Q[l][n]*G1;
|
|
|
- Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
|
|
|
- Denom = (G2- Temp);
|
|
|
- Hb[l][n - 1] = (Num/ Denom);
|
|
|
- } // end of for Ha and Hb terms
|
|
|
- } // end of for layers iteration
|
|
|
-
|
|
|
- //**************************************//
|
|
|
- //Calculate Psi and Zeta for XL //
|
|
|
- //**************************************//
|
|
|
- // Calculate PsiXL and ZetaXL
|
|
|
- calcPsiZeta(x[L - 1], PsiXL, ZetaXL);
|
|
|
-
|
|
|
- //*********************************************************************//
|
|
|
- // Finally, we calculate the scattering coefficients (an and bn) and //
|
|
|
- // the angular functions (Pi and Tau). Note that for these arrays the //
|
|
|
- // first layer is 0 (zero), in future versions all arrays will follow //
|
|
|
- // this convention to save memory. (13 Nov, 2014) //
|
|
|
- //*********************************************************************//
|
|
|
- for (int n = 0; n < nmax_; n++) {
|
|
|
- //********************************************************************//
|
|
|
- //Expressions for calculating an and bn coefficients are not valid if //
|
|
|
- //there is only one PEC layer (ie, for a simple PEC sphere). //
|
|
|
- //********************************************************************//
|
|
|
- if (pl < (L - 1)) {
|
|
|
- an_[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
- bn_[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
- } else {
|
|
|
- an_[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
- bn_[n] = PsiXL[n + 1]/ZetaXL[n + 1];
|
|
|
- }
|
|
|
- } // end of for an and bn terms
|
|
|
- isScaCoeffsCalc_ = true;
|
|
|
- } // end of MultiLayerMie::calcScattCoeffs()
|
|
|
-
|
|
|
-
|
|
|
- //**********************************************************************************//
|
|
|
- // This function calculates the actual scattering parameters and amplitudes //
|
|
|
- // //
|
|
|
- // Input parameters: //
|
|
|
- // L: Number of layers //
|
|
|
- // pl: Index of PEC layer. If there is none just send -1 //
|
|
|
- // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
- // nTheta: Number of scattering angles //
|
|
|
- // Theta: Array containing all the scattering angles where the scattering //
|
|
|
- // amplitudes will be calculated //
|
|
|
- // nmax_: Maximum number of multipolar expansion terms to be used for the //
|
|
|
- // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
- // set this parameter to -1 and the function will calculate it //
|
|
|
- // //
|
|
|
- // Output parameters: //
|
|
|
- // Qext: Efficiency factor for extinction //
|
|
|
- // Qsca: Efficiency factor for scattering //
|
|
|
- // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
- // Qbk: Efficiency factor for backscattering //
|
|
|
- // Qpr: Efficiency factor for the radiation pressure //
|
|
|
- // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
- // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
- // S1, S2: Complex scattering amplitudes //
|
|
|
- // //
|
|
|
- // Return value: //
|
|
|
- // Number of multipolar expansion terms used for the calculations //
|
|
|
- //**********************************************************************************//
|
|
|
- void MultiLayerMie::RunMieCalculation() {
|
|
|
- if (size_param_.size() != refractive_index_.size())
|
|
|
- throw std::invalid_argument("Each size parameter should have only one index!");
|
|
|
- if (size_param_.size() == 0)
|
|
|
- throw std::invalid_argument("Initialize model first!");
|
|
|
-
|
|
|
- const std::vector<double>& x = size_param_;
|
|
|
-
|
|
|
- MarkUncalculated();
|
|
|
-
|
|
|
- // Calculate scattering coefficients
|
|
|
- calcScattCoeffs();
|
|
|
-
|
|
|
- // Initialize the scattering parameters
|
|
|
- Qext_ = 0.0;
|
|
|
- Qsca_ = 0.0;
|
|
|
- Qabs_ = 0.0;
|
|
|
- Qbk_ = 0.0;
|
|
|
- Qpr_ = 0.0;
|
|
|
- asymmetry_factor_ = 0.0;
|
|
|
- albedo_ = 0.0;
|
|
|
-
|
|
|
- // Initialize the scattering amplitudes
|
|
|
- std::vector<std::complex<double> > tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
|
|
|
- S1_.swap(tmp1);
|
|
|
- S2_ = S1_;
|
|
|
-
|
|
|
- std::vector<double> Pi(nmax_), Tau(nmax_);
|
|
|
-
|
|
|
- std::complex<double> Qbktmp(0.0, 0.0);
|
|
|
- std::vector< std::complex<double> > Qbktmp_ch(nmax_ - 1, Qbktmp);
|
|
|
- // By using downward recurrence we avoid loss of precision due to float rounding errors
|
|
|
- // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
|
|
|
- // http://en.wikipedia.org/wiki/Loss_of_significance
|
|
|
- for (int i = nmax_ - 2; i >= 0; i--) {
|
|
|
- const int n = i + 1;
|
|
|
- // Equation (27)
|
|
|
- Qext_ += (n + n + 1.0)*(an_[i].real() + bn_[i].real());
|
|
|
- // Equation (28)
|
|
|
- Qsca_ += (n + n + 1.0)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
|
|
|
- + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
|
|
|
- // Equation (29)
|
|
|
- Qpr_ += ((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real())
|
|
|
- + ((double)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real());
|
|
|
- // Equation (33)
|
|
|
- Qbktmp += (double)(n + n + 1)*(1 - 2*(n % 2))*(an_[i]- bn_[i]);
|
|
|
- // Calculate the scattering amplitudes (S1 and S2) //
|
|
|
- // Precalculate cos(theta) - gives about 5% speed up.
|
|
|
- std::vector<double> costheta(theta_.size(), 0.0);
|
|
|
- for (int t = 0; t < theta_.size(); t++) {
|
|
|
- costheta[t] = std::cos(theta_[t]);
|
|
|
- }
|
|
|
- // Equations (25a) - (25b) //
|
|
|
- for (unsigned int t = 0; t < theta_.size(); t++) {
|
|
|
- calcPiTau(costheta[t], Pi, Tau);
|
|
|
-
|
|
|
- S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[i], Tau[i]);
|
|
|
- S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[i], Tau[i]);
|
|
|
- }
|
|
|
- }
|
|
|
- double x2 = pow2(x.back());
|
|
|
- Qext_ = 2.0*(Qext_)/x2; // Equation (27)
|
|
|
- Qsca_ = 2.0*(Qsca_)/x2; // Equation (28)
|
|
|
- Qpr_ = Qext_ - 4.0*(Qpr_)/x2; // Equation (29)
|
|
|
- Qabs_ = Qext_ - Qsca_; // Equation (30)
|
|
|
- albedo_ = Qsca_/Qext_; // Equation (31)
|
|
|
- asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_; // Equation (32)
|
|
|
- Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
|
|
|
-
|
|
|
- isMieCalculated_ = true;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- //**********************************************************************************//
|
|
|
- // This function calculates the expansion coefficients inside the particle, //
|
|
|
- // required to calculate the near-field parameters. //
|
|
|
- // //
|
|
|
- // Input parameters: //
|
|
|
- // L: Number of layers //
|
|
|
- // pl: Index of PEC layer. If there is none just send -1 //
|
|
|
- // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
- // nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
- // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
- // set this parameter to -1 and the function will calculate it. //
|
|
|
- // //
|
|
|
- // Output parameters: //
|
|
|
- // aln, bln, cln, dln: Complex scattering amplitudes inside the particle //
|
|
|
- // //
|
|
|
- // Return value: //
|
|
|
- // Number of multipolar expansion terms used for the calculations //
|
|
|
- //**********************************************************************************//
|
|
|
- void MultiLayerMie::calcExpanCoeffs() {
|
|
|
- if (!isScaCoeffsCalc_)
|
|
|
- throw std::invalid_argument("(calcExpanCoeffs) You should calculate external coefficients first!");
|
|
|
-
|
|
|
- isExpCoeffsCalc_ = false;
|
|
|
-
|
|
|
- std::complex<double> c_one(1.0, 0.0), c_zero(0.0, 0.0);
|
|
|
-
|
|
|
- const int L = refractive_index_.size();
|
|
|
-
|
|
|
- aln_.resize(L + 1);
|
|
|
- bln_.resize(L + 1);
|
|
|
- cln_.resize(L + 1);
|
|
|
- dln_.resize(L + 1);
|
|
|
- for (int l = 0; l <= L; l++) {
|
|
|
- aln_[l].resize(nmax_);
|
|
|
- bln_[l].resize(nmax_);
|
|
|
- cln_[l].resize(nmax_);
|
|
|
- dln_[l].resize(nmax_);
|
|
|
- }
|
|
|
-
|
|
|
- // Yang, paragraph under eq. A3
|
|
|
- // a^(L + 1)_n = a_n, d^(L + 1) = 1 ...
|
|
|
- for (int n = 0; n < nmax_; n++) {
|
|
|
- aln_[L][n] = an_[n];
|
|
|
- bln_[L][n] = bn_[n];
|
|
|
- cln_[L][n] = c_one;
|
|
|
- dln_[L][n] = c_one;
|
|
|
- }
|
|
|
-
|
|
|
- std::vector<std::complex<double> > D1z(nmax_ + 1), D1z1(nmax_ + 1), D3z(nmax_ + 1), D3z1(nmax_ + 1);
|
|
|
- std::vector<std::complex<double> > Psiz(nmax_ + 1), Psiz1(nmax_ + 1), Zetaz(nmax_ + 1), Zetaz1(nmax_ + 1);
|
|
|
- std::complex<double> denomZeta, denomPsi, T1, T2, T3, T4;
|
|
|
-
|
|
|
- auto& m = refractive_index_;
|
|
|
- std::vector< std::complex<double> > m1(L);
|
|
|
-
|
|
|
- for (int l = 0; l < L - 1; l++) m1[l] = m[l + 1];
|
|
|
- m1[L - 1] = std::complex<double> (1.0, 0.0);
|
|
|
-
|
|
|
- std::complex<double> z, z1;
|
|
|
- for (int l = L - 1; l >= 0; l--) {
|
|
|
- if (l <= PEC_layer_position_) { // We are inside a PEC. All coefficients must be zero!!!
|
|
|
- for (int n = 0; n < nmax_; n++) {
|
|
|
- // aln
|
|
|
- aln_[l][n] = c_zero;
|
|
|
- // bln
|
|
|
- bln_[l][n] = c_zero;
|
|
|
- // cln
|
|
|
- cln_[l][n] = c_zero;
|
|
|
- // dln
|
|
|
- dln_[l][n] = c_zero;
|
|
|
- }
|
|
|
- } else { // Regular material, just do the calculation
|
|
|
- z = size_param_[l]*m[l];
|
|
|
- z1 = size_param_[l]*m1[l];
|
|
|
-
|
|
|
- calcD1D3(z, D1z, D3z);
|
|
|
- calcD1D3(z1, D1z1, D3z1);
|
|
|
- calcPsiZeta(z, Psiz, Zetaz);
|
|
|
- calcPsiZeta(z1, Psiz1, Zetaz1);
|
|
|
-
|
|
|
- for (int n = 0; n < nmax_; n++) {
|
|
|
- int n1 = n + 1;
|
|
|
-
|
|
|
- denomZeta = Zetaz[n1]*(D1z[n1] - D3z[n1]);
|
|
|
- denomPsi = Psiz[n1]*(D1z[n1] - D3z[n1]);
|
|
|
-
|
|
|
- T1 = aln_[l + 1][n]*Zetaz1[n1] - dln_[l + 1][n]*Psiz1[n1];
|
|
|
- T2 = (bln_[l + 1][n]*Zetaz1[n1] - cln_[l + 1][n]*Psiz1[n1])*m[l]/m1[l];
|
|
|
-
|
|
|
- T3 = (dln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - aln_[l + 1][n]*D3z1[n1]*Zetaz1[n1])*m[l]/m1[l];
|
|
|
- T4 = cln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - bln_[l + 1][n]*D3z1[n1]*Zetaz1[n1];
|
|
|
-
|
|
|
- // aln
|
|
|
- aln_[l][n] = (D1z[n1]*T1 + T3)/denomZeta;
|
|
|
- // bln
|
|
|
- bln_[l][n] = (D1z[n1]*T2 + T4)/denomZeta;
|
|
|
- // cln
|
|
|
- cln_[l][n] = (D3z[n1]*T2 + T4)/denomPsi;
|
|
|
- // dln
|
|
|
- dln_[l][n] = (D3z[n1]*T1 + T3)/denomPsi;
|
|
|
- } // end of all n
|
|
|
- } // end PEC condition
|
|
|
- } // end of all l
|
|
|
-
|
|
|
- // Check the result and change aln_[0][n] and aln_[0][n] for exact zero
|
|
|
- for (int n = 0; n < nmax_; ++n) {
|
|
|
- if (std::abs(aln_[0][n]) < 1e-10) aln_[0][n] = 0.0;
|
|
|
- else {
|
|
|
- //throw std::invalid_argument("Unstable calculation of aln_[0][n]!");
|
|
|
- printf("Warning: Potentially unstable calculation of aln (aln[0][%i] = %g, %gi)\n", n, aln_[0][n].real(), aln_[0][n].imag());
|
|
|
- aln_[0][n] = 0.0;
|
|
|
- }
|
|
|
- if (std::abs(bln_[0][n]) < 1e-10) bln_[0][n] = 0.0;
|
|
|
- else {
|
|
|
- //throw std::invalid_argument("Unstable calculation of bln_[0][n]!");
|
|
|
- printf("Warning: Potentially unstable calculation of bln (bln[0][%i] = %g, %gi) pl=%d\n", n, bln_[0][n].real(), bln_[0][n].imag(), PEC_layer_position_);
|
|
|
- bln_[0][n] = 0.0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- isExpCoeffsCalc_ = true;
|
|
|
- } // end of void MultiLayerMie::calcExpanCoeffs()
|
|
|
-
|
|
|
-
|
|
|
- //**********************************************************************************//
|
|
|
- // This function calculates the electric (E) and magnetic (H) fields inside and //
|
|
|
- // around the particle. //
|
|
|
- // //
|
|
|
- // Input parameters (coordinates of the point): //
|
|
|
- // Rho: Radial distance //
|
|
|
- // Phi: Azimuthal angle //
|
|
|
- // Theta: Polar angle //
|
|
|
- // //
|
|
|
- // Output parameters: //
|
|
|
- // E, H: Complex electric and magnetic fields //
|
|
|
- //**********************************************************************************//
|
|
|
- void MultiLayerMie::calcField(const double Rho, const double Theta, const double Phi,
|
|
|
- std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
|
|
|
-
|
|
|
- std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
|
|
|
- std::vector<std::complex<double> > ipow = {c_one, c_i, -c_one, -c_i}; // Vector containing precomputed integer powers of i to avoid computation
|
|
|
- std::vector<std::complex<double> > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3);
|
|
|
- std::vector<std::complex<double> > M1o1n(3), M1e1n(3), N1o1n(3), N1e1n(3);
|
|
|
- std::vector<std::complex<double> > Psi(nmax_ + 1), D1n(nmax_ + 1), Zeta(nmax_ + 1), D3n(nmax_ + 1);
|
|
|
- std::vector<double> Pi(nmax_), Tau(nmax_);
|
|
|
-
|
|
|
- int l = 0; // Layer number
|
|
|
- std::complex<double> ml;
|
|
|
-
|
|
|
- // Initialize E and H
|
|
|
- for (int i = 0; i < 3; i++) {
|
|
|
- E[i] = c_zero;
|
|
|
- H[i] = c_zero;
|
|
|
- }
|
|
|
-
|
|
|
- if (Rho > size_param_.back()) {
|
|
|
- l = size_param_.size();
|
|
|
- ml = c_one;
|
|
|
- } else {
|
|
|
- for (int i = size_param_.size() - 1; i >= 0 ; i--) {
|
|
|
- if (Rho <= size_param_[i]) {
|
|
|
- l = i;
|
|
|
- }
|
|
|
- }
|
|
|
- ml = refractive_index_[l];
|
|
|
- }
|
|
|
-
|
|
|
- // Calculate logarithmic derivative of the Ricatti-Bessel functions
|
|
|
- calcD1D3(Rho*ml, D1n, D3n);
|
|
|
- // Calculate Ricatti-Bessel functions
|
|
|
- calcPsiZeta(Rho*ml, Psi, Zeta);
|
|
|
-
|
|
|
- // Calculate angular functions Pi and Tau
|
|
|
- calcPiTau(std::cos(Theta), Pi, Tau);
|
|
|
-
|
|
|
- for (int n = nmax_ - 2; n >= 0; n--) {
|
|
|
- int n1 = n + 1;
|
|
|
- double rn = static_cast<double>(n1);
|
|
|
-
|
|
|
- // using BH 4.12 and 4.50
|
|
|
- calcSpherHarm(Rho*ml, Theta, Phi, Psi[n1], D1n[n1], Pi[n], Tau[n], rn, M1o1n, M1e1n, N1o1n, N1e1n);
|
|
|
- calcSpherHarm(Rho*ml, Theta, Phi, Zeta[n1], D3n[n1], Pi[n], Tau[n], rn, M3o1n, M3e1n, N3o1n, N3e1n);
|
|
|
-
|
|
|
- // Total field in the lth layer: eqs. (1) and (2) in Yang, Appl. Opt., 42 (2003) 1710-1720
|
|
|
- std::complex<double> En = ipow[n1 % 4]*(rn + rn + 1.0)/(rn*rn + rn);
|
|
|
- for (int i = 0; i < 3; i++) {
|
|
|
- // electric field E [V m - 1] = EF*E0
|
|
|
- E[i] += En*(cln_[l][n]*M1o1n[i] - c_i*dln_[l][n]*N1e1n[i]
|
|
|
- + c_i*aln_[l][n]*N3e1n[i] - bln_[l][n]*M3o1n[i]);
|
|
|
-
|
|
|
- H[i] += En*(-dln_[l][n]*M1e1n[i] - c_i*cln_[l][n]*N1o1n[i]
|
|
|
- + c_i*bln_[l][n]*N3o1n[i] + aln_[l][n]*M3e1n[i]);
|
|
|
- }
|
|
|
- } // end of for all n
|
|
|
-
|
|
|
- // magnetic field
|
|
|
- std::complex<double> hffact = ml/(cc_*mu_);
|
|
|
- for (int i = 0; i < 3; i++) {
|
|
|
- H[i] = hffact*H[i];
|
|
|
- }
|
|
|
- } // end of MultiLayerMie::calcField(...)
|
|
|
-
|
|
|
-
|
|
|
- //**********************************************************************************//
|
|
|
- // This function calculates complex electric and magnetic field in the surroundings //
|
|
|
- // and inside the particle. //
|
|
|
- // //
|
|
|
- // Input parameters: //
|
|
|
- // L: Number of layers //
|
|
|
- // pl: Index of PEC layer. If there is none just send 0 (zero) //
|
|
|
- // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
- // nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
- // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
- // set this parameter to 0 (zero) and the function will calculate it. //
|
|
|
- // ncoord: Number of coordinate points //
|
|
|
- // Coords: Array containing all coordinates where the complex electric and //
|
|
|
- // magnetic fields will be calculated //
|
|
|
- // //
|
|
|
- // Output parameters: //
|
|
|
- // E, H: Complex electric and magnetic field at the provided coordinates //
|
|
|
- // //
|
|
|
- // Return value: //
|
|
|
- // Number of multipolar expansion terms used for the calculations //
|
|
|
- //**********************************************************************************//
|
|
|
- void MultiLayerMie::RunFieldCalculation() {
|
|
|
- double Rho, Theta, Phi;
|
|
|
-
|
|
|
- // Calculate scattering coefficients an_ and bn_
|
|
|
- calcScattCoeffs();
|
|
|
-
|
|
|
- // Calculate expansion coefficients aln_, bln_, cln_, and dln_
|
|
|
- calcExpanCoeffs();
|
|
|
-
|
|
|
- long total_points = coords_[0].size();
|
|
|
- E_.resize(total_points);
|
|
|
- H_.resize(total_points);
|
|
|
- for (auto& f : E_) f.resize(3);
|
|
|
- for (auto& f : H_) f.resize(3);
|
|
|
-
|
|
|
- for (int point = 0; point < total_points; point++) {
|
|
|
- const double& Xp = coords_[0][point];
|
|
|
- const double& Yp = coords_[1][point];
|
|
|
- const double& Zp = coords_[2][point];
|
|
|
-
|
|
|
- // Convert to spherical coordinates
|
|
|
- Rho = std::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
|
|
|
-
|
|
|
- // If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
|
|
|
- Theta = (Rho > 0.0) ? std::acos(Zp/Rho) : 0.0;
|
|
|
-
|
|
|
- // If Xp=Yp=0 then Phi is undefined. Just set it to zero to avoid problems
|
|
|
- if (Xp == 0.0)
|
|
|
- Phi = (Yp != 0.0) ? std::asin(Yp/std::sqrt(pow2(Xp) + pow2(Yp))) : 0.0;
|
|
|
- else
|
|
|
- Phi = std::acos(Xp/std::sqrt(pow2(Xp) + pow2(Yp)));
|
|
|
-
|
|
|
- // Avoid convergence problems due to Rho too small
|
|
|
- if (Rho < 1e-5) Rho = 1e-5;
|
|
|
-
|
|
|
- //*******************************************************//
|
|
|
- // external scattering field = incident + scattered //
|
|
|
- // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
|
|
|
- // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
|
|
|
- //*******************************************************//
|
|
|
-
|
|
|
- // This array contains the fields in spherical coordinates
|
|
|
- std::vector<std::complex<double> > Es(3), Hs(3);
|
|
|
-
|
|
|
- // Do the actual calculation of electric and magnetic field
|
|
|
- calcField(Rho, Theta, Phi, Es, Hs);
|
|
|
-
|
|
|
- { //Now, convert the fields back to cartesian coordinates
|
|
|
- using std::sin;
|
|
|
- using std::cos;
|
|
|
- E_[point][0] = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];
|
|
|
- E_[point][1] = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];
|
|
|
- E_[point][2] = cos(Theta)*Es[0] - sin(Theta)*Es[1];
|
|
|
-
|
|
|
- H_[point][0] = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];
|
|
|
- H_[point][1] = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
|
|
|
- H_[point][2] = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
|
|
|
- }
|
|
|
- } // end of for all field coordinates
|
|
|
- } // end of MultiLayerMie::RunFieldCalculation()
|
|
|
} // end of namespace nmie
|