Browse Source

initial conversion to templates of nmie.h

Konstantin Ladutenko 8 years ago
parent
commit
89aec43e7f
6 changed files with 82 additions and 1075 deletions
  1. 3 3
      src/nmie-applied.hpp
  2. 6 1004
      src/nmie.cc
  3. 63 62
      src/nmie.hpp
  4. 5 2
      tests/c++/go-speed-test.sh
  5. 1 1
      tests/c++/speed-test-applied.cc
  6. 4 3
      tests/c++/speed-test.cc

+ 3 - 3
src/nmie-applied.h → src/nmie-applied.hpp

@@ -1,8 +1,8 @@
 #ifndef SRC_NMIE_APPLIED_H_
 #define SRC_NMIE_APPLIED_H_
 //**********************************************************************************//
-//    Copyright (C) 2009-2015  Ovidio Pena <ovidio@bytesfall.com>                   //
-//    Copyright (C) 2013-2015  Konstantin Ladutenko <kostyfisik@gmail.com>          //
+//    Copyright (C) 2009-2016  Ovidio Pena <ovidio@bytesfall.com>                   //
+//    Copyright (C) 2013-2016  Konstantin Ladutenko <kostyfisik@gmail.com>          //
 //                                                                                  //
 //    This file is part of scattnlay                                                //
 //                                                                                  //
@@ -43,7 +43,7 @@ namespace nmie {
   int nMieApplied(const unsigned int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2);
 
 
-
+  template <typename FloatType = double>
   class MultiLayerMieApplied : public MultiLayerMie {
     // Will throw for any error!
    public:

+ 6 - 1004
src/nmie.cc

@@ -37,7 +37,8 @@
 //                                                                                  //
 // Hereinafter all equations numbers refer to [2]                                   //
 //**********************************************************************************//
-#include "nmie.h"
+#include "nmie.hpp"
+#include "nmie-impl.hpp"
 #include <array>
 #include <algorithm>
 #include <cstdio>
@@ -46,13 +47,6 @@
 #include <vector>
 
 namespace nmie {
-  //helpers
-  template<class T> inline T pow2(const T value) {return value*value;}
-  int round(double x) {
-    return x >= 0 ? (int)(x + 0.5):(int)(x - 0.5);
-  }
-
-
   //**********************************************************************************//
   // This function emulates a C call to calculate the scattering coefficients         //
   // required to calculate both the near- and far-field parameters.                   //
@@ -77,7 +71,7 @@ namespace nmie {
     if (x.size() != L || m.size() != L)
         throw std::invalid_argument("Declared number of layers do not fit x and m!");
     try {
-      MultiLayerMie ml_mie;
+      MultiLayerMie<double> ml_mie;
       ml_mie.SetLayersSize(x);
       ml_mie.SetLayersIndex(m);
       ml_mie.SetPECLayer(pl);
@@ -134,7 +128,8 @@ namespace nmie {
     if (Theta.size() != nTheta)
         throw std::invalid_argument("Declared number of sample for Theta is not correct!");
     try {
-      MultiLayerMie ml_mie;
+      typedef double FloatType;
+      MultiLayerMie<double> ml_mie;
       ml_mie.SetLayersSize(x);
       ml_mie.SetLayersIndex(m);
       ml_mie.SetAngles(Theta);
@@ -297,7 +292,7 @@ namespace nmie {
       if (f.size() != 3)
         throw std::invalid_argument("Field H is not 3D!");
     try {
-      MultiLayerMie ml_mie;
+      MultiLayerMie<double> ml_mie;
       ml_mie.SetPECLayer(pl);
       ml_mie.SetLayersSize(x);
       ml_mie.SetLayersIndex(m);
@@ -317,997 +312,4 @@ namespace nmie {
   }
 
 
-  // ********************************************************************** //
-  // Returns previously calculated Qext                                     //
-  // ********************************************************************** //
-  double MultiLayerMie::GetQext() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result request!");
-    return Qext_;
-  }
-
-
-  // ********************************************************************** //
-  // Returns previously calculated Qabs                                     //
-  // ********************************************************************** //
-  double MultiLayerMie::GetQabs() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result request!");
-    return Qabs_;
-  }
-
-
-  // ********************************************************************** //
-  // Returns previously calculated Qsca                                     //
-  // ********************************************************************** //
-  double MultiLayerMie::GetQsca() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result request!");
-    return Qsca_;
-  }
-
-
-  // ********************************************************************** //
-  // Returns previously calculated Qbk                                      //
-  // ********************************************************************** //
-  double MultiLayerMie::GetQbk() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result request!");
-    return Qbk_;
-  }
-
-
-  // ********************************************************************** //
-  // Returns previously calculated Qpr                                      //
-  // ********************************************************************** //
-  double MultiLayerMie::GetQpr() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result request!");
-    return Qpr_;
-  }
-
-
-  // ********************************************************************** //
-  // Returns previously calculated assymetry factor                         //
-  // ********************************************************************** //
-  double MultiLayerMie::GetAsymmetryFactor() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result request!");
-    return asymmetry_factor_;
-  }
-
-
-  // ********************************************************************** //
-  // Returns previously calculated Albedo                                   //
-  // ********************************************************************** //
-  double MultiLayerMie::GetAlbedo() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result request!");
-    return albedo_;
-  }
-
-
-  // ********************************************************************** //
-  // Returns previously calculated S1                                       //
-  // ********************************************************************** //
-  std::vector<std::complex<double> > MultiLayerMie::GetS1() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result request!");
-    return S1_;
-  }
-
-
-  // ********************************************************************** //
-  // Returns previously calculated S2                                       //
-  // ********************************************************************** //
-  std::vector<std::complex<double> > MultiLayerMie::GetS2() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result request!");
-    return S2_;
-  }
-
-
-  // ********************************************************************** //
-  // Modify scattering (theta) angles                                       //
-  // ********************************************************************** //
-  void MultiLayerMie::SetAngles(const std::vector<double>& angles) {
-    MarkUncalculated();
-    theta_ = angles;
-  }
-
-
-  // ********************************************************************** //
-  // Modify size of all layers                                             //
-  // ********************************************************************** //
-  void MultiLayerMie::SetLayersSize(const std::vector<double>& layer_size) {
-    MarkUncalculated();
-    size_param_.clear();
-    double prev_layer_size = 0.0;
-    for (auto curr_layer_size : layer_size) {
-      if (curr_layer_size <= 0.0)
-        throw std::invalid_argument("Size parameter should be positive!");
-      if (prev_layer_size > curr_layer_size)
-        throw std::invalid_argument
-          ("Size parameter for next layer should be larger than the previous one!");
-      prev_layer_size = curr_layer_size;
-      size_param_.push_back(curr_layer_size);
-    }
-  }
-
-
-  // ********************************************************************** //
-  // Modify refractive index of all layers                                  //
-  // ********************************************************************** //
-  void MultiLayerMie::SetLayersIndex(const std::vector< std::complex<double> >& index) {
-    MarkUncalculated();
-    refractive_index_ = index;
-  }
-
-
-  // ********************************************************************** //
-  // Modify coordinates for field calculation                               //
-  // ********************************************************************** //
-  void MultiLayerMie::SetFieldCoords(const std::vector< std::vector<double> >& coords) {
-    if (coords.size() != 3)
-      throw std::invalid_argument("Error! Wrong dimension of field monitor points!");
-    if (coords[0].size() != coords[1].size() || coords[0].size() != coords[2].size())
-      throw std::invalid_argument("Error! Missing coordinates for field monitor points!");
-    coords_ = coords;
-  }
-
-
-  // ********************************************************************** //
-  // Modify index of PEC layer                                              //
-  // ********************************************************************** //
-  void MultiLayerMie::SetPECLayer(int layer_position) {
-    MarkUncalculated();
-    if (layer_position < 0 && layer_position != -1)
-      throw std::invalid_argument("Error! Layers are numbered from 0!");
-    PEC_layer_position_ = layer_position;
-  }
-
-
-  // ********************************************************************** //
-  // Set maximun number of terms to be used                                 //
-  // ********************************************************************** //
-  void MultiLayerMie::SetMaxTerms(int nmax) {
-    MarkUncalculated();
-    nmax_preset_ = nmax;
-  }
-
-
-  // ********************************************************************** //
-  // Get total size parameter of particle                                   //
-  // ********************************************************************** //
-  double MultiLayerMie::GetSizeParameter() {
-    if (size_param_.size() > 0)
-      return size_param_.back();
-    else
-      return 0;
-  }
-
-  // ********************************************************************** //
-  // Mark uncalculated                                                      //
-  // ********************************************************************** //
-  void MultiLayerMie::MarkUncalculated() {
-    isExpCoeffsCalc_ = false;
-    isScaCoeffsCalc_ = false;
-
-    isMieCalculated_ = false;
-  }
-  // ********************************************************************** //
-  // Clear layer information                                                //
-  // ********************************************************************** //
-  void MultiLayerMie::ClearLayers() {
-    MarkUncalculated();
-    size_param_.clear();
-    refractive_index_.clear();
-  }
-
-
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  //                         Computational core
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-
-
-  // ********************************************************************** //
-  // Calculate calcNstop - equation (17)                                    //
-  // ********************************************************************** //
-  void MultiLayerMie::calcNstop() {
-    const double& xL = size_param_.back();
-    if (xL <= 8) {
-      nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 1);
-    } else if (xL <= 4200) {
-      nmax_ = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
-    } else {
-      nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 2);
-    }
-  }
-
-
-  // ********************************************************************** //
-  // Maximum number of terms required for the calculation                   //
-  // ********************************************************************** //
-  void MultiLayerMie::calcNmax(unsigned int first_layer) {
-    int ri, riM1;
-    const std::vector<double>& x = size_param_;
-    const std::vector<std::complex<double> >& m = refractive_index_;
-    calcNstop();  // Set initial nmax_ value
-    for (unsigned int i = first_layer; i < x.size(); i++) {
-      if (static_cast<int>(i) > PEC_layer_position_)  // static_cast used to avoid warning
-        ri = round(std::abs(x[i]*m[i]));
-      else
-        ri = 0;
-      nmax_ = std::max(nmax_, ri);
-      // first layer is pec, if pec is present
-      if ((i > first_layer) && (static_cast<int>(i - 1) > PEC_layer_position_))
-        riM1 = round(std::abs(x[i - 1]* m[i]));
-      else
-        riM1 = 0;
-      nmax_ = std::max(nmax_, riM1);
-    }
-    nmax_ += 15;  // Final nmax_ value
-  }
-
-
-  // ********************************************************************** //
-  // Calculate an - equation (5)                                            //
-  // ********************************************************************** //
-  std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
-                                              std::complex<double> PsiXL, std::complex<double> ZetaXL,
-                                              std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
-
-    std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
-    std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
-
-    return Num/Denom;
-  }
-
-
-  // ********************************************************************** //
-  // Calculate bn - equation (6)                                            //
-  // ********************************************************************** //
-  std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
-                                              std::complex<double> PsiXL, std::complex<double> ZetaXL,
-                                              std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
-
-    std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
-    std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
-
-    return Num/Denom;
-  }
-
-
-  // ********************************************************************** //
-  // Calculates S1 - equation (25a)                                         //
-  // ********************************************************************** //
-  std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
-                                              double Pi, double Tau) {
-    return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
-  }
-
-
-  // ********************************************************************** //
-  // Calculates S2 - equation (25b) (it's the same as (25a), just switches  //
-  // Pi and Tau)                                                            //
-  // ********************************************************************** //
-  std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
-                                              double Pi, double Tau) {
-    return calc_S1(n, an, bn, Tau, Pi);
-  }
-
-
-  //**********************************************************************************//
-  // This function calculates the logarithmic derivatives of the Riccati-Bessel       //
-  // functions (D1 and D3) for a complex argument (z).                                //
-  // Equations (16a), (16b) and (18a) - (18d)                                         //
-  //                                                                                  //
-  // Input parameters:                                                                //
-  //   z: Complex argument to evaluate D1 and D3                                      //
-  //   nmax_: Maximum number of terms to calculate D1 and D3                          //
-  //                                                                                  //
-  // Output parameters:                                                               //
-  //   D1, D3: Logarithmic derivatives of the Riccati-Bessel functions                //
-  //**********************************************************************************//
-  void MultiLayerMie::calcD1D3(const std::complex<double> z,
-                               std::vector<std::complex<double> >& D1,
-                               std::vector<std::complex<double> >& D3) {
-
-    // Downward recurrence for D1 - equations (16a) and (16b)
-    D1[nmax_] = std::complex<double>(0.0, 0.0);
-    const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
-
-    for (int n = nmax_; n > 0; n--) {
-      D1[n - 1] = static_cast<double>(n)*zinv - 1.0/(D1[n] + static_cast<double>(n)*zinv);
-    }
-
-    if (std::abs(D1[0]) > 1.0e15) {
-      throw std::invalid_argument("Unstable D1! Please, try to change input parameters!\n");
-    //printf("Warning: Potentially unstable D1! Please, try to change input parameters!\n");
-    }
-
-    // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
-    PsiZeta_[0] = 0.5*(1.0 - std::complex<double>(std::cos(2.0*z.real()), std::sin(2.0*z.real()))
-                      *std::exp(-2.0*z.imag()));
-    D3[0] = std::complex<double>(0.0, 1.0);
-    for (int n = 1; n <= nmax_; n++) {
-      PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<double>(n)*zinv - D1[n - 1])
-                                   *(static_cast<double>(n)*zinv - D3[n - 1]);
-      D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta_[n];
-    }
-  }
-
-
-  //**********************************************************************************//
-  // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a       //
-  // complex argument (z).                                                            //
-  // Equations (20a) - (21b)                                                          //
-  //                                                                                  //
-  // Input parameters:                                                                //
-  //   z: Complex argument to evaluate Psi and Zeta                                   //
-  //   nmax: Maximum number of terms to calculate Psi and Zeta                        //
-  //                                                                                  //
-  // Output parameters:                                                               //
-  //   Psi, Zeta: Riccati-Bessel functions                                            //
-  //**********************************************************************************//
-  void MultiLayerMie::calcPsiZeta(std::complex<double> z,
-                                  std::vector<std::complex<double> >& Psi,
-                                  std::vector<std::complex<double> >& Zeta) {
-
-    std::complex<double> c_i(0.0, 1.0);
-    std::vector<std::complex<double> > D1(nmax_ + 1), D3(nmax_ + 1);
-
-    // First, calculate the logarithmic derivatives
-    calcD1D3(z, D1, D3);
-
-    // Now, use the upward recurrence to calculate Psi and Zeta - equations (20a) - (21b)
-    Psi[0] = std::sin(z);
-    Zeta[0] = std::sin(z) - c_i*std::cos(z);
-    for (int n = 1; n <= nmax_; n++) {
-      Psi[n]  =  Psi[n - 1]*(static_cast<double>(n)/z - D1[n - 1]);
-      Zeta[n] = Zeta[n - 1]*(static_cast<double>(n)/z - D3[n - 1]);
-    }
-  }
-
-
-  //**********************************************************************************//
-  // This function calculates Pi and Tau for a given value of cos(Theta).             //
-  // Equations (26a) - (26c)                                                          //
-  //                                                                                  //
-  // Input parameters:                                                                //
-  //   nmax_: Maximum number of terms to calculate Pi and Tau                         //
-  //   nTheta: Number of scattering angles                                            //
-  //   Theta: Array containing all the scattering angles where the scattering         //
-  //          amplitudes will be calculated                                           //
-  //                                                                                  //
-  // Output parameters:                                                               //
-  //   Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c)   //
-  //**********************************************************************************//
-  void MultiLayerMie::calcPiTau(const double& costheta,
-                                std::vector<double>& Pi, std::vector<double>& Tau) {
-
-    int i;
-    //****************************************************//
-    // Equations (26a) - (26c)                            //
-    //****************************************************//
-    // Initialize Pi and Tau
-    Pi[0] = 1.0;  // n=1
-    Tau[0] = costheta;
-    // Calculate the actual values
-    if (nmax_ > 1) {
-      Pi[1] = 3*costheta*Pi[0]; //n=2
-      Tau[1] = 2*costheta*Pi[1] - 3*Pi[0];
-      for (i = 2; i < nmax_; i++) { //n=[3..nmax_]
-        Pi[i] = ((i + i + 1)*costheta*Pi[i - 1] - (i + 1)*Pi[i - 2])/i;
-        Tau[i] = (i + 1)*costheta*Pi[i] - (i + 2)*Pi[i - 1];
-      }
-    }
-  }  // end of MultiLayerMie::calcPiTau(...)
-
-
-  //**********************************************************************************//
-  // This function calculates vector spherical harmonics (eq. 4.50, p. 95 BH),        //
-  // required to calculate the near-field parameters.                                 //
-  //                                                                                  //
-  // Input parameters:                                                                //
-  //   Rho: Radial distance                                                           //
-  //   Phi: Azimuthal angle                                                           //
-  //   Theta: Polar angle                                                             //
-  //   rn: Either the spherical Ricatti-Bessel function of first or third kind        //
-  //   Dn: Logarithmic derivative of rn                                               //
-  //   Pi, Tau: Angular functions Pi and Tau                                          //
-  //   n: Order of vector spherical harmonics                                         //
-  //                                                                                  //
-  // Output parameters:                                                               //
-  //   Mo1n, Me1n, No1n, Ne1n: Complex vector spherical harmonics                     //
-  //**********************************************************************************//
-  void MultiLayerMie::calcSpherHarm(const std::complex<double> Rho, const double Theta, const double Phi,
-                                    const std::complex<double>& rn, const std::complex<double>& Dn,
-                                    const double& Pi, const double& Tau, const double& n,
-                                    std::vector<std::complex<double> >& Mo1n, std::vector<std::complex<double> >& Me1n, 
-                                    std::vector<std::complex<double> >& No1n, std::vector<std::complex<double> >& Ne1n) {
-
-    // using eq 4.50 in BH
-    std::complex<double> c_zero(0.0, 0.0);
-
-    using std::sin;
-    using std::cos;
-    Mo1n[0] = c_zero;
-    Mo1n[1] = cos(Phi)*Pi*rn/Rho;
-    Mo1n[2] = -sin(Phi)*Tau*rn/Rho;
-    Me1n[0] = c_zero;
-    Me1n[1] = -sin(Phi)*Pi*rn/Rho;
-    Me1n[2] = -cos(Phi)*Tau*rn/Rho;
-    No1n[0] = sin(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;
-    No1n[1] = sin(Phi)*Tau*Dn*rn/Rho;
-    No1n[2] = cos(Phi)*Pi*Dn*rn/Rho;
-    Ne1n[0] = cos(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;
-    Ne1n[1] = cos(Phi)*Tau*Dn*rn/Rho;
-    Ne1n[2] = -sin(Phi)*Pi*Dn*rn/Rho;
-  }  // end of MultiLayerMie::calcSpherHarm(...)
-
-
-  //**********************************************************************************//
-  // This function calculates the scattering coefficients required to calculate       //
-  // both the near- and far-field parameters.                                         //
-  //                                                                                  //
-  // Input parameters:                                                                //
-  //   L: Number of layers                                                            //
-  //   pl: Index of PEC layer. If there is none just send -1                          //
-  //   x: Array containing the size parameters of the layers [0..L-1]                 //
-  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
-  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
-  //         calculations. Only use it if you know what you are doing, otherwise      //
-  //         set this parameter to -1 and the function will calculate it.             //
-  //                                                                                  //
-  // Output parameters:                                                               //
-  //   an, bn: Complex scattering amplitudes                                          //
-  //                                                                                  //
-  // Return value:                                                                    //
-  //   Number of multipolar expansion terms used for the calculations                 //
-  //**********************************************************************************//
-  void MultiLayerMie::calcScattCoeffs() {
-
-    isScaCoeffsCalc_ = false;
-
-    const std::vector<double>& x = size_param_;
-    const std::vector<std::complex<double> >& m = refractive_index_;
-    const int& pl = PEC_layer_position_;
-    const int L = refractive_index_.size();
-
-    //************************************************************************//
-    // Calculate the index of the first layer. It can be either 0 (default)   //
-    // or the index of the outermost PEC layer. In the latter case all layers //
-    // below the PEC are discarded.                                           //
-    // ***********************************************************************//
-    int fl = (pl > 0) ? pl : 0;
-    if (nmax_preset_ <= 0) calcNmax(fl);
-    else nmax_ = nmax_preset_;
-
-    std::complex<double> z1, z2;
-    //**************************************************************************//
-    // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which  //
-    // means that index = layer number - 1 or index = n - 1. The only exception //
-    // are the arrays for representing D1, D3 and Q because they need a value   //
-    // for the index 0 (zero), hence it is important to consider this shift     //
-    // between different arrays. The change was done to optimize memory usage.  //
-    //**************************************************************************//
-    // Allocate memory to the arrays
-    std::vector<std::complex<double> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
-                                       D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
-
-    std::vector<std::vector<std::complex<double> > > Q(L), Ha(L), Hb(L);
-
-    for (int l = 0; l < L; l++) {
-      Q[l].resize(nmax_ + 1);
-      Ha[l].resize(nmax_);
-      Hb[l].resize(nmax_);
-    }
-
-    an_.resize(nmax_);
-    bn_.resize(nmax_);
-    PsiZeta_.resize(nmax_ + 1);
-
-    std::vector<std::complex<double> > PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
-
-    //*************************************************//
-    // Calculate D1 and D3 for z1 in the first layer   //
-    //*************************************************//
-    if (fl == pl) {  // PEC layer
-      for (int n = 0; n <= nmax_; n++) {
-        D1_mlxl[n] = std::complex<double>(0.0, - 1.0);
-        D3_mlxl[n] = std::complex<double>(0.0, 1.0);
-      }
-    } else { // Regular layer
-      z1 = x[fl]* m[fl];
-      // Calculate D1 and D3
-      calcD1D3(z1, D1_mlxl, D3_mlxl);
-    }
-
-    //******************************************************************//
-    // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
-    //******************************************************************//
-    for (int n = 0; n < nmax_; n++) {
-      Ha[fl][n] = D1_mlxl[n + 1];
-      Hb[fl][n] = D1_mlxl[n + 1];
-    }
-    //*****************************************************//
-    // Iteration from the second layer to the last one (L) //
-    //*****************************************************//
-    std::complex<double> Temp, Num, Denom;
-    std::complex<double> G1, G2;
-    for (int l = fl + 1; l < L; l++) {
-      //************************************************************//
-      //Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L   //
-      //************************************************************//
-      z1 = x[l]*m[l];
-      z2 = x[l - 1]*m[l];
-      //Calculate D1 and D3 for z1
-      calcD1D3(z1, D1_mlxl, D3_mlxl);
-      //Calculate D1 and D3 for z2
-      calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
-
-      //*************************************************//
-      //Calculate Q, Ha and Hb in the layers fl + 1..L   //
-      //*************************************************//
-      // Upward recurrence for Q - equations (19a) and (19b)
-      Num = std::exp(-2.0*(z1.imag() - z2.imag()))
-           *std::complex<double>(std::cos(-2.0*z2.real()) - std::exp(-2.0*z2.imag()), std::sin(-2.0*z2.real()));
-      Denom = std::complex<double>(std::cos(-2.0*z1.real()) - std::exp(-2.0*z1.imag()), std::sin(-2.0*z1.real()));
-      Q[l][0] = Num/Denom;
-      for (int n = 1; n <= nmax_; n++) {
-        Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]);
-        Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]);
-        Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
-      }
-      // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
-      for (int n = 1; n <= nmax_; n++) {
-        //Ha
-        if ((l - 1) == pl) { // The layer below the current one is a PEC layer
-          G1 = -D1_mlxlM1[n];
-          G2 = -D3_mlxlM1[n];
-        } else {
-          G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
-          G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
-        }  // end of if PEC
-        Temp = Q[l][n]*G1;
-        Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
-        Denom = G2 - Temp;
-        Ha[l][n - 1] = Num/Denom;
-        //Hb
-        if ((l - 1) == pl) { // The layer below the current one is a PEC layer
-          G1 = Hb[l - 1][n - 1];
-          G2 = Hb[l - 1][n - 1];
-        } else {
-          G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
-          G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
-        }  // end of if PEC
-
-        Temp = Q[l][n]*G1;
-        Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
-        Denom = (G2- Temp);
-        Hb[l][n - 1] = (Num/ Denom);
-      }  // end of for Ha and Hb terms
-    }  // end of for layers iteration
-
-    //**************************************//
-    //Calculate Psi and Zeta for XL         //
-    //**************************************//
-    // Calculate PsiXL and ZetaXL
-    calcPsiZeta(x[L - 1], PsiXL, ZetaXL);
-
-    //*********************************************************************//
-    // Finally, we calculate the scattering coefficients (an and bn) and   //
-    // the angular functions (Pi and Tau). Note that for these arrays the  //
-    // first layer is 0 (zero), in future versions all arrays will follow  //
-    // this convention to save memory. (13 Nov, 2014)                      //
-    //*********************************************************************//
-    for (int n = 0; n < nmax_; n++) {
-      //********************************************************************//
-      //Expressions for calculating an and bn coefficients are not valid if //
-      //there is only one PEC layer (ie, for a simple PEC sphere).          //
-      //********************************************************************//
-      if (pl < (L - 1)) {
-        an_[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
-        bn_[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
-      } else {
-        an_[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
-        bn_[n] = PsiXL[n + 1]/ZetaXL[n + 1];
-      }
-    }  // end of for an and bn terms
-    isScaCoeffsCalc_ = true;
-  }  // end of MultiLayerMie::calcScattCoeffs()
-
-
-  //**********************************************************************************//
-  // This function calculates the actual scattering parameters and amplitudes         //
-  //                                                                                  //
-  // Input parameters:                                                                //
-  //   L: Number of layers                                                            //
-  //   pl: Index of PEC layer. If there is none just send -1                          //
-  //   x: Array containing the size parameters of the layers [0..L-1]                 //
-  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
-  //   nTheta: Number of scattering angles                                            //
-  //   Theta: Array containing all the scattering angles where the scattering         //
-  //          amplitudes will be calculated                                           //
-  //   nmax_: Maximum number of multipolar expansion terms to be used for the         //
-  //         calculations. Only use it if you know what you are doing, otherwise      //
-  //         set this parameter to -1 and the function will calculate it              //
-  //                                                                                  //
-  // Output parameters:                                                               //
-  //   Qext: Efficiency factor for extinction                                         //
-  //   Qsca: Efficiency factor for scattering                                         //
-  //   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
-  //   Qbk: Efficiency factor for backscattering                                      //
-  //   Qpr: Efficiency factor for the radiation pressure                              //
-  //   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
-  //   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
-  //   S1, S2: Complex scattering amplitudes                                          //
-  //                                                                                  //
-  // Return value:                                                                    //
-  //   Number of multipolar expansion terms used for the calculations                 //
-  //**********************************************************************************//
-  void MultiLayerMie::RunMieCalculation() {
-    if (size_param_.size() != refractive_index_.size())
-      throw std::invalid_argument("Each size parameter should have only one index!");
-    if (size_param_.size() == 0)
-      throw std::invalid_argument("Initialize model first!");
-
-    const std::vector<double>& x = size_param_;
-
-    MarkUncalculated();
-
-    // Calculate scattering coefficients
-    calcScattCoeffs();
-
-    // Initialize the scattering parameters
-    Qext_ = 0.0;
-    Qsca_ = 0.0;
-    Qabs_ = 0.0;
-    Qbk_ = 0.0;
-    Qpr_ = 0.0;
-    asymmetry_factor_ = 0.0;
-    albedo_ = 0.0;
-
-    // Initialize the scattering amplitudes
-    std::vector<std::complex<double> > tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
-    S1_.swap(tmp1);
-    S2_ = S1_;
-
-    std::vector<double> Pi(nmax_), Tau(nmax_);
-
-    std::complex<double> Qbktmp(0.0, 0.0);
-    std::vector< std::complex<double> > Qbktmp_ch(nmax_ - 1, Qbktmp);
-    // By using downward recurrence we avoid loss of precision due to float rounding errors
-    // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
-    //      http://en.wikipedia.org/wiki/Loss_of_significance
-    for (int i = nmax_ - 2; i >= 0; i--) {
-      const int n = i + 1;
-      // Equation (27)
-      Qext_ += (n + n + 1.0)*(an_[i].real() + bn_[i].real());
-      // Equation (28)
-      Qsca_ += (n + n + 1.0)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
-                            + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
-      // Equation (29)
-      Qpr_ += ((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real())
-               + ((double)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real());
-      // Equation (33)
-      Qbktmp += (double)(n + n + 1)*(1 - 2*(n % 2))*(an_[i]- bn_[i]);
-      // Calculate the scattering amplitudes (S1 and S2)    //
-      // Precalculate cos(theta) - gives about 5% speed up.
-      std::vector<double> costheta(theta_.size(), 0.0);
-      for (int t = 0; t < theta_.size(); t++) {
-	costheta[t] = std::cos(theta_[t]);
-      }
-      // Equations (25a) - (25b)                            //
-      for (unsigned int t = 0; t < theta_.size(); t++) {
-        calcPiTau(costheta[t], Pi, Tau);
-
-        S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[i], Tau[i]);
-        S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[i], Tau[i]);
-      }
-    }
-    double x2 = pow2(x.back());
-    Qext_ = 2.0*(Qext_)/x2;                                 // Equation (27)
-    Qsca_ = 2.0*(Qsca_)/x2;                                 // Equation (28)
-    Qpr_ = Qext_ - 4.0*(Qpr_)/x2;                           // Equation (29)
-    Qabs_ = Qext_ - Qsca_;                                  // Equation (30)
-    albedo_ = Qsca_/Qext_;                                  // Equation (31)
-    asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_;               // Equation (32)
-    Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2;    // Equation (33)
-
-    isMieCalculated_ = true;
-  }
-
-
-  //**********************************************************************************//
-  // This function calculates the expansion coefficients inside the particle,         //
-  // required to calculate the near-field parameters.                                 //
-  //                                                                                  //
-  // Input parameters:                                                                //
-  //   L: Number of layers                                                            //
-  //   pl: Index of PEC layer. If there is none just send -1                          //
-  //   x: Array containing the size parameters of the layers [0..L-1]                 //
-  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
-  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
-  //         calculations. Only use it if you know what you are doing, otherwise      //
-  //         set this parameter to -1 and the function will calculate it.             //
-  //                                                                                  //
-  // Output parameters:                                                               //
-  //   aln, bln, cln, dln: Complex scattering amplitudes inside the particle          //
-  //                                                                                  //
-  // Return value:                                                                    //
-  //   Number of multipolar expansion terms used for the calculations                 //
-  //**********************************************************************************//
-  void MultiLayerMie::calcExpanCoeffs() {
-    if (!isScaCoeffsCalc_)
-      throw std::invalid_argument("(calcExpanCoeffs) You should calculate external coefficients first!");
-
-    isExpCoeffsCalc_ = false;
-
-    std::complex<double> c_one(1.0, 0.0), c_zero(0.0, 0.0);
-
-    const int L = refractive_index_.size();
-
-    aln_.resize(L + 1);
-    bln_.resize(L + 1);
-    cln_.resize(L + 1);
-    dln_.resize(L + 1);
-    for (int l = 0; l <= L; l++) {
-      aln_[l].resize(nmax_);
-      bln_[l].resize(nmax_);
-      cln_[l].resize(nmax_);
-      dln_[l].resize(nmax_);
-    }
-
-    // Yang, paragraph under eq. A3
-    // a^(L + 1)_n = a_n, d^(L + 1) = 1 ...
-    for (int n = 0; n < nmax_; n++) {
-      aln_[L][n] = an_[n];
-      bln_[L][n] = bn_[n];
-      cln_[L][n] = c_one;
-      dln_[L][n] = c_one;
-    }
-
-    std::vector<std::complex<double> > D1z(nmax_ + 1), D1z1(nmax_ + 1), D3z(nmax_ + 1), D3z1(nmax_ + 1);
-    std::vector<std::complex<double> > Psiz(nmax_ + 1), Psiz1(nmax_ + 1), Zetaz(nmax_ + 1), Zetaz1(nmax_ + 1);
-    std::complex<double> denomZeta, denomPsi, T1, T2, T3, T4;
-
-    auto& m = refractive_index_;
-    std::vector< std::complex<double> > m1(L);
-
-    for (int l = 0; l < L - 1; l++) m1[l] = m[l + 1];
-    m1[L - 1] = std::complex<double> (1.0, 0.0);
-
-    std::complex<double> z, z1;
-    for (int l = L - 1; l >= 0; l--) {
-      if (l <= PEC_layer_position_) { // We are inside a PEC. All coefficients must be zero!!!
-        for (int n = 0; n < nmax_; n++) {
-          // aln
-          aln_[l][n] = c_zero;
-          // bln
-          bln_[l][n] = c_zero;
-          // cln
-          cln_[l][n] = c_zero;
-          // dln
-          dln_[l][n] = c_zero;
-        }
-      } else { // Regular material, just do the calculation
-        z = size_param_[l]*m[l];
-        z1 = size_param_[l]*m1[l];
-
-        calcD1D3(z, D1z, D3z);
-        calcD1D3(z1, D1z1, D3z1);
-        calcPsiZeta(z, Psiz, Zetaz);
-        calcPsiZeta(z1, Psiz1, Zetaz1);
-
-        for (int n = 0; n < nmax_; n++) {
-          int n1 = n + 1;
-
-          denomZeta = Zetaz[n1]*(D1z[n1] - D3z[n1]);
-          denomPsi  =  Psiz[n1]*(D1z[n1] - D3z[n1]);
-
-          T1 =  aln_[l + 1][n]*Zetaz1[n1] - dln_[l + 1][n]*Psiz1[n1];
-          T2 = (bln_[l + 1][n]*Zetaz1[n1] - cln_[l + 1][n]*Psiz1[n1])*m[l]/m1[l];
-
-          T3 = (dln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - aln_[l + 1][n]*D3z1[n1]*Zetaz1[n1])*m[l]/m1[l];
-          T4 =  cln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - bln_[l + 1][n]*D3z1[n1]*Zetaz1[n1];
-
-          // aln
-          aln_[l][n] = (D1z[n1]*T1 + T3)/denomZeta;
-          // bln
-          bln_[l][n] = (D1z[n1]*T2 + T4)/denomZeta;
-          // cln
-          cln_[l][n] = (D3z[n1]*T2 + T4)/denomPsi;
-          // dln
-          dln_[l][n] = (D3z[n1]*T1 + T3)/denomPsi;
-        }  // end of all n
-      }  // end PEC condition
-    }  // end of all l
-
-    // Check the result and change  aln_[0][n] and aln_[0][n] for exact zero
-    for (int n = 0; n < nmax_; ++n) {
-      if (std::abs(aln_[0][n]) < 1e-10) aln_[0][n] = 0.0;
-      else {
-        //throw std::invalid_argument("Unstable calculation of aln_[0][n]!");
-        printf("Warning: Potentially unstable calculation of aln (aln[0][%i] = %g, %gi)\n", n, aln_[0][n].real(), aln_[0][n].imag());
-        aln_[0][n] = 0.0;
-      }
-      if (std::abs(bln_[0][n]) < 1e-10) bln_[0][n] = 0.0;
-      else {
-        //throw std::invalid_argument("Unstable calculation of bln_[0][n]!");
-        printf("Warning: Potentially unstable calculation of bln (bln[0][%i] = %g, %gi) pl=%d\n", n, bln_[0][n].real(), bln_[0][n].imag(), PEC_layer_position_);
-        bln_[0][n] = 0.0;
-      }
-    }
-
-    isExpCoeffsCalc_ = true;
-  }  // end of   void MultiLayerMie::calcExpanCoeffs()
-
-
-  //**********************************************************************************//
-  // This function calculates the electric (E) and magnetic (H) fields inside and     //
-  // around the particle.                                                             //
-  //                                                                                  //
-  // Input parameters (coordinates of the point):                                     //
-  //   Rho: Radial distance                                                           //
-  //   Phi: Azimuthal angle                                                           //
-  //   Theta: Polar angle                                                             //
-  //                                                                                  //
-  // Output parameters:                                                               //
-  //   E, H: Complex electric and magnetic fields                                     //
-  //**********************************************************************************//
-  void MultiLayerMie::calcField(const double Rho, const double Theta, const double Phi,
-                                std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H)  {
-
-    std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
-    std::vector<std::complex<double> > ipow = {c_one, c_i, -c_one, -c_i}; // Vector containing precomputed integer powers of i to avoid computation
-    std::vector<std::complex<double> > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3);
-    std::vector<std::complex<double> > M1o1n(3), M1e1n(3), N1o1n(3), N1e1n(3);
-    std::vector<std::complex<double> > Psi(nmax_ + 1), D1n(nmax_ + 1), Zeta(nmax_ + 1), D3n(nmax_ + 1);
-    std::vector<double> Pi(nmax_), Tau(nmax_);
-
-    int l = 0;  // Layer number
-    std::complex<double> ml;
-
-    // Initialize E and H
-    for (int i = 0; i < 3; i++) {
-      E[i] = c_zero;
-      H[i] = c_zero;
-    }
-    
-    if (Rho > size_param_.back()) {
-      l = size_param_.size();
-      ml = c_one;
-    } else {
-      for (int i = size_param_.size() - 1; i >= 0 ; i--) {
-        if (Rho <= size_param_[i]) {
-          l = i;
-        }
-      }
-      ml = refractive_index_[l];
-    }
-
-    // Calculate logarithmic derivative of the Ricatti-Bessel functions
-    calcD1D3(Rho*ml, D1n, D3n);
-    // Calculate Ricatti-Bessel functions
-    calcPsiZeta(Rho*ml, Psi, Zeta);
-
-    // Calculate angular functions Pi and Tau
-    calcPiTau(std::cos(Theta), Pi, Tau);
-
-    for (int n = nmax_ - 2; n >= 0; n--) {
-      int n1 = n + 1;
-      double rn = static_cast<double>(n1);
-
-      // using BH 4.12 and 4.50
-      calcSpherHarm(Rho*ml, Theta, Phi, Psi[n1], D1n[n1], Pi[n], Tau[n], rn, M1o1n, M1e1n, N1o1n, N1e1n);
-      calcSpherHarm(Rho*ml, Theta, Phi, Zeta[n1], D3n[n1], Pi[n], Tau[n], rn, M3o1n, M3e1n, N3o1n, N3e1n);
-
-      // Total field in the lth layer: eqs. (1) and (2) in Yang, Appl. Opt., 42 (2003) 1710-1720
-      std::complex<double> En = ipow[n1 % 4]*(rn + rn + 1.0)/(rn*rn + rn);
-      for (int i = 0; i < 3; i++) {
-        // electric field E [V m - 1] = EF*E0
-        E[i] += En*(cln_[l][n]*M1o1n[i] - c_i*dln_[l][n]*N1e1n[i]
-              + c_i*aln_[l][n]*N3e1n[i] -     bln_[l][n]*M3o1n[i]);
-
-        H[i] += En*(-dln_[l][n]*M1e1n[i] - c_i*cln_[l][n]*N1o1n[i]
-              +  c_i*bln_[l][n]*N3o1n[i] +     aln_[l][n]*M3e1n[i]);
-      }
-    }  // end of for all n
-
-    // magnetic field
-    std::complex<double> hffact = ml/(cc_*mu_);
-    for (int i = 0; i < 3; i++) {
-      H[i] = hffact*H[i];
-    }
-   }  // end of MultiLayerMie::calcField(...)
-
-
-  //**********************************************************************************//
-  // This function calculates complex electric and magnetic field in the surroundings //
-  // and inside the particle.                                                         //
-  //                                                                                  //
-  // Input parameters:                                                                //
-  //   L: Number of layers                                                            //
-  //   pl: Index of PEC layer. If there is none just send 0 (zero)                    //
-  //   x: Array containing the size parameters of the layers [0..L-1]                 //
-  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
-  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
-  //         calculations. Only use it if you know what you are doing, otherwise      //
-  //         set this parameter to 0 (zero) and the function will calculate it.       //
-  //   ncoord: Number of coordinate points                                            //
-  //   Coords: Array containing all coordinates where the complex electric and        //
-  //           magnetic fields will be calculated                                     //
-  //                                                                                  //
-  // Output parameters:                                                               //
-  //   E, H: Complex electric and magnetic field at the provided coordinates          //
-  //                                                                                  //
-  // Return value:                                                                    //
-  //   Number of multipolar expansion terms used for the calculations                 //
-  //**********************************************************************************//
-  void MultiLayerMie::RunFieldCalculation() {
-    double Rho, Theta, Phi;
-
-    // Calculate scattering coefficients an_ and bn_
-    calcScattCoeffs();
-
-    // Calculate expansion coefficients aln_,  bln_, cln_, and dln_
-    calcExpanCoeffs();
-
-    long total_points = coords_[0].size();
-    E_.resize(total_points);
-    H_.resize(total_points);
-    for (auto& f : E_) f.resize(3);
-    for (auto& f : H_) f.resize(3);
-
-    for (int point = 0; point < total_points; point++) {
-      const double& Xp = coords_[0][point];
-      const double& Yp = coords_[1][point];
-      const double& Zp = coords_[2][point];
-
-      // Convert to spherical coordinates
-      Rho = std::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
-
-      // If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
-      Theta = (Rho > 0.0) ? std::acos(Zp/Rho) : 0.0;
-
-      // If Xp=Yp=0 then Phi is undefined. Just set it to zero to avoid problems
-      if (Xp == 0.0)
-        Phi = (Yp != 0.0) ? std::asin(Yp/std::sqrt(pow2(Xp) + pow2(Yp))) : 0.0;
-      else
-        Phi = std::acos(Xp/std::sqrt(pow2(Xp) + pow2(Yp)));
-
-      // Avoid convergence problems due to Rho too small
-      if (Rho < 1e-5) Rho = 1e-5;
-
-      //*******************************************************//
-      // external scattering field = incident + scattered      //
-      // BH p.92 (4.37), 94 (4.45), 95 (4.50)                  //
-      // assume: medium is non-absorbing; refim = 0; Uabs = 0  //
-      //*******************************************************//
-
-      // This array contains the fields in spherical coordinates
-      std::vector<std::complex<double> > Es(3), Hs(3);
-
-      // Do the actual calculation of electric and magnetic field
-      calcField(Rho, Theta, Phi, Es, Hs);
-
-      { //Now, convert the fields back to cartesian coordinates
-        using std::sin;
-        using std::cos;
-        E_[point][0] = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];
-        E_[point][1] = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];
-        E_[point][2] = cos(Theta)*Es[0] - sin(Theta)*Es[1];
-
-        H_[point][0] = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];
-        H_[point][1] = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
-        H_[point][2] = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
-      }
-    }  // end of for all field coordinates
-  }  //  end of MultiLayerMie::RunFieldCalculation()
 }  // end of namespace nmie

+ 63 - 62
src/nmie.h → src/nmie.hpp

@@ -1,8 +1,8 @@
 #ifndef SRC_NMIE_H_
 #define SRC_NMIE_H_
 //**********************************************************************************//
-//    Copyright (C) 2009-2015  Ovidio Pena <ovidio@bytesfall.com>                   //
-//    Copyright (C) 2013-2015  Konstantin Ladutenko <kostyfisik@gmail.com>          //
+//    Copyright (C) 2009-2016  Ovidio Pena <ovidio@bytesfall.com>                   //
+//    Copyright (C) 2013-2016  Konstantin Ladutenko <kostyfisik@gmail.com>          //
 //                                                                                  //
 //    This file is part of scattnlay                                                //
 //                                                                                  //
@@ -35,7 +35,7 @@
 #include <vector>
 
 namespace nmie {
-  //Used constants
+  //Used constants TODO! Change to boost PI
   const double PI_=3.14159265358979323846;
   // light speed [m s-1]
   const double cc_ = 2.99792458e8;
@@ -48,6 +48,7 @@ namespace nmie {
   int nMie(const unsigned int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const unsigned int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2);
   int nField(const unsigned int L, const int pl, const std::vector<double>& x, const std::vector<std::complex<double> >& m, const int nmax, const unsigned int ncoord, const std::vector<double>& Xp, const std::vector<double>& Yp, const std::vector<double>& Zp, std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H);
 
+  template <typename FloatType = double>
   class MultiLayerMie {
    public:
     // Run calculation
@@ -56,28 +57,28 @@ namespace nmie {
     void calcScattCoeffs();
 
     // Return calculation results
-    double GetQext();
-    double GetQsca();
-    double GetQabs();
-    double GetQbk();
-    double GetQpr();
-    double GetAsymmetryFactor();
-    double GetAlbedo();
-    std::vector<std::complex<double> > GetS1();
-    std::vector<std::complex<double> > GetS2();
-
-    std::vector<std::complex<double> > GetAn(){return an_;};
-    std::vector<std::complex<double> > GetBn(){return bn_;};
+    FloatType GetQext();
+    FloatType GetQsca();
+    FloatType GetQabs();
+    FloatType GetQbk();
+    FloatType GetQpr();
+    FloatType GetAsymmetryFactor();
+    FloatType GetAlbedo();
+    std::vector<std::complex<FloatType> > GetS1();
+    std::vector<std::complex<FloatType> > GetS2();
+
+    std::vector<std::complex<FloatType> > GetAn(){return an_;};
+    std::vector<std::complex<FloatType> > GetBn(){return bn_;};
 
     // Problem definition
     // Modify size of all layers
-    void SetLayersSize(const std::vector<double>& layer_size);
+    void SetLayersSize(const std::vector<FloatType>& layer_size);
     // Modify refractive index of all layers
-    void SetLayersIndex(const std::vector< std::complex<double> >& index);
+    void SetLayersIndex(const std::vector< std::complex<FloatType> >& index);
     // Modify scattering (theta) angles
-    void SetAngles(const std::vector<double>& angles);
+    void SetAngles(const std::vector<FloatType>& angles);
     // Modify coordinates for field calculation
-    void SetFieldCoords(const std::vector< std::vector<double> >& coords);
+    void SetFieldCoords(const std::vector< std::vector<FloatType> >& coords);
     // Modify index of PEC layer
     void SetPECLayer(int layer_position = 0);
 
@@ -93,83 +94,83 @@ namespace nmie {
 
     // Read parameters
     // Get total size parameter of particle
-    double GetSizeParameter();
+    FloatType GetSizeParameter();
     // Returns size of all layers
-    std::vector<double> GetLayersSize(){return size_param_;};
+    std::vector<FloatType> GetLayersSize(){return size_param_;};
     // Returns refractive index of all layers
-    std::vector<std::complex<double> > GetLayersIndex(){return refractive_index_;};
+    std::vector<std::complex<FloatType> > GetLayersIndex(){return refractive_index_;};
     // Returns scattering (theta) angles
-    std::vector<double> GetAngles(){return theta_;};
+    std::vector<FloatType> GetAngles(){return theta_;};
     // Returns coordinates used for field calculation
-    std::vector<std::vector<double> > GetFieldCoords(){return coords_;};
+    std::vector<std::vector<FloatType> > GetFieldCoords(){return coords_;};
     // Returns index of PEC layer
     int GetPECLayer(){return PEC_layer_position_;};
 
-    std::vector<std::vector< std::complex<double> > > GetFieldE(){return E_;};   // {X[], Y[], Z[]}
-    std::vector<std::vector< std::complex<double> > > GetFieldH(){return H_;};
+    std::vector<std::vector< std::complex<FloatType> > > GetFieldE(){return E_;};   // {X[], Y[], Z[]}
+    std::vector<std::vector< std::complex<FloatType> > > GetFieldH(){return H_;};
 
   protected:
     // Size parameter for all layers
-    std::vector<double> size_param_;
+    std::vector<FloatType> size_param_;
     // Refractive index for all layers
-    std::vector< std::complex<double> > refractive_index_;
+    std::vector< std::complex<FloatType> > refractive_index_;
     // Scattering coefficients
-    std::vector<std::complex<double> > an_, bn_;
-    std::vector< std::vector<std::complex<double> > > aln_, bln_, cln_, dln_;
+    std::vector<std::complex<FloatType> > an_, bn_;
+    std::vector< std::vector<std::complex<FloatType> > > aln_, bln_, cln_, dln_;
     void calcExpanCoeffs();
 
   private:
     void calcNstop();
     void calcNmax(unsigned int first_layer);
 
-    std::complex<double> calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
-                                 std::complex<double> PsiXL, std::complex<double> ZetaXL,
-                                 std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1);
-    std::complex<double> calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
-                                 std::complex<double> PsiXL, std::complex<double> ZetaXL,
-                                 std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1);
-    std::complex<double> calc_S1(int n, std::complex<double> an, std::complex<double> bn,
-                                 double Pi, double Tau);
-    std::complex<double> calc_S2(int n, std::complex<double> an, std::complex<double> bn,
-                                 double Pi, double Tau);
-    void calcD1D3(std::complex<double> z,
-                  std::vector<std::complex<double> >& D1,
-                  std::vector<std::complex<double> >& D3);
-    void calcPsiZeta(std::complex<double> x,
-                     std::vector<std::complex<double> >& Psi,
-                     std::vector<std::complex<double> >& Zeta);
-    void calcPiTau(const double& costheta,
-                   std::vector<double>& Pi, std::vector<double>& Tau);
-    void calcSpherHarm(const std::complex<double> Rho, const double Theta, const double Phi,
-                       const std::complex<double>& rn, const std::complex<double>& Dn,
-                       const double& Pi, const double& Tau, const double& n,
-                       std::vector<std::complex<double> >& Mo1n, std::vector<std::complex<double> >& Me1n, 
-                       std::vector<std::complex<double> >& No1n, std::vector<std::complex<double> >& Ne1n);
-
-    void calcField(const double Rho, const double Theta, const double Phi,
-                   std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H);
+    std::complex<FloatType> calc_an(int n, FloatType XL, std::complex<FloatType> Ha, std::complex<FloatType> mL,
+                                 std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL,
+                                 std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1);
+    std::complex<FloatType> calc_bn(int n, FloatType XL, std::complex<FloatType> Hb, std::complex<FloatType> mL,
+                                 std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL,
+                                 std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1);
+    std::complex<FloatType> calc_S1(int n, std::complex<FloatType> an, std::complex<FloatType> bn,
+                                 FloatType Pi, FloatType Tau);
+    std::complex<FloatType> calc_S2(int n, std::complex<FloatType> an, std::complex<FloatType> bn,
+                                 FloatType Pi, FloatType Tau);
+    void calcD1D3(std::complex<FloatType> z,
+                  std::vector<std::complex<FloatType> >& D1,
+                  std::vector<std::complex<FloatType> >& D3);
+    void calcPsiZeta(std::complex<FloatType> x,
+                     std::vector<std::complex<FloatType> >& Psi,
+                     std::vector<std::complex<FloatType> >& Zeta);
+    void calcPiTau(const FloatType& costheta,
+                   std::vector<FloatType>& Pi, std::vector<FloatType>& Tau);
+    void calcSpherHarm(const std::complex<FloatType> Rho, const FloatType Theta, const FloatType Phi,
+                       const std::complex<FloatType>& rn, const std::complex<FloatType>& Dn,
+                       const FloatType& Pi, const FloatType& Tau, const FloatType& n,
+                       std::vector<std::complex<FloatType> >& Mo1n, std::vector<std::complex<FloatType> >& Me1n, 
+                       std::vector<std::complex<FloatType> >& No1n, std::vector<std::complex<FloatType> >& Ne1n);
+
+    void calcField(const FloatType Rho, const FloatType Theta, const FloatType Phi,
+                   std::vector<std::complex<FloatType> >& E, std::vector<std::complex<FloatType> >& H);
 
     bool isExpCoeffsCalc_ = false;
     bool isScaCoeffsCalc_ = false;
     bool isMieCalculated_ = false;
 
     // Scattering angles for scattering pattern in radians
-    std::vector<double> theta_;
+    std::vector<FloatType> theta_;
     // Should be -1 if there is no PEC.
     int PEC_layer_position_ = -1;
 
     // with calcNmax(int first_layer);
     int nmax_ = -1;
     int nmax_preset_ = -1;
-    std::vector< std::vector<double> > coords_;
+    std::vector< std::vector<FloatType> > coords_;
     /// Store result
-    double Qsca_ = 0.0, Qext_ = 0.0, Qabs_ = 0.0, Qbk_ = 0.0, Qpr_ = 0.0, asymmetry_factor_ = 0.0, albedo_ = 0.0;
-    std::vector<std::vector< std::complex<double> > > E_, H_;  // {X[], Y[], Z[]}
-    std::vector<std::complex<double> > S1_, S2_;
+    FloatType Qsca_ = 0.0, Qext_ = 0.0, Qabs_ = 0.0, Qbk_ = 0.0, Qpr_ = 0.0, asymmetry_factor_ = 0.0, albedo_ = 0.0;
+    std::vector<std::vector< std::complex<FloatType> > > E_, H_;  // {X[], Y[], Z[]}
+    std::vector<std::complex<FloatType> > S1_, S2_;
 
 
     //Temporary variables
-    std::vector<std::complex<double> > PsiZeta_;
+    std::vector<std::complex<FloatType> > PsiZeta_;
 
 
   };  // end of class MultiLayerMie

+ 5 - 2
tests/c++/go-speed-test.sh

@@ -9,8 +9,11 @@ rm -f $PROGRAM
 # file=speed-test.cc
 # g++ -Ofast -std=c++11 $file ../../src/nmie.cc  -lm -lrt -o $PROGRAM /usr/lib/libtcmalloc.so.4 -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-free -march=native -mtune=native -msse4.2
 
-file=speed-test-applied.cc
-g++ -Ofast -std=c++11 $file ../../src/nmie.cc ../../src/nmie-applied.cc -lm -lrt -o $PROGRAM /usr/lib/libtcmalloc.so.4 -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-free -march=native -mtune=native -msse4.2
+file=speed-test.cc
+g++ -Ofast -std=c++11 $file ../../src/nmie.cc  -lm -lrt -o $PROGRAM /usr/lib/libtcmalloc_minimal.so.4 -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-free -march=native -mtune=native -msse4.2
+
+#file=speed-test-applied.cc
+# g++ -Ofast -std=c++11 $file ../../src/nmie.cc ../../src/nmie-applied.cc -lm -lrt -o $PROGRAM /usr/lib/libtcmalloc_minimal.so.4 -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-free -march=native -mtune=native -msse4.2
 
 echo Should be:
 echo test01, +1.41154e+00, +4.17695e-01, +9.93844e-01, +1.59427e-01, +1.25809e+00, +3.67376e-01, +2.95915e-01

+ 1 - 1
tests/c++/speed-test-applied.cc

@@ -38,7 +38,7 @@
 #include <string.h>
 //sudo aptitude install libgoogle-perftools-dev
 //#include <google/heap-profiler.h>
-#include "../../src/nmie-applied.h"
+#include "../../src/nmie-applied.hpp"
 
 timespec diff(timespec start, timespec end);
 const double PI=3.14159265358979323846;

+ 4 - 3
tests/c++/speed-test.cc

@@ -1,6 +1,6 @@
 //**********************************************************************************//
-//    Copyright (C) 2009-2015  Ovidio Pena <ovidio@bytesfall.com>                   //
-//    Copyright (C) 2013-2015  Konstantin Ladutenko <kostyfisik@gmail.com>          //
+//    Copyright (C) 2009-2016  Ovidio Pena <ovidio@bytesfall.com>                   //
+//    Copyright (C) 2013-2016  Konstantin Ladutenko <kostyfisik@gmail.com>          //
 //                                                                                  //
 //    This file is part of scattnlay                                                //
 //                                                                                  //
@@ -38,7 +38,8 @@
 #include <string.h>
 //sudo aptitude install libgoogle-perftools-dev
 //#include <google/heap-profiler.h>
-#include "../../src/nmie.h"
+#include "../../src/nmie.hpp"
+#include "../../src/nmie-impl.hpp"
 
 timespec diff(timespec start, timespec end);
 const double PI=3.14159265358979323846;