|
@@ -87,104 +87,248 @@ int Nmax(int L, int fl, int pl,
|
|
|
}
|
|
|
|
|
|
//**********************************************************************************//
|
|
|
-<<<<<<< HEAD
|
|
|
-// This function calculates the spherical Bessel functions (jn and yn) for a given //
|
|
|
-// real value r. See pag. 87 B&H. //
|
|
|
+// This function calculates the spherical Bessel (jn) and Hankel (h1n) functions //
|
|
|
+// and their derivatives for a given complex value z. See pag. 87 B&H. //
|
|
|
// //
|
|
|
// Input parameters: //
|
|
|
-// r: Real argument to evaluate jn and yn //
|
|
|
-// n_max: Maximum number of terms to calculate jn and yn //
|
|
|
+// z: Real argument to evaluate jn and h1n //
|
|
|
+// nmax: Maximum number of terms to calculate jn and h1n //
|
|
|
// //
|
|
|
// Output parameters: //
|
|
|
-// jn, yn: Spherical Bessel functions (double) //
|
|
|
+// jn, h1n: Spherical Bessel and Hankel functions //
|
|
|
+// jnp, h1np: Derivatives of the spherical Bessel and Hankel functions //
|
|
|
+// //
|
|
|
+// The implementation follows the algorithm by I.J. Thompson and A.R. Barnett, //
|
|
|
+// Comp. Phys. Comm. 47 (1987) 245-257. //
|
|
|
+// //
|
|
|
+// Complex spherical Bessel functions from n=0..nmax-1 for z in the upper half //
|
|
|
+// plane (Im(z) > -3). //
|
|
|
+// //
|
|
|
+// j[n] = j/n(z) Regular solution: j[0]=sin(z)/z //
|
|
|
+// j'[n] = d[j/n(z)]/dz //
|
|
|
+// h1[n] = h[0]/n(z) Irregular Hankel function: //
|
|
|
+// h1'[n] = d[h[0]/n(z)]/dz h1[0] = j0(z) + i*y0(z) //
|
|
|
+// = (sin(z)-i*cos(z))/z //
|
|
|
+// = -i*exp(i*z)/z //
|
|
|
+// Using complex CF1, and trigonometric forms for n=0 solutions. //
|
|
|
//**********************************************************************************//
|
|
|
-void sphericalBessel(double r, int n_max, std::vector<double> &j, std::vector<double> &y) {
|
|
|
+int sbesjh(std::complex<double> z, int nmax, std::vector<std::complex<double> >& jn, std::vector<std::complex<double> >& jnp, std::vector<std::complex<double> >& h1n, std::vector<std::complex<double> >& h1np) {
|
|
|
+
|
|
|
+ const int limit = 20000;
|
|
|
+ double const accur = 1.0e-12;
|
|
|
+ double const tm30 = 1e-30;
|
|
|
+
|
|
|
int n;
|
|
|
+ double absc;
|
|
|
+ std::complex<double> zi, w;
|
|
|
+ std::complex<double> pl, f, b, d, c, del, jn0, xdb, h1nldb, h1nbdb;
|
|
|
+
|
|
|
+ absc = std::abs(std::real(z)) + std::abs(std::imag(z));
|
|
|
+ if ((absc < accur) || (std::imag(z) < -3.0)) {
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ zi = 1.0/z;
|
|
|
+ w = zi + zi;
|
|
|
+
|
|
|
+ pl = double(nmax)*zi;
|
|
|
+
|
|
|
+ f = pl + zi;
|
|
|
+ b = f + f + zi;
|
|
|
+ d = 0.0;
|
|
|
+ c = f;
|
|
|
+ for (n = 0; n < limit; n++) {
|
|
|
+ d = b - d;
|
|
|
+ c = b - 1.0/c;
|
|
|
+
|
|
|
+ absc = std::abs(std::real(d)) + std::abs(std::imag(d));
|
|
|
+ if (absc < tm30) {
|
|
|
+ d = tm30;
|
|
|
+ }
|
|
|
+
|
|
|
+ absc = std::abs(std::real(c)) + std::abs(std::imag(c));
|
|
|
+ if (absc < tm30) {
|
|
|
+ c = tm30;
|
|
|
+ }
|
|
|
+
|
|
|
+ d = 1.0/d;
|
|
|
+ del = d*c;
|
|
|
+ f = f*del;
|
|
|
+ b += w;
|
|
|
+
|
|
|
+ absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
|
|
|
|
|
|
- if (n_max >= 1) {
|
|
|
- j[0] = sin(r)/r;
|
|
|
- y[0] = -cos(r)/r;
|
|
|
+ if (absc < accur) {
|
|
|
+ // We have obtained the desired accuracy
|
|
|
+ break;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- if (n_max >= 2) {
|
|
|
- j[1] = sin(r)/r/r - cos(r)/r;
|
|
|
- y[1] = -cos(r)/r/r - sin(r)/r;
|
|
|
+ if (absc > accur) {
|
|
|
+ // We were not able to obtain the desired accuracy
|
|
|
+ return -2;
|
|
|
}
|
|
|
|
|
|
- for (n = 2; n < n_max; n++) {
|
|
|
- j[n] = double(n + n + 1)*j[n - 1]/r - j[n - 2];
|
|
|
- y[n] = double(n + n + 1)*y[n - 1]/r - h[n - 2];
|
|
|
-=======
|
|
|
-// This function calculates the spherical Bessel functions (jn and hn) for a given //
|
|
|
-// value of z. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// z: Real argument to evaluate jn and hn //
|
|
|
-// n_max: Maximum number of terms to calculate jn and hn //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// jn, hn: Spherical Bessel functions (complex) //
|
|
|
-//**********************************************************************************//
|
|
|
-void sphericalBessel(std::complex<double> r, int n_max, std::vector<std::complex<double> > &j, std::vector<std::complex<double> > &h) {
|
|
|
- int n;
|
|
|
+ jn[nmax - 1] = tm30;
|
|
|
+ jnp[nmax - 1] = f*jn[nmax - 1];
|
|
|
|
|
|
- j[0] = sin(r)/r;
|
|
|
- j[1] = sin(r)/r/r - cos(r)/r;
|
|
|
- h[0] = -cos(r)/r;
|
|
|
- h[1] = -cos(r)/r/r - sin(r)/r;
|
|
|
- for (n = 2; n < n_max; n++) {
|
|
|
- j[n] = double(n + n + 1)*j[n - 1]/r - j[n - 2];
|
|
|
- h[n] = double(n + n + 1)*h[n - 1]/r - h[n - 2];
|
|
|
->>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
|
|
|
+ // Downward recursion to n=0 (N.B. Coulomb Functions)
|
|
|
+ for (n = nmax - 2; n >= 0; n--) {
|
|
|
+ jn[n] = pl*jn[n + 1] + jnp[n + 1];
|
|
|
+ jnp[n] = pl*jn[n] - jn[n + 1];
|
|
|
+ pl = pl - zi;
|
|
|
}
|
|
|
+
|
|
|
+ // Calculate the n=0 Bessel Functions
|
|
|
+ jn0 = zi*std::sin(z);
|
|
|
+ h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
|
|
|
+ h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
|
|
|
+
|
|
|
+ // Rescale j[n], j'[n], converting to spherical Bessel functions.
|
|
|
+ // Recur h1[n], h1'[n] as spherical Bessel functions.
|
|
|
+ w = 1.0/jn[0];
|
|
|
+ pl = zi;
|
|
|
+ for (n = 0; n < nmax; n++) {
|
|
|
+ jn[n] = jn0*(w*jn[n]);
|
|
|
+ jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
|
|
|
+ if (n != 0) {
|
|
|
+ h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
|
|
|
+
|
|
|
+ // check if hankel is increasing (upward stable)
|
|
|
+ if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
|
|
|
+ xdb = z;
|
|
|
+ h1nldb = h1n[n];
|
|
|
+ h1nbdb = h1n[n - 1];
|
|
|
+ }
|
|
|
+
|
|
|
+ pl += zi;
|
|
|
+
|
|
|
+ h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // success
|
|
|
+ return 0;
|
|
|
}
|
|
|
|
|
|
//**********************************************************************************//
|
|
|
-<<<<<<< HEAD
|
|
|
-// This function calculates the spherical Hankel functions (h1n and h2n) for a //
|
|
|
-// given real value r. See eqs. (4.13) and (4.14), pag. 87 B&H. //
|
|
|
+// This function calculates the spherical Bessel functions (bj and by) and the //
|
|
|
+// logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H. //
|
|
|
// //
|
|
|
// Input parameters: //
|
|
|
-// r: Real argument to evaluate h1n and h2n //
|
|
|
-// n_max: Maximum number of terms to calculate h1n and h2n //
|
|
|
+// z: Complex argument to evaluate bj, by and bd //
|
|
|
+// nmax: Maximum number of terms to calculate bj, by and bd //
|
|
|
// //
|
|
|
// Output parameters: //
|
|
|
-// h1n, h2n: Spherical Hankel functions (complex) //
|
|
|
+// bj, by: Spherical Bessel functions //
|
|
|
+// bd: Logarithmic derivative //
|
|
|
//**********************************************************************************//
|
|
|
-void sphericalHankel(double r, int n_max, std::vector<std::complex<double> > &h1, std::vector<std::complex<double> > &h2) {
|
|
|
-=======
|
|
|
-// This function calculates the spherical Bessel functions (jn and hn) for a given //
|
|
|
-// value of r. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// r: Real argument to evaluate jn and hn //
|
|
|
-// n_max: Maximum number of terms to calculate jn and hn //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// jn, hn: Spherical Bessel functions (double) //
|
|
|
-//**********************************************************************************//
|
|
|
-void sphericalBessel(double r, int n_max, std::vector<double> &j, std::vector<double> &h) {
|
|
|
->>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
|
|
|
- int n;
|
|
|
- std::complex<double> j, y;
|
|
|
- j.resize(n_max);
|
|
|
- h.resize(n_max);
|
|
|
-
|
|
|
-<<<<<<< HEAD
|
|
|
- sphericalBessel(r, n_max, j, y);
|
|
|
-
|
|
|
- for (n = 0; n < n_max; n++) {
|
|
|
- h1[n] = std::complex<double> (j[n], y[n]);
|
|
|
- h2[n] = std::complex<double> (j[n], -y[n]);
|
|
|
-=======
|
|
|
- j[0] = sin(r)/r;
|
|
|
- j[1] = sin(r)/r/r - cos(r)/r;
|
|
|
- h[0] = -cos(r)/r;
|
|
|
- h[1] = -cos(r)/r/r - sin(r)/r;
|
|
|
- for (n = 2; n < n_max; n++) {
|
|
|
- j[n] = double(n + n + 1)*j[n - 1]/r - j[n - 2];
|
|
|
- h[n] = double(n + n + 1)*h[n - 1]/r - h[n - 2];
|
|
|
->>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
|
|
|
+void sphericalBessel(std::complex<double> z, int nmax, std::vector<double>& bj, std::vector<double>& by, std::vector<double>& bd) {
|
|
|
+
|
|
|
+ std::vector<std::complex<double> > jn, jnp, h1n, h1np;
|
|
|
+ jn.resize(nmax);
|
|
|
+ jnp.resize(nmax);
|
|
|
+ h1n.resize(nmax);
|
|
|
+ h1np.resize(nmax);
|
|
|
+
|
|
|
+ int ifail = sbesjh(z, nmax, jn, jnp, h1n, h1np);
|
|
|
+
|
|
|
+ for (int n = 0; n < nmax; n++) {
|
|
|
+ bj[n] = jn[n];
|
|
|
+ by[n] = (h1n[n] - jn[n])/std::complex<double>(0.0, 1.0);
|
|
|
+ bd[n] = jnp[n]/jn[n] + 1.0/z;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// external scattering field = incident + scattered
|
|
|
+// BH p.92 (4.37), 94 (4.45), 95 (4.50)
|
|
|
+// assume: medium is non-absorbing; refim = 0; Uabs = 0
|
|
|
+int fieldExt(int nmax, double Rho, double Phi, double Theta, std::vector<double> Pi, std::vector<double> Tau,
|
|
|
+ std::vector<std::complex<double> > an, std::vector<std::complex<double> > bn,
|
|
|
+ std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
|
|
|
+
|
|
|
+ int i, n;
|
|
|
+ double rn = 0.0;
|
|
|
+ std::complex<double> zn, xxip, encap;
|
|
|
+ std::vector<std::complex<double> > vm3o1n, vm3e1n, vn3o1n, vn3e1n;
|
|
|
+ vm3o1n.resize(3);
|
|
|
+ vm3e1n.resize(3);
|
|
|
+ vn3o1n.resize(3);
|
|
|
+ vn3e1n.resize(3);
|
|
|
+
|
|
|
+ std::vector<std::complex<double> > Ei, Hi, Es, Hs;
|
|
|
+ Ei.resize(3);
|
|
|
+ Hi.resize(3);
|
|
|
+ Es.resize(3);
|
|
|
+ Hs.resize(3);
|
|
|
+ for (i = 0; i < 3; i++) {
|
|
|
+ Ei[i] = std::complex<double>(0.0, 0.0);
|
|
|
+ Hi[i] = std::complex<double>(0.0, 0.0);
|
|
|
+ Es[i] = std::complex<double>(0.0, 0.0);
|
|
|
+ Hs[i] = std::complex<double>(0.0, 0.0);
|
|
|
+ }
|
|
|
+
|
|
|
+ std::vector<std::complex<double> > bj, by, bd;
|
|
|
+ bj.resize(nmax);
|
|
|
+ by.resize(nmax);
|
|
|
+ bd.resize(nmax);
|
|
|
+
|
|
|
+ // Calculate spherical Bessel and Hankel functions
|
|
|
+ sphericalBessel(Rho, nmax, bj, by, bd);
|
|
|
+
|
|
|
+ for (n = 0; n < nmax; n++) {
|
|
|
+ rn = double(n + 1);
|
|
|
+
|
|
|
+ zn = bj[n] + std::complex<double>(0.0, 1.0)*by[n];
|
|
|
+ xxip = Rho*(bj[n] + std::complex<double>(0.0, 1.0)*by[n]) - rn*zn;
|
|
|
+
|
|
|
+ vm3o1n[0] = std::complex<double>(0.0, 0.0);
|
|
|
+ vm3o1n[1] = std::cos(Phi)*Pi[n]*zn;
|
|
|
+ vm3o1n[2] = -(std::sin(Phi)*Tau[n]*zn);
|
|
|
+ vm3e1n[0] = std::complex<double>(0.0, 0.0);
|
|
|
+ vm3e1n[1] = -(std::sin(Phi)*Pi[n]*zn);
|
|
|
+ vm3e1n[2] = -(std::cos(Phi)*Tau[n]*zn);
|
|
|
+ vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
|
|
|
+ vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho;
|
|
|
+ vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho;
|
|
|
+ vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
|
|
|
+ vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho;
|
|
|
+ vn3e1n[2] = -(std::sin(Phi)*Pi[n]*xxip/Rho);
|
|
|
+
|
|
|
+ // scattered field: BH p.94 (4.45)
|
|
|
+ encap = std::pow(std::complex<double>(0.0, 1.0), rn)*(2.0*rn + 1.0)/(rn*(rn + 1.0));
|
|
|
+ for (i = 0; i < 3; i++) {
|
|
|
+ Es[i] = Es[i] + encap*(std::complex<double>(0.0, 1.0)*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]);
|
|
|
+ Hs[i] = Hs[i] + encap*(std::complex<double>(0.0, 1.0)*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
|
|
|
+ // basis unit vectors = er, etheta, ephi
|
|
|
+ std::complex<double> eifac = std::exp(std::complex<double>(0.0, 1.0)*Rho*std::cos(Theta));
|
|
|
+
|
|
|
+ Ei[0] = eifac*std::sin(Theta)*std::cos(Phi);
|
|
|
+ Ei[1] = eifac*std::cos(Theta)*std::cos(Phi);
|
|
|
+ Ei[2] = -(eifac*std::sin(Phi));
|
|
|
+
|
|
|
+ // magnetic field
|
|
|
+ std::complex<double> hffact = std::complex<double>(refmed, 0.0)/(cc*mu);
|
|
|
+ for (i = 0; i < 3; i++) {
|
|
|
+ Hs[i] = hffact*Hs[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ // incident H field: BH p.26 (2.43), p.89 (4.21)
|
|
|
+ std::complex<double> hffacta = hffact;
|
|
|
+ std::complex<double> hifac = eifac*hffacta;
|
|
|
+
|
|
|
+ Hi[0] = hifac*std::sin(Theta)*std::sin(Phi);
|
|
|
+ Hi[1] = hifac*std::cos(Theta)*std::sin(Phi);
|
|
|
+ Hi[2] = hifac*std::cos(Phi);
|
|
|
+
|
|
|
+ for (i = 0; i < 3; i++) {
|
|
|
+ // electric field E [V m-1] = EF*E0
|
|
|
+ E[i] = Ei[i] + Es[i];
|
|
|
+ H[i] = Hi[i] + Hs[i];
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -232,23 +376,23 @@ std::complex<double> calc_S2(int n, std::complex<double> an, std::complex<double
|
|
|
// //
|
|
|
// Input parameters: //
|
|
|
// x: Real argument to evaluate Psi and Zeta //
|
|
|
-// n_max: Maximum number of terms to calculate Psi and Zeta //
|
|
|
+// nmax: Maximum number of terms to calculate Psi and Zeta //
|
|
|
// //
|
|
|
// Output parameters: //
|
|
|
// Psi, Zeta: Riccati-Bessel functions //
|
|
|
//**********************************************************************************//
|
|
|
-void calcPsiZeta(double x, int n_max,
|
|
|
+void calcPsiZeta(double x, int nmax,
|
|
|
std::vector<std::complex<double> > D1,
|
|
|
std::vector<std::complex<double> > D3,
|
|
|
- std::vector<std::complex<double> > &Psi,
|
|
|
- std::vector<std::complex<double> > &Zeta) {
|
|
|
+ std::vector<std::complex<double> >& Psi,
|
|
|
+ std::vector<std::complex<double> >& Zeta) {
|
|
|
|
|
|
int n;
|
|
|
|
|
|
//Upward recurrence for Psi and Zeta - equations (20a) - (21b)
|
|
|
Psi[0] = std::complex<double>(sin(x), 0);
|
|
|
Zeta[0] = std::complex<double>(sin(x), -cos(x));
|
|
|
- for (n = 1; n <= n_max; n++) {
|
|
|
+ for (n = 1; n <= nmax; n++) {
|
|
|
Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
|
|
|
Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
|
|
|
}
|
|
@@ -261,29 +405,29 @@ void calcPsiZeta(double x, int n_max,
|
|
|
// //
|
|
|
// Input parameters: //
|
|
|
// z: Complex argument to evaluate D1 and D3 //
|
|
|
-// n_max: Maximum number of terms to calculate D1 and D3 //
|
|
|
+// nmax: Maximum number of terms to calculate D1 and D3 //
|
|
|
// //
|
|
|
// Output parameters: //
|
|
|
// D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
|
|
|
//**********************************************************************************//
|
|
|
-void calcD1D3(std::complex<double> z, int n_max,
|
|
|
- std::vector<std::complex<double> > &D1,
|
|
|
- std::vector<std::complex<double> > &D3) {
|
|
|
+void calcD1D3(std::complex<double> z, int nmax,
|
|
|
+ std::vector<std::complex<double> >& D1,
|
|
|
+ std::vector<std::complex<double> >& D3) {
|
|
|
|
|
|
int n;
|
|
|
std::vector<std::complex<double> > PsiZeta;
|
|
|
- PsiZeta.resize(n_max + 1);
|
|
|
+ PsiZeta.resize(nmax + 1);
|
|
|
|
|
|
// Downward recurrence for D1 - equations (16a) and (16b)
|
|
|
- D1[n_max] = std::complex<double>(0.0, 0.0);
|
|
|
- for (n = n_max; n > 0; n--) {
|
|
|
+ D1[nmax] = std::complex<double>(0.0, 0.0);
|
|
|
+ for (n = nmax; n > 0; n--) {
|
|
|
D1[n - 1] = double(n)/z - 1.0/(D1[n] + double(n)/z);
|
|
|
}
|
|
|
|
|
|
// Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
|
|
|
PsiZeta[0] = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
|
|
|
D3[0] = std::complex<double>(0.0, 1.0);
|
|
|
- for (n = 1; n <= n_max; n++) {
|
|
|
+ for (n = 1; n <= nmax; n++) {
|
|
|
PsiZeta[n] = PsiZeta[n - 1]*(double(n)/z - D1[n - 1])*(double(n)/z- D3[n - 1]);
|
|
|
D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta[n];
|
|
|
}
|
|
@@ -294,7 +438,7 @@ void calcD1D3(std::complex<double> z, int n_max,
|
|
|
// Equations (26a) - (26c) //
|
|
|
// //
|
|
|
// Input parameters: //
|
|
|
-// n_max: Maximum number of terms to calculate Pi and Tau //
|
|
|
+// nmax: Maximum number of terms to calculate Pi and Tau //
|
|
|
// nTheta: Number of scattering angles //
|
|
|
// Theta: Array containing all the scattering angles where the scattering //
|
|
|
// amplitudes will be calculated //
|
|
@@ -302,25 +446,25 @@ void calcD1D3(std::complex<double> z, int n_max,
|
|
|
// Output parameters: //
|
|
|
// Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
|
|
|
//**********************************************************************************//
|
|
|
-void calcPiTau(int n_max, int nTheta, std::vector<double> Theta,
|
|
|
- std::vector< std::vector<double> > &Pi,
|
|
|
- std::vector< std::vector<double> > &Tau) {
|
|
|
+void calcPiTau(int nmax, int nTheta, std::vector<double> Theta,
|
|
|
+ std::vector< std::vector<double> >& Pi,
|
|
|
+ std::vector< std::vector<double> >& Tau) {
|
|
|
|
|
|
int n, t;
|
|
|
- for (n = 0; n < n_max; n++) {
|
|
|
- //****************************************************//
|
|
|
- // Equations (26a) - (26c) //
|
|
|
- //****************************************************//
|
|
|
- for (t = 0; t < nTheta; t++) {
|
|
|
+ //****************************************************//
|
|
|
+ // Equations (26a) - (26c) //
|
|
|
+ //****************************************************//
|
|
|
+ for (t = 0; t < nTheta; t++) {
|
|
|
+ for (n = 0; n < nmax; n++) {
|
|
|
if (n == 0) {
|
|
|
// Initialize Pi and Tau
|
|
|
- Pi[n][t] = 1.0;
|
|
|
- Tau[n][t] = (n + 1)*cos(Theta[t]);
|
|
|
+ Pi[t][n] = 1.0;
|
|
|
+ Tau[t][n] = (n + 1)*cos(Theta[t]);
|
|
|
} else {
|
|
|
// Calculate the actual values
|
|
|
- Pi[n][t] = ((n == 1) ? ((n + n + 1)*cos(Theta[t])*Pi[n - 1][t]/n)
|
|
|
- : (((n + n + 1)*cos(Theta[t])*Pi[n - 1][t] - (n + 1)*Pi[n - 2][t])/n));
|
|
|
- Tau[n][t] = (n + 1)*cos(Theta[t])*Pi[n][t] - (n + 2)*Pi[n - 1][t];
|
|
|
+ Pi[t][n] = ((n == 1) ? ((n + n + 1)*cos(Theta[t])*Pi[t][n - 1]/n)
|
|
|
+ : (((n + n + 1)*cos(Theta[t])*Pi[t][n - 1] - (n + 1)*Pi[t][n - 2])/n));
|
|
|
+ Tau[t][n] = (n + 1)*cos(Theta[t])*Pi[t][n] - (n + 2)*Pi[t][n - 1];
|
|
|
}
|
|
|
}
|
|
|
}
|
|
@@ -335,7 +479,7 @@ void calcPiTau(int n_max, int nTheta, std::vector<double> Theta,
|
|
|
// pl: Index of PEC layer. If there is none just send -1 //
|
|
|
// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// n_max: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
// calculations. Only used if you know what you are doing, otherwise set //
|
|
|
// this parameter to -1 and the function will calculate it. //
|
|
|
// //
|
|
@@ -345,8 +489,8 @@ void calcPiTau(int n_max, int nTheta, std::vector<double> Theta,
|
|
|
// Return value: //
|
|
|
// Number of multipolar expansion terms used for the calculations //
|
|
|
//**********************************************************************************//
|
|
|
-int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int n_max,
|
|
|
- std::vector<std::complex<double> > &an, std::vector<std::complex<double> > &bn) {
|
|
|
+int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
|
|
|
+ std::vector<std::complex<double> >& an, std::vector<std::complex<double> >& bn) {
|
|
|
//************************************************************************//
|
|
|
// Calculate the index of the first layer. It can be either 0 (default) //
|
|
|
// or the index of the outermost PEC layer. In the latter case all layers //
|
|
@@ -355,8 +499,8 @@ int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<d
|
|
|
|
|
|
int fl = (pl > 0) ? pl : 0;
|
|
|
|
|
|
- if (n_max <= 0) {
|
|
|
- n_max = Nmax(L, fl, pl, x, m);
|
|
|
+ if (nmax <= 0) {
|
|
|
+ nmax = Nmax(L, fl, pl, x, m);
|
|
|
}
|
|
|
|
|
|
std::complex<double> z1, z2;
|
|
@@ -391,35 +535,35 @@ int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<d
|
|
|
Hb.resize(L);
|
|
|
|
|
|
for (l = 0; l < L; l++) {
|
|
|
- D1_mlxl[l].resize(n_max + 1);
|
|
|
- D1_mlxlM1[l].resize(n_max + 1);
|
|
|
+ D1_mlxl[l].resize(nmax + 1);
|
|
|
+ D1_mlxlM1[l].resize(nmax + 1);
|
|
|
|
|
|
- D3_mlxl[l].resize(n_max + 1);
|
|
|
- D3_mlxlM1[l].resize(n_max + 1);
|
|
|
+ D3_mlxl[l].resize(nmax + 1);
|
|
|
+ D3_mlxlM1[l].resize(nmax + 1);
|
|
|
|
|
|
- Q[l].resize(n_max + 1);
|
|
|
+ Q[l].resize(nmax + 1);
|
|
|
|
|
|
- Ha[l].resize(n_max);
|
|
|
- Hb[l].resize(n_max);
|
|
|
+ Ha[l].resize(nmax);
|
|
|
+ Hb[l].resize(nmax);
|
|
|
}
|
|
|
|
|
|
- an.resize(n_max);
|
|
|
- bn.resize(n_max);
|
|
|
+ an.resize(nmax);
|
|
|
+ bn.resize(nmax);
|
|
|
|
|
|
std::vector<std::complex<double> > D1XL, D3XL;
|
|
|
- D1XL.resize(n_max + 1);
|
|
|
- D3XL.resize(n_max + 1);
|
|
|
+ D1XL.resize(nmax + 1);
|
|
|
+ D3XL.resize(nmax + 1);
|
|
|
|
|
|
|
|
|
std::vector<std::complex<double> > PsiXL, ZetaXL;
|
|
|
- PsiXL.resize(n_max + 1);
|
|
|
- ZetaXL.resize(n_max + 1);
|
|
|
+ PsiXL.resize(nmax + 1);
|
|
|
+ ZetaXL.resize(nmax + 1);
|
|
|
|
|
|
//*************************************************//
|
|
|
// Calculate D1 and D3 for z1 in the first layer //
|
|
|
//*************************************************//
|
|
|
if (fl == pl) { // PEC layer
|
|
|
- for (n = 0; n <= n_max; n++) {
|
|
|
+ for (n = 0; n <= nmax; n++) {
|
|
|
D1_mlxl[fl][n] = std::complex<double>(0.0, -1.0);
|
|
|
D3_mlxl[fl][n] = std::complex<double>(0.0, 1.0);
|
|
|
}
|
|
@@ -427,13 +571,13 @@ int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<d
|
|
|
z1 = x[fl]* m[fl];
|
|
|
|
|
|
// Calculate D1 and D3
|
|
|
- calcD1D3(z1, n_max, D1_mlxl[fl], D3_mlxl[fl]);
|
|
|
+ calcD1D3(z1, nmax, D1_mlxl[fl], D3_mlxl[fl]);
|
|
|
}
|
|
|
|
|
|
//******************************************************************//
|
|
|
// Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
|
|
|
//******************************************************************//
|
|
|
- for (n = 0; n < n_max; n++) {
|
|
|
+ for (n = 0; n < nmax; n++) {
|
|
|
Ha[fl][n] = D1_mlxl[fl][n + 1];
|
|
|
Hb[fl][n] = D1_mlxl[fl][n + 1];
|
|
|
}
|
|
@@ -449,10 +593,10 @@ int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<d
|
|
|
z2 = x[l - 1]*m[l];
|
|
|
|
|
|
//Calculate D1 and D3 for z1
|
|
|
- calcD1D3(z1, n_max, D1_mlxl[l], D3_mlxl[l]);
|
|
|
+ calcD1D3(z1, nmax, D1_mlxl[l], D3_mlxl[l]);
|
|
|
|
|
|
//Calculate D1 and D3 for z2
|
|
|
- calcD1D3(z2, n_max, D1_mlxlM1[l], D3_mlxlM1[l]);
|
|
|
+ calcD1D3(z2, nmax, D1_mlxlM1[l], D3_mlxlM1[l]);
|
|
|
|
|
|
//*********************************************//
|
|
|
//Calculate Q, Ha and Hb in the layers fl+1..L //
|
|
@@ -463,7 +607,7 @@ int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<d
|
|
|
Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
|
|
|
Q[l][0] = Num/Denom;
|
|
|
|
|
|
- for (n = 1; n <= n_max; n++) {
|
|
|
+ for (n = 1; n <= nmax; n++) {
|
|
|
Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]);
|
|
|
Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]);
|
|
|
|
|
@@ -471,7 +615,7 @@ int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<d
|
|
|
}
|
|
|
|
|
|
// Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
|
|
|
- for (n = 1; n <= n_max; n++) {
|
|
|
+ for (n = 1; n <= nmax; n++) {
|
|
|
//Ha
|
|
|
if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
G1 = -D1_mlxlM1[l][n];
|
|
@@ -511,10 +655,10 @@ int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<d
|
|
|
//**************************************//
|
|
|
|
|
|
// Calculate D1XL and D3XL
|
|
|
- calcD1D3(x[L - 1], n_max, D1XL, D3XL);
|
|
|
+ calcD1D3(x[L - 1], nmax, D1XL, D3XL);
|
|
|
|
|
|
// Calculate PsiXL and ZetaXL
|
|
|
- calcPsiZeta(x[L - 1], n_max, D1XL, D3XL, PsiXL, ZetaXL);
|
|
|
+ calcPsiZeta(x[L - 1], nmax, D1XL, D3XL, PsiXL, ZetaXL);
|
|
|
|
|
|
//*********************************************************************//
|
|
|
// Finally, we calculate the scattering coefficients (an and bn) and //
|
|
@@ -522,7 +666,7 @@ int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<d
|
|
|
// first layer is 0 (zero), in future versions all arrays will follow //
|
|
|
// this convention to save memory. (13 Nov, 2014) //
|
|
|
//*********************************************************************//
|
|
|
- for (n = 0; n < n_max; n++) {
|
|
|
+ for (n = 0; n < nmax; n++) {
|
|
|
//********************************************************************//
|
|
|
//Expressions for calculating an and bn coefficients are not valid if //
|
|
|
//there is only one PEC layer (ie, for a simple PEC sphere). //
|
|
@@ -536,7 +680,7 @@ int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<d
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- return n_max;
|
|
|
+ return nmax;
|
|
|
}
|
|
|
|
|
|
//**********************************************************************************//
|
|
@@ -550,7 +694,7 @@ int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<d
|
|
|
// nTheta: Number of scattering angles //
|
|
|
// Theta: Array containing all the scattering angles where the scattering //
|
|
|
// amplitudes will be calculated //
|
|
|
-// n_max: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
// calculations. Only used if you know what you are doing, otherwise set //
|
|
|
// this parameter to -1 and the function will calculate it //
|
|
|
// //
|
|
@@ -569,27 +713,26 @@ int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<d
|
|
|
//**********************************************************************************//
|
|
|
|
|
|
int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
- int nTheta, std::vector<double> Theta, int n_max,
|
|
|
+ int nTheta, std::vector<double> Theta, int nmax,
|
|
|
double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
- std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
|
|
|
+ std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
|
|
|
int i, n, t;
|
|
|
std::vector<std::complex<double> > an, bn;
|
|
|
std::complex<double> Qbktmp;
|
|
|
|
|
|
// Calculate scattering coefficients
|
|
|
- n_max = ScattCoeffs(L, pl, x, m, n_max, an, bn);
|
|
|
-
|
|
|
- std::vector< std::vector<double> > Pi;
|
|
|
- Pi.resize(n_max);
|
|
|
- std::vector< std::vector<double> > Tau;
|
|
|
- Tau.resize(n_max);
|
|
|
- for (n = 0; n < n_max; n++) {
|
|
|
- Pi[n].resize(nTheta);
|
|
|
- Tau[n].resize(nTheta);
|
|
|
+ nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn);
|
|
|
+
|
|
|
+ std::vector< std::vector<double> > Pi, Tau;
|
|
|
+ Pi.resize(nTheta);
|
|
|
+ Tau.resize(nTheta);
|
|
|
+ for (t = 0; t < nTheta; t++) {
|
|
|
+ Pi[t].resize(nmax);
|
|
|
+ Tau[t].resize(nmax);
|
|
|
}
|
|
|
|
|
|
- calcPiTau(n_max, nTheta, Theta, Pi, Tau);
|
|
|
+ calcPiTau(nmax, nTheta, Theta, Pi, Tau);
|
|
|
|
|
|
double x2 = x[L - 1]*x[L - 1];
|
|
|
|
|
@@ -612,7 +755,7 @@ int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double>
|
|
|
// By using downward recurrence we avoid loss of precision due to float rounding errors
|
|
|
// See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
|
|
|
// http://en.wikipedia.org/wiki/Loss_of_significance
|
|
|
- for (i = n_max - 2; i >= 0; i--) {
|
|
|
+ for (i = nmax - 2; i >= 0; i--) {
|
|
|
n = i + 1;
|
|
|
// Equation (27)
|
|
|
*Qext += (n + n + 1)*(an[i].real() + bn[i].real());
|
|
@@ -629,8 +772,8 @@ int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double>
|
|
|
// Equations (25a) - (25b) //
|
|
|
//****************************************************//
|
|
|
for (t = 0; t < nTheta; t++) {
|
|
|
- S1[t] += calc_S1(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
|
|
|
- S2[t] += calc_S2(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
|
|
|
+ S1[t] += calc_S1(n, an[i], bn[i], Pi[t][i], Tau[t][i]);
|
|
|
+ S2[t] += calc_S2(n, an[i], bn[i], Pi[t][i], Tau[t][i]);
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -644,7 +787,7 @@ int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double>
|
|
|
|
|
|
*Qbk = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
|
|
|
|
|
|
- return n_max;
|
|
|
+ return nmax;
|
|
|
}
|
|
|
|
|
|
//**********************************************************************************//
|
|
@@ -678,7 +821,7 @@ int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double>
|
|
|
int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
int nTheta, std::vector<double> Theta,
|
|
|
double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
- std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
|
|
|
+ std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
|
|
|
return nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
}
|
|
@@ -715,7 +858,7 @@ int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
int nTheta, std::vector<double> Theta,
|
|
|
double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
- std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
|
|
|
+ std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
|
|
|
return nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
}
|
|
@@ -732,7 +875,7 @@ int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double>
|
|
|
// nTheta: Number of scattering angles //
|
|
|
// Theta: Array containing all the scattering angles where the scattering //
|
|
|
// amplitudes will be calculated //
|
|
|
-// n_max: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
// calculations. Only used if you know what you are doing, otherwise set //
|
|
|
// this parameter to -1 and the function will calculate it //
|
|
|
// //
|
|
@@ -751,11 +894,11 @@ int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double>
|
|
|
//**********************************************************************************//
|
|
|
|
|
|
int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
- int nTheta, std::vector<double> Theta, int n_max,
|
|
|
+ int nTheta, std::vector<double> Theta, int nmax,
|
|
|
double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
- std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
|
|
|
+ std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
|
|
|
- return nMie(L, -1, x, m, nTheta, Theta, n_max, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
+ return nMie(L, -1, x, m, nTheta, Theta, nmax, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
}
|
|
|
|
|
|
|
|
@@ -768,10 +911,10 @@ int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
// pl: Index of PEC layer. If there is none just send 0 (zero) //
|
|
|
// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// n_max: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
// calculations. Only used if you know what you are doing, otherwise set //
|
|
|
// this parameter to 0 (zero) and the function will calculate it. //
|
|
|
-// nCoords: Number of coordinate points //
|
|
|
+// ncoord: Number of coordinate points //
|
|
|
// Coords: Array containing all coordinates where the complex electric and //
|
|
|
// magnetic fields will be calculated //
|
|
|
// //
|
|
@@ -782,44 +925,22 @@ int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
// Number of multipolar expansion terms used for the calculations //
|
|
|
//**********************************************************************************//
|
|
|
|
|
|
-int nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int n_max,
|
|
|
- int nCoords, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
|
|
|
- std::vector<std::complex<double> > &E, std::vector<std::complex<double> > &H) {
|
|
|
-<<<<<<< HEAD
|
|
|
-=======
|
|
|
-
|
|
|
- int i, n, c;
|
|
|
-/* double **Pi, **Tau;
|
|
|
- complex *an, *bn;
|
|
|
- double *Rho = (double *) malloc(nCoords*sizeof(double));
|
|
|
- double *Phi = (double *) malloc(nCoords*sizeof(double));
|
|
|
- double *Theta = (double *) malloc(nCoords*sizeof(double));
|
|
|
->>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
|
|
|
+int nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
|
|
|
+ int ncoord, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
|
|
|
+ std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
|
|
|
|
|
|
int i, n, c;
|
|
|
std::vector<std::complex<double> > an, bn;
|
|
|
|
|
|
-<<<<<<< HEAD
|
|
|
// Calculate scattering coefficients
|
|
|
-=======
|
|
|
->>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
|
|
|
- n_max = ScattCoeffs(L, pl, x, m, n_max, an, bn);
|
|
|
-
|
|
|
- std::vector< std::vector<double> > Pi, Tau;
|
|
|
- Pi.resize(n_max);
|
|
|
- Tau.resize(n_max);
|
|
|
- for (n = 0; n < n_max; n++) {
|
|
|
- Pi[n].resize(nCoords);
|
|
|
- Tau[n].resize(nCoords);
|
|
|
- }
|
|
|
+ nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn);
|
|
|
|
|
|
std::vector<double> Rho, Phi, Theta;
|
|
|
- Rho.resize(nCoords);
|
|
|
- Phi.resize(nCoords);
|
|
|
- Theta.resize(nCoords);
|
|
|
+ Rho.resize(ncoord);
|
|
|
+ Phi.resize(ncoord);
|
|
|
+ Theta.resize(ncoord);
|
|
|
|
|
|
- for (c = 0; c < nCoords; c++) {
|
|
|
-<<<<<<< HEAD
|
|
|
+ for (c = 0; c < ncoord; c++) {
|
|
|
// Convert to spherical coordinates
|
|
|
Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
|
|
|
if (Rho < 1e-3) {
|
|
@@ -828,68 +949,33 @@ int nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double
|
|
|
Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
|
|
|
Theta = acos(Xp[c]/Rho[c]);
|
|
|
}
|
|
|
-=======
|
|
|
- E[c] = C_ZERO;
|
|
|
- H[c] = C_ZERO;
|
|
|
- }*/
|
|
|
->>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
|
|
|
-
|
|
|
- calcPiTau(n_max, nCoords, Theta, Pi, Tau);
|
|
|
-
|
|
|
-<<<<<<< HEAD
|
|
|
- std::vector<double > j, y;
|
|
|
- std::vector<std::complex<double> > h1, h2;
|
|
|
- j.resize(n_max);
|
|
|
- y.resize(n_max);
|
|
|
- h1.resize(n_max);
|
|
|
- h2.resize(n_max);
|
|
|
-
|
|
|
- for (c = 0; c < nCoords; c++) {
|
|
|
+
|
|
|
+ std::vector< std::vector<double> > Pi, Tau;
|
|
|
+ Pi.resize(ncoord);
|
|
|
+ Tau.resize(ncoord);
|
|
|
+ for (c = 0; c < ncoord; c++) {
|
|
|
+ Pi[c].resize(nmax);
|
|
|
+ Tau[c].resize(nmax);
|
|
|
+ }
|
|
|
+
|
|
|
+ calcPiTau(nmax, ncoord, Theta, Pi, Tau);
|
|
|
+
|
|
|
+ for (c = 0; c < ncoord; c++) {
|
|
|
//*******************************************************//
|
|
|
// external scattering field = incident + scattered //
|
|
|
// BH p.92 (4.37), 94 (4.45), 95 (4.50) //
|
|
|
// assume: medium is non-absorbing; refim = 0; Uabs = 0 //
|
|
|
//*******************************************************//
|
|
|
|
|
|
- // Calculate spherical Bessel and Hankel functions
|
|
|
- sphericalBessel(Rho, n_max, j, y);
|
|
|
- sphericalHankel(Rho, n_max, h1, h2);
|
|
|
-
|
|
|
// Initialize the fields
|
|
|
E[c] = std::complex<double>(0.0, 0.0);
|
|
|
H[c] = std::complex<double>(0.0, 0.0);
|
|
|
|
|
|
// Firstly the easiest case, we want the field outside the particle
|
|
|
if (Rho >= x[L - 1]) {
|
|
|
-
|
|
|
+ fieldExt(nmax, Rho, Phi, Theta, Pi[c], Tau[c], an, bn, E[c], H[c]);
|
|
|
}
|
|
|
-=======
|
|
|
- // Firstly the easiest case, we want the field outside the particle
|
|
|
-// if (Rho[c] >= x[L - 1]) {
|
|
|
-// }
|
|
|
- for (i = 1; i < (n_max - 1); i++) {
|
|
|
-// n = i - 1;
|
|
|
-/* // Equation (27)
|
|
|
- *Qext = *Qext + (double)(n + n + 1)*(an[i].r + bn[i].r);
|
|
|
- // Equation (28)
|
|
|
- *Qsca = *Qsca + (double)(n + n + 1)*(an[i].r*an[i].r + an[i].i*an[i].i + bn[i].r*bn[i].r + bn[i].i*bn[i].i);
|
|
|
- // Equation (29)
|
|
|
- *Qpr = *Qpr + ((n*(n + 2)/(n + 1))*((Cadd(Cmul(an[i], std::conj(an[n])), Cmul(bn[i], std::conj(bn[n])))).r) + ((double)(n + n + 1)/(n*(n + 1)))*(Cmul(an[i], std::conj(bn[i])).r));
|
|
|
-
|
|
|
- // Equation (33)
|
|
|
- Qbktmp = Cadd(Qbktmp, RCmul((double)((n + n + 1)*(1 - 2*(n % 2))), Csub(an[i], bn[i])));
|
|
|
-*/
|
|
|
- //****************************************************//
|
|
|
- // Calculate the scattering amplitudes (S1 and S2) //
|
|
|
- // Equations (25a) - (25b) //
|
|
|
- //****************************************************//
|
|
|
-/* for (t = 0; t < nTheta; t++) {
|
|
|
- S1[t] = Cadd(S1[t], calc_S1(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
|
|
|
- S2[t] = Cadd(S2[t], calc_S2(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
|
|
|
- }*/
|
|
|
->>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
|
|
|
}
|
|
|
|
|
|
- return n_max;
|
|
|
+ return nmax;
|
|
|
}
|
|
|
-
|