|
@@ -1,5 +1,5 @@
|
|
|
///
|
|
|
-/// @file nmie.cc
|
|
|
+/// @file nmie-applied.cc
|
|
|
/// @author Ladutenko Konstantin <kostyfisik at gmail (.) com>
|
|
|
/// @date Tue Sep 3 00:38:27 2013
|
|
|
/// @copyright 2013,2014,2015 Ladutenko Konstantin
|
|
@@ -30,6 +30,8 @@
|
|
|
/// @brief Wrapper class around nMie function for ease of use
|
|
|
///
|
|
|
#include "nmie-applied.hpp"
|
|
|
+#include "nmie-applied-impl.hpp"
|
|
|
+#include "nmie-precision.hpp"
|
|
|
#include <array>
|
|
|
#include <algorithm>
|
|
|
#include <cstdio>
|
|
@@ -114,350 +116,5 @@ namespace nmie {
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
- void MultiLayerMieApplied::GetFailed() {
|
|
|
- double faild_x = 9.42477796076938;
|
|
|
- //double faild_x = 9.42477796076937;
|
|
|
- std::complex<double> z(faild_x, 0.0);
|
|
|
- std::vector<int> nmax_local_array = {20, 100, 500, 2500};
|
|
|
- for (auto nmax_local : nmax_local_array) {
|
|
|
- std::vector<std::complex<double> > D1_failed(nmax_local + 1);
|
|
|
- // Downward recurrence for D1 - equations (16a) and (16b)
|
|
|
- D1_failed[nmax_local] = std::complex<double>(0.0, 0.0);
|
|
|
- const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
|
|
|
- for (int n = nmax_local; n > 0; n--) {
|
|
|
- D1_failed[n - 1] = double(n)*zinv - 1.0/(D1_failed[n] + double(n)*zinv);
|
|
|
- }
|
|
|
- printf("Faild D1[0] from reccurence (z = %16.14f, nmax = %d): %g\n",
|
|
|
- faild_x, nmax_local, D1_failed[0].real());
|
|
|
- }
|
|
|
- printf("Faild D1[0] from continued fraction (z = %16.14f): %g\n", faild_x,
|
|
|
- calcD1confra(0,z).real());
|
|
|
- //D1[nmax_] = calcD1confra(nmax_, z);
|
|
|
-
|
|
|
-
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMieApplied::AddTargetLayer(double width, std::complex<double> layer_index) {
|
|
|
- MarkUncalculated();
|
|
|
- if (width <= 0)
|
|
|
- throw std::invalid_argument("Layer width should be positive!");
|
|
|
- target_width_.push_back(width);
|
|
|
- target_index_.push_back(layer_index);
|
|
|
- } // end of void MultiLayerMieApplied::AddTargetLayer(...)
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMieApplied::SetTargetPEC(double radius) {
|
|
|
- MarkUncalculated();
|
|
|
- if (target_width_.size() != 0 || target_index_.size() != 0)
|
|
|
- throw std::invalid_argument("Error! Define PEC target radius before any other layers!");
|
|
|
- // Add layer of any index...
|
|
|
- AddTargetLayer(radius, std::complex<double>(0.0, 0.0));
|
|
|
- // ... and mark it as PEC
|
|
|
- SetPECLayer(0);
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMieApplied::SetCoatingIndex(std::vector<std::complex<double> > index) {
|
|
|
- MarkUncalculated();
|
|
|
- coating_index_.clear();
|
|
|
- for (auto value : index) coating_index_.push_back(value);
|
|
|
- } // end of void MultiLayerMieApplied::SetCoatingIndex(std::vector<complex> index);
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMieApplied::SetCoatingWidth(std::vector<double> width) {
|
|
|
- MarkUncalculated();
|
|
|
- coating_width_.clear();
|
|
|
- for (auto w : width)
|
|
|
- if (w <= 0)
|
|
|
- throw std::invalid_argument("Coating width should be positive!");
|
|
|
- else coating_width_.push_back(w);
|
|
|
- }
|
|
|
- // end of void MultiLayerMieApplied::SetCoatingWidth(...);
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMieApplied::SetWidthSP(const std::vector<double>& size_parameter) {
|
|
|
- MarkUncalculated();
|
|
|
- size_param_.clear();
|
|
|
- double prev_size_parameter = 0.0;
|
|
|
- for (auto layer_size_parameter : size_parameter) {
|
|
|
- if (layer_size_parameter <= 0.0)
|
|
|
- throw std::invalid_argument("Size parameter should be positive!");
|
|
|
- if (prev_size_parameter > layer_size_parameter)
|
|
|
- throw std::invalid_argument
|
|
|
- ("Size parameter for next layer should be larger than the previous one!");
|
|
|
- prev_size_parameter = layer_size_parameter;
|
|
|
- size_param_.push_back(layer_size_parameter);
|
|
|
- }
|
|
|
- }
|
|
|
- // end of void MultiLayerMieApplied::SetWidthSP(...);
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMieApplied::SetIndexSP(const std::vector< std::complex<double> >& index) {
|
|
|
- MarkUncalculated();
|
|
|
- //refractive_index_.clear();
|
|
|
- refractive_index_ = index;
|
|
|
- // for (auto value : index) refractive_index_.push_back(value);
|
|
|
- } // end of void MultiLayerMieApplied::SetIndexSP(...);
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMieApplied::SetFieldPointsSP(const std::vector< std::vector<double> >& coords_sp) {
|
|
|
- if (coords_sp.size() != 3)
|
|
|
- throw std::invalid_argument("Error! Wrong dimension of field monitor points!");
|
|
|
- if (coords_sp[0].size() != coords_sp[1].size() || coords_sp[0].size() != coords_sp[2].size())
|
|
|
- throw std::invalid_argument("Error! Missing coordinates for field monitor points!");
|
|
|
- coords_sp_ = coords_sp;
|
|
|
- // for (int i = 0; i < coords_sp_[0].size(); ++i) {
|
|
|
- // printf("%g, %g, %g\n", coords_sp_[0][i], coords_sp_[1][i], coords_sp_[2][i]);
|
|
|
- // }
|
|
|
- } // end of void MultiLayerMieApplied::SetFieldPointsSP(...)
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMieApplied::GenerateSizeParameter() {
|
|
|
- MarkUncalculated();
|
|
|
- size_param_.clear();
|
|
|
- double radius = 0.0;
|
|
|
- for (auto width : target_width_) {
|
|
|
- radius += width;
|
|
|
- size_param_.push_back(2*PI_*radius/wavelength_);
|
|
|
- }
|
|
|
- for (auto width : coating_width_) {
|
|
|
- radius += width;
|
|
|
- size_param_.push_back(2*PI_*radius/wavelength_);
|
|
|
- }
|
|
|
- total_radius_ = radius;
|
|
|
- } // end of void MultiLayerMieApplied::GenerateSizeParameter();
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMieApplied::GenerateIndex() {
|
|
|
- MarkUncalculated();
|
|
|
- refractive_index_.clear();
|
|
|
- for (auto index : target_index_) refractive_index_.push_back(index);
|
|
|
- for (auto index : coating_index_) refractive_index_.push_back(index);
|
|
|
- } // end of void MultiLayerMieApplied::GenerateIndex();
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- double MultiLayerMieApplied::GetTotalRadius() {
|
|
|
- if (!isMieCalculated()) GenerateSizeParameter();
|
|
|
- return total_radius_;
|
|
|
- } // end of double MultiLayerMieApplied::GetTotalRadius();
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- std::vector< std::vector<double> >
|
|
|
- MultiLayerMieApplied::GetSpectra(double from_WL, double to_WL, int samples) {
|
|
|
- if (!isMieCalculated())
|
|
|
- throw std::invalid_argument("You should run calculations before result request!");
|
|
|
- std::vector< std::vector<double> > spectra;
|
|
|
- double step_WL = (to_WL - from_WL)/static_cast<double>(samples);
|
|
|
- double wavelength_backup = wavelength_;
|
|
|
- long fails = 0;
|
|
|
- for (double WL = from_WL; WL < to_WL; WL += step_WL) {
|
|
|
- wavelength_ = WL;
|
|
|
- try {
|
|
|
- RunMieCalculation();
|
|
|
- } catch(const std::invalid_argument& ia) {
|
|
|
- fails++;
|
|
|
- continue;
|
|
|
- }
|
|
|
- //printf("%3.1f ",WL);
|
|
|
- spectra.push_back(std::vector<double>({wavelength_, GetQext(),
|
|
|
- GetQsca(), GetQabs(), GetQbk()}));
|
|
|
- } // end of for each WL in spectra
|
|
|
- printf("Spectrum has %li fails\n",fails);
|
|
|
- wavelength_ = wavelength_backup;
|
|
|
- return spectra;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMieApplied::ClearTarget() {
|
|
|
- MarkUncalculated();
|
|
|
- target_width_.clear();
|
|
|
- target_index_.clear();
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMieApplied::ClearCoating() {
|
|
|
- MarkUncalculated();
|
|
|
- coating_width_.clear();
|
|
|
- coating_index_.clear();
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMieApplied::ClearLayers() {
|
|
|
- MarkUncalculated();
|
|
|
- ClearTarget();
|
|
|
- ClearCoating();
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMieApplied::ClearAllDesign() {
|
|
|
- MarkUncalculated();
|
|
|
- ClearLayers();
|
|
|
- size_param_.clear();
|
|
|
- refractive_index_.clear();
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // Computational core
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- //**********************************************************************************//
|
|
|
- // Function CONFRA ported from MIEV0.f (Wiscombe,1979)
|
|
|
- // Ref. to NCAR Technical Notes, Wiscombe, 1979
|
|
|
- /*
|
|
|
-c Compute Bessel function ratio A-sub-N from its
|
|
|
-c continued fraction using Lentz method
|
|
|
-
|
|
|
-c ZINV = Reciprocal of argument of A
|
|
|
-
|
|
|
-
|
|
|
-c I N T E R N A L V A R I A B L E S
|
|
|
-c ------------------------------------
|
|
|
-
|
|
|
-c CAK Term in continued fraction expansion of A (Eq. R25)
|
|
|
-c a_k
|
|
|
-
|
|
|
-c CAPT Factor used in Lentz iteration for A (Eq. R27)
|
|
|
-c T_k
|
|
|
-
|
|
|
-c CNUMER Numerator in capT (Eq. R28A)
|
|
|
-c N_k
|
|
|
-c CDENOM Denominator in capT (Eq. R28B)
|
|
|
-c D_k
|
|
|
-
|
|
|
-c CDTD Product of two successive denominators of capT factors
|
|
|
-c (Eq. R34C)
|
|
|
-c xi_1
|
|
|
-
|
|
|
-c CNTN Product of two successive numerators of capT factors
|
|
|
-c (Eq. R34B)
|
|
|
-c xi_2
|
|
|
-
|
|
|
-c EPS1 Ill-conditioning criterion
|
|
|
-c EPS2 Convergence criterion
|
|
|
-
|
|
|
-c KK Subscript k of cAk (Eq. R25B)
|
|
|
-c k
|
|
|
-
|
|
|
-c KOUNT Iteration counter (used to prevent infinite looping)
|
|
|
-
|
|
|
-c MAXIT Max. allowed no. of iterations
|
|
|
-
|
|
|
-c MM + 1 and - 1, alternately
|
|
|
-*/
|
|
|
- std::complex<double> MultiLayerMieApplied::calcD1confra(const int N, const std::complex<double> z) {
|
|
|
- // NTMR -> nmax_ - 1 \\TODO nmax_ ?
|
|
|
- //int N = nmax_ - 1;
|
|
|
- int KK, KOUNT, MAXIT = 10000, MM;
|
|
|
- // double EPS1=1.0e-2;
|
|
|
- double EPS2=1.0e-8;
|
|
|
- std::complex<double> CAK, CAPT, CDENOM, CDTD, CNTN, CNUMER;
|
|
|
- std::complex<double> one = std::complex<double>(1.0,0.0);
|
|
|
- std::complex<double> ZINV = one/z;
|
|
|
-// c ** Eq. R25a
|
|
|
- std::complex<double> CONFRA = static_cast<std::complex<double> >(N + 1)*ZINV; //debug ZINV
|
|
|
- MM = - 1;
|
|
|
- KK = 2*N +3; //debug 3
|
|
|
-// c ** Eq. R25b, k=2
|
|
|
- CAK = static_cast<std::complex<double> >(MM*KK)*ZINV; //debug -3 ZINV
|
|
|
- CDENOM = CAK;
|
|
|
- CNUMER = CDENOM + one/CONFRA; //-3zinv+z
|
|
|
- KOUNT = 1;
|
|
|
- //10 CONTINUE
|
|
|
- do { ++KOUNT;
|
|
|
- if (KOUNT > MAXIT) {
|
|
|
- printf("re(%g):im(%g)\t\n", CONFRA.real(), CONFRA.imag());
|
|
|
- throw std::invalid_argument("ConFra--Iteration failed to converge!\n");
|
|
|
- }
|
|
|
- MM *= - 1; KK += 2; //debug mm=1 kk=5
|
|
|
- CAK = static_cast<std::complex<double> >(MM*KK)*ZINV; // ** Eq. R25b //debug 5zinv
|
|
|
- // //c ** Eq. R32 Ill-conditioned case -- stride two terms instead of one
|
|
|
- // if (std::abs(CNUMER/CAK) >= EPS1 || std::abs(CDENOM/CAK) >= EPS1) {
|
|
|
- // //c ** Eq. R34
|
|
|
- // CNTN = CAK*CNUMER + 1.0;
|
|
|
- // CDTD = CAK*CDENOM + 1.0;
|
|
|
- // CONFRA = (CNTN/CDTD)*CONFRA; // ** Eq. R33
|
|
|
- // MM *= - 1; KK += 2;
|
|
|
- // CAK = static_cast<std::complex<double> >(MM*KK)*ZINV; // ** Eq. R25b
|
|
|
- // //c ** Eq. R35
|
|
|
- // CNUMER = CAK + CNUMER/CNTN;
|
|
|
- // CDENOM = CAK + CDENOM/CDTD;
|
|
|
- // ++KOUNT;
|
|
|
- // //GO TO 10
|
|
|
- // continue;
|
|
|
- // } else { //c *** Well-conditioned case
|
|
|
- {
|
|
|
- CAPT = CNUMER/CDENOM; // ** Eq. R27 //debug (-3zinv + z)/(-3zinv)
|
|
|
- // printf("re(%g):im(%g)**\t", CAPT.real(), CAPT.imag());
|
|
|
- CONFRA = CAPT*CONFRA; // ** Eq. R26
|
|
|
- //if (N == 0) {output=true;printf(" re:");prn(CONFRA.real());printf(" im:"); prn(CONFRA.imag());output=false;};
|
|
|
- //c ** Check for convergence; Eq. R31
|
|
|
- if (std::abs(CAPT.real() - 1.0) >= EPS2 || std::abs(CAPT.imag()) >= EPS2) {
|
|
|
-//c ** Eq. R30
|
|
|
- CNUMER = CAK + one/CNUMER;
|
|
|
- CDENOM = CAK + one/CDENOM;
|
|
|
- continue;
|
|
|
- //GO TO 10
|
|
|
- } // end of if < eps2
|
|
|
- }
|
|
|
- break;
|
|
|
- } while(1);
|
|
|
- //if (N == 0) printf(" return confra for z=(%g,%g)\n", ZINV.real(), ZINV.imag());
|
|
|
- return CONFRA;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMieApplied::ConvertToSP() {
|
|
|
- MarkUncalculated();
|
|
|
- if (target_width_.size() + coating_width_.size() == 0)
|
|
|
- return; // Nothing to convert, we suppose that SP was set directly
|
|
|
- GenerateSizeParameter();
|
|
|
- GenerateIndex();
|
|
|
- if (size_param_.size() != refractive_index_.size())
|
|
|
- throw std::invalid_argument("Ivalid conversion of width to size parameter units!/n");
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMieApplied::RunMieCalculation() {
|
|
|
- ConvertToSP();
|
|
|
- MultiLayerMie::RunMieCalculation();
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMieApplied::GetExpanCoeffs( std::vector< std::vector<std::complex<double> > >& aln, std::vector< std::vector<std::complex<double> > >& bln, std::vector< std::vector<std::complex<double> > >& cln, std::vector< std::vector<std::complex<double> > >& dln) {
|
|
|
- ConvertToSP(); // Case of call before running full Mie calculation.
|
|
|
- // Calculate scattering coefficients an_ and bn_
|
|
|
- calcScattCoeffs();
|
|
|
- // Calculate expansion coefficients aln_, bln_, cln_, and dln_
|
|
|
- calcExpanCoeffs();
|
|
|
- aln = aln_;
|
|
|
- bln = bln_;
|
|
|
- cln = cln_;
|
|
|
- dln = dln_;
|
|
|
-
|
|
|
- } // end of void MultiLayerMieApplied::GetExpanCoeffs( ...)
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
|
|
|
} // end of namespace nmie
|