|
@@ -28,153 +28,41 @@
|
|
|
|
|
|
# Several functions to plot field and streamlines (power flow lines).
|
|
|
|
|
|
-import scattnlay
|
|
|
-from scattnlay import fieldnlay
|
|
|
-from scattnlay import scattnlay
|
|
|
+from scattnlay import fieldnlay, scattnlay
|
|
|
import numpy as np
|
|
|
-import cmath
|
|
|
-
|
|
|
-
|
|
|
-def unit_vector(vector):
|
|
|
- """ Returns the unit vector of the vector. """
|
|
|
- return vector / np.linalg.norm(vector)
|
|
|
-
|
|
|
-
|
|
|
-def angle_between(v1, v2):
|
|
|
- """ Returns the angle in radians between vectors 'v1' and 'v2'::
|
|
|
-
|
|
|
- >>> angle_between((1, 0, 0), (0, 1, 0))
|
|
|
- 1.5707963267948966
|
|
|
- >>> angle_between((1, 0, 0), (1, 0, 0))
|
|
|
- 0.0
|
|
|
- >>> angle_between((1, 0, 0), (-1, 0, 0))
|
|
|
- 3.141592653589793
|
|
|
- """
|
|
|
- v1_u = unit_vector(v1)
|
|
|
- v2_u = unit_vector(v2)
|
|
|
- angle = np.arccos(np.dot(v1_u, v2_u))
|
|
|
- if np.isnan(angle):
|
|
|
- if (v1_u == v2_u).all():
|
|
|
- return 0.0
|
|
|
- else:
|
|
|
- return np.pi
|
|
|
- return angle
|
|
|
-###############################################################################
|
|
|
-
|
|
|
-
|
|
|
-def GetFlow3D(x0, y0, z0, max_length, max_angle, x, m, pl):
|
|
|
- # Initial position
|
|
|
- flow_x = [x0]
|
|
|
- flow_y = [y0]
|
|
|
- flow_z = [z0]
|
|
|
- max_step = x[-1] / 3
|
|
|
- min_step = x[0] / 2000
|
|
|
-# max_step = min_step
|
|
|
- step = min_step * 2.0
|
|
|
- if max_step < min_step:
|
|
|
- max_step = min_step
|
|
|
- terms, E, H = fieldnlay(np.array([x]), np.array([m]), np.array([flow_x[-1]]), np.array([flow_y[-1]]), np.array([flow_z[-1]]), pl=pl)
|
|
|
- Ec, Hc = E[0, 0, :], H[0, 0, :]
|
|
|
- S = np.cross(Ec, Hc.conjugate()).real
|
|
|
- Snorm_prev = S / np.linalg.norm(S)
|
|
|
- Sprev = S
|
|
|
- length = 0
|
|
|
- dpos = step
|
|
|
- count = 0
|
|
|
- while length < max_length:
|
|
|
- count = count + 1
|
|
|
- if (count > 4000): # Limit length of the absorbed power streamlines
|
|
|
- break
|
|
|
- if step < max_step:
|
|
|
- step = step * 2.0
|
|
|
- r = np.sqrt(flow_x[-1]**2 + flow_y[-1]**2 + flow_z[-1]**2)
|
|
|
- while step > min_step:
|
|
|
- # Evaluate displacement from previous poynting vector
|
|
|
- dpos = step
|
|
|
- dx = dpos * Snorm_prev[0]
|
|
|
- dy = dpos * Snorm_prev[1]
|
|
|
- dz = dpos * Snorm_prev[2]
|
|
|
- # Test the next position not to turn\chang size for more than
|
|
|
- # max_angle
|
|
|
- coord = np.vstack((np.array([flow_x[-1] + dx]), np.array([flow_y[-1] + dy]),
|
|
|
- np.array([flow_z[-1] + dz]))).transpose()
|
|
|
- terms, E, H = fieldnlay(np.array([x]), np.array([m]), np.array([flow_x[-1] + dx]),
|
|
|
- np.array([flow_y[-1] + dy]), np.array([flow_z[-1] + dz]), pl=pl)
|
|
|
- Ec, Hc = E[0, 0, :], H[0, 0, :]
|
|
|
- Eth = max(np.absolute(Ec)) / 1e10
|
|
|
- Hth = max(np.absolute(Hc)) / 1e10
|
|
|
- for i in range(0, len(Ec)):
|
|
|
- if abs(Ec[i]) < Eth:
|
|
|
- Ec[i] = 0 + 0j
|
|
|
- if abs(Hc[i]) < Hth:
|
|
|
- Hc[i] = 0 + 0j
|
|
|
- S = np.cross(Ec, Hc.conjugate()).real
|
|
|
- if not np.isfinite(S).all():
|
|
|
- break
|
|
|
- Snorm = S / np.linalg.norm(S)
|
|
|
- diff = (S - Sprev) / max(np.linalg.norm(S), np.linalg.norm(Sprev))
|
|
|
- if np.linalg.norm(diff) < max_angle:
|
|
|
- # angle = angle_between(Snorm, Snorm_prev)
|
|
|
- # if abs(angle) < max_angle:
|
|
|
- break
|
|
|
- step = step / 2.0
|
|
|
- # 3. Save result
|
|
|
- Sprev = S
|
|
|
- Snorm_prev = Snorm
|
|
|
- dx = dpos * Snorm_prev[0]
|
|
|
- dy = dpos * Snorm_prev[1]
|
|
|
- dz = dpos * Snorm_prev[2]
|
|
|
- length = length + step
|
|
|
- flow_x.append(flow_x[-1] + dx)
|
|
|
- flow_y.append(flow_y[-1] + dy)
|
|
|
- flow_z.append(flow_z[-1] + dz)
|
|
|
- return np.array(flow_x), np.array(flow_y), np.array(flow_z)
|
|
|
|
|
|
|
|
|
###############################################################################
|
|
|
-def GetField(crossplane, npts, factor, x, m, pl):
|
|
|
+def GetCoords(crossplane, npts, factor, x):
|
|
|
"""
|
|
|
crossplane: XZ, YZ, XY, or XYZ (half is XZ, half is YZ)
|
|
|
npts: number of point in each direction
|
|
|
factor: ratio of plotting size to outer size of the particle
|
|
|
x: size parameters for particle layers
|
|
|
- m: relative index values for particle layers
|
|
|
"""
|
|
|
scan = np.linspace(-factor*x[-1], factor*x[-1], npts)
|
|
|
zero = np.zeros(npts*npts, dtype = np.float64)
|
|
|
|
|
|
if crossplane=='XZ':
|
|
|
coordX, coordZ = np.meshgrid(scan, scan)
|
|
|
- coordX.resize(npts * npts)
|
|
|
- coordZ.resize(npts * npts)
|
|
|
+ coordX.resize(npts*npts)
|
|
|
+ coordZ.resize(npts*npts)
|
|
|
coordY = zero
|
|
|
- coordPlot1 = coordX
|
|
|
- coordPlot2 = coordZ
|
|
|
elif crossplane == 'YZ':
|
|
|
coordY, coordZ = np.meshgrid(scan, scan)
|
|
|
- coordY.resize(npts * npts)
|
|
|
- coordZ.resize(npts * npts)
|
|
|
+ coordY.resize(npts*npts)
|
|
|
+ coordZ.resize(npts*npts)
|
|
|
coordX = zero
|
|
|
- coordPlot1 = coordY
|
|
|
- coordPlot2 = coordZ
|
|
|
elif crossplane == 'XY':
|
|
|
coordX, coordY = np.meshgrid(scan, scan)
|
|
|
- coordX.resize(npts * npts)
|
|
|
- coordY.resize(npts * npts)
|
|
|
+ coordX.resize(npts*npts)
|
|
|
+ coordY.resize(npts*npts)
|
|
|
coordZ = zero
|
|
|
- coordPlot1 = coordY
|
|
|
- coordPlot2 = coordX
|
|
|
- elif crossplane=='XYZ':
|
|
|
+ elif crossplane=='XYZ': # Upper half: XZ; Lower half: YZ
|
|
|
coordX, coordZ = np.meshgrid(scan, scan)
|
|
|
coordY, coordZ = np.meshgrid(scan, scan)
|
|
|
- coordPlot1, coordPlot2 = np.meshgrid(scan, scan)
|
|
|
- coordPlot1.resize(npts * npts)
|
|
|
- coordPlot2.resize(npts * npts)
|
|
|
- half=npts//2
|
|
|
- # coordX = np.copy(coordX)
|
|
|
- # coordY = np.copy(coordY)
|
|
|
- coordX[:,:half]=0
|
|
|
- coordY[:,half:]=0
|
|
|
+ coordX[:, scan<0] = 0
|
|
|
+ coordY[:, scan>=0] = 0
|
|
|
coordX.resize(npts*npts)
|
|
|
coordY.resize(npts*npts)
|
|
|
coordZ.resize(npts*npts)
|
|
@@ -183,88 +71,100 @@ def GetField(crossplane, npts, factor, x, m, pl):
|
|
|
import sys
|
|
|
sys.exit()
|
|
|
|
|
|
- terms, E, H = fieldnlay(np.array([x]), np.array([m]), coordX, coordY, coordZ, pl=pl)
|
|
|
- Ec = E[0, :, :]
|
|
|
- Hc = H[0, :, :]
|
|
|
- P = np.array(list(map(lambda n: np.linalg.norm(np.cross(Ec[n],
|
|
|
- np.conjugate(Hc[n])
|
|
|
- # Hc[n]
|
|
|
- )).real,
|
|
|
- range(0, len(E[0])))))
|
|
|
- print(P)
|
|
|
- # for n in range(0, len(E[0])):
|
|
|
- # P.append(np.linalg.norm( np.cross(Ec[n], np.conjugate(Hc[n]) ).real/2 ))
|
|
|
- return Ec, Hc, P, coordPlot1, coordPlot2
|
|
|
+ return coordX, coordY, coordZ, scan
|
|
|
+
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+def GetField(crossplane, npts, factor, x, m, pl):
|
|
|
+ """
|
|
|
+ crossplane: XZ, YZ, XY, or XYZ (half is XZ, half is YZ)
|
|
|
+ npts: number of point in each direction
|
|
|
+ factor: ratio of plotting size to outer size of the particle
|
|
|
+ x: size parameters for particle layers
|
|
|
+ m: relative index values for particle layers
|
|
|
+ """
|
|
|
+ coordX, coordY, coordZ, scan = GetCoords(crossplane, npts, factor, x)
|
|
|
+
|
|
|
+ terms, E, H = fieldnlay(x, m, coordX, coordY, coordZ, pl=pl)
|
|
|
+ if len(E.shape) > 2:
|
|
|
+ E = E[0, :, :]
|
|
|
+ H = H[0, :, :]
|
|
|
+
|
|
|
+ S = np.cross(E, np.conjugate(H)).real
|
|
|
+ print(S)
|
|
|
+
|
|
|
+ if crossplane=='XZ':
|
|
|
+ Sx = np.resize(S[:, 2], (npts, npts)).T
|
|
|
+ Sy = np.resize(S[:, 0], (npts, npts)).T
|
|
|
+ elif crossplane == 'YZ':
|
|
|
+ Sx = np.resize(S[:, 2], (npts, npts)).T
|
|
|
+ Sy = np.resize(S[:, 1], (npts, npts)).T
|
|
|
+ elif crossplane == 'XY':
|
|
|
+ Sx = np.resize(S[:, 1], (npts, npts)).T
|
|
|
+ Sy = np.resize(S[:, 0], (npts, npts)).T
|
|
|
+ elif crossplane=='XYZ': # Upper half: XZ; Lower half: YZ
|
|
|
+ Sx = np.resize(S[:, 2], (npts, npts)).T
|
|
|
+ Sy = np.resize(S[:, 0], (npts, npts)).T
|
|
|
+ Sy[scan<0] = np.resize(S[:, 1], (npts, npts)).T[scan<0]
|
|
|
+ else:
|
|
|
+ print("Unknown crossplane")
|
|
|
+ import sys
|
|
|
+ sys.exit()
|
|
|
+
|
|
|
+ return E, H, S, scan, Sx, Sy
|
|
|
###############################################################################
|
|
|
|
|
|
|
|
|
def fieldplot(fig, ax, x, m, WL, comment='', WL_units=' ', crossplane='XZ',
|
|
|
field_to_plot='Pabs', npts=101, factor=2.1, flow_total=11,
|
|
|
- is_flow_extend=True, pl=-1, outline_width=1, subplot_label=' '):
|
|
|
- # print(fig, ax, x, m, WL, comment, WL_units, crossplane,
|
|
|
- # field_to_plot, npts, factor, flow_total,
|
|
|
- # is_flow_extend, pl, outline_width, subplot_label)
|
|
|
- Ec, Hc, P, coordX, coordZ = GetField(crossplane, npts, factor, x, m, pl)
|
|
|
- Er = np.absolute(Ec)
|
|
|
- Hr = np.absolute(Hc)
|
|
|
+ pl=-1, draw_shell=False, outline_width=1, subplot_label=' '):
|
|
|
+
|
|
|
+ E, H, S, scan, Sx, Sy = GetField(crossplane, npts, factor, x, m, pl)
|
|
|
+ Er = np.absolute(E)
|
|
|
+ Hr = np.absolute(H)
|
|
|
try:
|
|
|
from matplotlib import cm
|
|
|
from matplotlib.colors import LogNorm
|
|
|
|
|
|
if field_to_plot == 'Pabs':
|
|
|
- Eabs_data = np.resize(P, (npts, npts)).T
|
|
|
label = r'$\operatorname{Re}(E \times H^*)$'
|
|
|
+ data = np.resize(np.linalg.norm(np.cross(E, np.conjugate(H)), axis=1).real, (npts, npts)).T
|
|
|
elif field_to_plot == 'Eabs':
|
|
|
- Eabs = np.sqrt(Er[:, 0]**2 + Er[:, 1]**2 + Er[:, 2]**2)
|
|
|
label = r'$|E|$'
|
|
|
- # Eabs = np.real(Hc[:, 0])
|
|
|
- # label = r'$Re(H_x)$'
|
|
|
- # Eabs = np.real(Hc[:, 1])
|
|
|
- # label = r'$Re(H_y)$'
|
|
|
- # Eabs = np.real(Ec[:, 1])
|
|
|
- # label = r'$Re(E_y)$'
|
|
|
- # Eabs = np.real(Ec[:, 0])
|
|
|
- # label = r'$Re(E_x)$'
|
|
|
- Eabs_data = np.resize(Eabs, (npts, npts)).T
|
|
|
+ Eabs = np.sqrt(Er[:, 0]**2 + Er[:, 1]**2 + Er[:, 2]**2)
|
|
|
+ data = np.resize(Eabs, (npts, npts)).T
|
|
|
elif field_to_plot == 'Habs':
|
|
|
- Habs = np.sqrt(Hr[:, 0]**2 + Hr[:, 1]**2 + Hr[:, 2]**2)
|
|
|
- Habs = 376.730313667 * Habs # scale to free space impedance
|
|
|
- Eabs_data = np.resize(Habs, (npts, npts)).T
|
|
|
label = r'$|H|$'
|
|
|
+ Habs = np.sqrt(Hr[:, 0]**2 + Hr[:, 1]**2 + Hr[:, 2]**2)
|
|
|
+ Habs = 376.730313667*Habs # scale to free space impedance
|
|
|
+ data = np.resize(Habs, (npts, npts)).T
|
|
|
elif field_to_plot == 'angleEx':
|
|
|
- Eangle = np.angle(Ec[:, 0]) / np.pi * 180
|
|
|
- Eabs_data = np.resize(Eangle, (npts, npts)).T
|
|
|
label = r'$arg(E_x)$'
|
|
|
+ Eangle = np.angle(E[:, 0])/np.pi*180
|
|
|
+ data = np.resize(Eangle, (npts, npts)).T
|
|
|
elif field_to_plot == 'angleHy':
|
|
|
- Hangle = np.angle(Hc[:, 1]) / np.pi * 180
|
|
|
- Eabs_data = np.resize(Hangle, (npts, npts)).T
|
|
|
label = r'$arg(H_y)$'
|
|
|
+ Hangle = np.angle(H[:, 1])/np.pi*180
|
|
|
+ data = np.resize(Hangle, (npts, npts)).T
|
|
|
|
|
|
# Rescale to better show the axes
|
|
|
- scale_x = np.linspace(
|
|
|
- min(coordX) * WL / 2.0 / np.pi, max(coordX) * WL / 2.0 / np.pi, npts)
|
|
|
- scale_z = np.linspace(
|
|
|
- min(coordZ) * WL / 2.0 / np.pi, max(coordZ) * WL / 2.0 / np.pi, npts)
|
|
|
+ scale = scan*WL/2.0/np.pi
|
|
|
|
|
|
# Define scale ticks
|
|
|
- min_tick = np.amin(Eabs_data[~np.isnan(Eabs_data)])
|
|
|
- #min_tick = 0.1
|
|
|
- max_tick = np.amax(Eabs_data[~np.isnan(Eabs_data)])
|
|
|
- #max_tick = 60
|
|
|
+ min_tick = np.amin(data[~np.isnan(data)])
|
|
|
+ max_tick = np.amax(data[~np.isnan(data)])
|
|
|
+
|
|
|
scale_ticks = np.linspace(min_tick, max_tick, 5)
|
|
|
- #scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
|
|
|
- #scale_ticks = [0.1,0.3,1,3,10, max_tick]
|
|
|
- # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
|
|
|
+
|
|
|
ax.set_title(label)
|
|
|
# build a rectangle in axes coords
|
|
|
ax.annotate(subplot_label, xy=(0.0, 1.1), xycoords='axes fraction', # fontsize=10,
|
|
|
horizontalalignment='left', verticalalignment='top')
|
|
|
- # ax.text(right, top, subplot_label,
|
|
|
- # horizontalalignment='right',
|
|
|
- # verticalalignment='bottom',
|
|
|
- # transform=ax.transAxes)
|
|
|
- cax = ax.imshow(Eabs_data, interpolation='nearest', cmap=cm.jet,
|
|
|
- origin='lower', vmin=min_tick, vmax=max_tick, extent=(min(scale_x), max(scale_x), min(scale_z), max(scale_z))
|
|
|
+
|
|
|
+ # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
|
|
|
+ cax = ax.imshow(data, interpolation='nearest', cmap=cm.jet,
|
|
|
+ origin='lower', vmin=min_tick, vmax=max_tick,
|
|
|
+ extent=(min(scale), max(scale), min(scale), max(scale))
|
|
|
# ,norm = LogNorm()
|
|
|
)
|
|
|
ax.axis("image")
|
|
@@ -276,108 +176,47 @@ def fieldplot(fig, ax, x, m, WL, comment='', WL_units=' ', crossplane='XZ',
|
|
|
cbar.ax.set_yticklabels(['%3.0f' % (a) for a in scale_ticks])
|
|
|
else:
|
|
|
cbar.ax.set_yticklabels(['%g' % (a) for a in scale_ticks])
|
|
|
- # pos = list(cbar.ax.get_position().bounds)
|
|
|
- #fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
|
|
|
- lp2 = -10.0
|
|
|
- lp1 = -1.0
|
|
|
+
|
|
|
if crossplane == 'XZ':
|
|
|
- ax.set_xlabel('Z, ' + WL_units, labelpad=lp1)
|
|
|
- ax.set_ylabel('X, ' + WL_units, labelpad=lp2)
|
|
|
+ ax.set_xlabel('Z (%s)' % (WL_units))
|
|
|
+ ax.set_ylabel('X (%s)' % (WL_units))
|
|
|
elif crossplane == 'YZ':
|
|
|
- ax.set_xlabel('Z, ' + WL_units, labelpad=lp1)
|
|
|
- ax.set_ylabel('Y, ' + WL_units, labelpad=lp2)
|
|
|
+ ax.set_xlabel('Z (%s)' % (WL_units))
|
|
|
+ ax.set_ylabel('Y (%s)' % (WL_units))
|
|
|
elif crossplane=='XYZ':
|
|
|
- ax.set_xlabel(r'$Z,\lambda$'+WL_units)
|
|
|
- ax.set_ylabel(r'$Y:X,\lambda$'+WL_units)
|
|
|
+ ax.set_xlabel('Z (%s)' % (WL_units))
|
|
|
+ ax.set_ylabel('Y(<0):X(>0) (%s)' % (WL_units))
|
|
|
+
|
|
|
+ # draw a line to separate both planes
|
|
|
+ ax.axhline(linewidth=outline_width, color='black')
|
|
|
elif crossplane == 'XY':
|
|
|
- ax.set_xlabel('X, ' + WL_units, labelpad=lp1)
|
|
|
- ax.set_ylabel('Y, ' + WL_units, labelpad=lp2)
|
|
|
- # # This part draws the nanoshell
|
|
|
- from matplotlib import patches
|
|
|
- from matplotlib.path import Path
|
|
|
- for xx in x:
|
|
|
- r = xx * WL / 2.0 / np.pi
|
|
|
- s1 = patches.Arc((0, 0), 2.0 * r, 2.0 * r, angle=0.0, zorder=1.8,
|
|
|
- theta1=0.0, theta2=360.0, linewidth=outline_width, color='black')
|
|
|
- ax.add_patch(s1)
|
|
|
- #
|
|
|
- # for flow in range(0,flow_total):
|
|
|
- # flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
|
|
|
- # min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
|
|
|
- # min(scale_z),
|
|
|
- # #0.0,
|
|
|
- # npts*16)
|
|
|
- # verts = np.vstack((flow_z, flow_x)).transpose().tolist()
|
|
|
- # #codes = [Path.CURVE4]*len(verts)
|
|
|
- # codes = [Path.LINETO]*len(verts)
|
|
|
- # codes[0] = Path.MOVETO
|
|
|
- # path = Path(verts, codes)
|
|
|
- # patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='yellow')
|
|
|
- # ax.add_patch(patch)
|
|
|
- if (not crossplane == 'XY') and flow_total > 0:
|
|
|
+ ax.set_xlabel('X (%s)' % (WL_units))
|
|
|
+ ax.set_ylabel('Y (%s)' % (WL_units))
|
|
|
|
|
|
+ if draw_shell:
|
|
|
+ # Draw the nanoshell
|
|
|
+ from matplotlib import patches
|
|
|
from matplotlib.path import Path
|
|
|
- scanSP = np.linspace(-factor * x[-1], factor * x[-1], npts)
|
|
|
- min_SP = -factor * x[-1]
|
|
|
- step_SP = 2.0 * factor * x[-1] / (flow_total - 1)
|
|
|
- x0, y0, z0 = 0, 0, 0
|
|
|
- max_length = factor * x[-1] * 10
|
|
|
- # max_length=factor*x[-1]*5
|
|
|
- max_angle = np.pi / 160
|
|
|
- if is_flow_extend:
|
|
|
- rg = range(0, flow_total * 5 + 1)
|
|
|
- else:
|
|
|
- rg = range(0, flow_total)
|
|
|
- for flow in rg:
|
|
|
- if is_flow_extend:
|
|
|
- f = min_SP*2 + flow*step_SP
|
|
|
- else:
|
|
|
- f = min_SP + flow*step_SP
|
|
|
- if crossplane=='XZ':
|
|
|
- x0 = f
|
|
|
- elif crossplane=='YZ':
|
|
|
- y0 = f
|
|
|
- elif crossplane=='XYZ':
|
|
|
- x0 = 0
|
|
|
- y0 = 0
|
|
|
- if f > 0:
|
|
|
- x0 = f
|
|
|
- else:
|
|
|
- y0 = f
|
|
|
- z0 = min_SP
|
|
|
- # x0 = x[-1]/20
|
|
|
- flow_xSP, flow_ySP, flow_zSP = GetFlow3D(
|
|
|
- x0, y0, z0, max_length, max_angle, x, m, pl)
|
|
|
- if crossplane == 'XZ':
|
|
|
- flow_z_plot = flow_zSP * WL / 2.0 / np.pi
|
|
|
- flow_f_plot = flow_xSP * WL / 2.0 / np.pi
|
|
|
- elif crossplane == 'YZ':
|
|
|
- flow_z_plot = flow_zSP * WL / 2.0 / np.pi
|
|
|
- flow_f_plot = flow_ySP * WL / 2.0 / np.pi
|
|
|
- elif crossplane=='XYZ':
|
|
|
- if f > 0:
|
|
|
- flow_z_plot = flow_zSP*WL/2.0/np.pi
|
|
|
- flow_f_plot = flow_xSP*WL/2.0/np.pi
|
|
|
- else:
|
|
|
- flow_z_plot = flow_zSP*WL/2.0/np.pi
|
|
|
- flow_f_plot = flow_ySP*WL/2.0/np.pi
|
|
|
-
|
|
|
- verts = np.vstack(
|
|
|
- (flow_z_plot, flow_f_plot)).transpose().tolist()
|
|
|
- codes = [Path.LINETO] * len(verts)
|
|
|
- codes[0] = Path.MOVETO
|
|
|
- path = Path(verts, codes)
|
|
|
- #patch = patches.PathPatch(path, facecolor='none', lw=0.2, edgecolor='white',zorder = 2.7)
|
|
|
- patch = patches.PathPatch(
|
|
|
- path, facecolor='none', lw=outline_width, edgecolor='white', zorder=1.9, alpha=0.7)
|
|
|
- # patch = patches.PathPatch(
|
|
|
- # path, facecolor='none', lw=0.7, edgecolor='white', zorder=1.9, alpha=0.7)
|
|
|
- ax.add_patch(patch)
|
|
|
-# ax.plot(flow_z_plot, flow_f_plot, 'x', ms=2, mew=0.1,
|
|
|
-# linewidth=0.5, color='k', fillstyle='none')
|
|
|
+ for xx in x:
|
|
|
+ r = xx*WL/2.0/np.pi
|
|
|
+ s1 = patches.Arc((0, 0), 2.0*r, 2.0*r, angle=0.0, zorder=1.8,
|
|
|
+ theta1=0.0, theta2=360.0, linewidth=outline_width, color='black')
|
|
|
+ ax.add_patch(s1)
|
|
|
|
|
|
+ # Draw flow lines
|
|
|
+ if (not crossplane == 'XY') and flow_total > 0:
|
|
|
+ margin = 0.98
|
|
|
+ points = np.vstack((margin*scale.min()*np.ones(flow_total),
|
|
|
+ np.linspace(margin*scale.min(),
|
|
|
+ margin*scale.max(), flow_total))).transpose()
|
|
|
+
|
|
|
+ # Plot the streamlines with an appropriate colormap and arrow style
|
|
|
+ ax.streamplot(scale, scale, Sx, Sy,
|
|
|
+ start_points=points, integration_direction='both',
|
|
|
+ density=20.0,
|
|
|
+ linewidth=outline_width, color='white',
|
|
|
+ arrowstyle='-|>', arrowsize=1.0)
|
|
|
finally:
|
|
|
- terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(
|
|
|
- np.array([x]), np.array([m]))
|
|
|
+ terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m)
|
|
|
print("Qsca = " + str(Qsca))
|
|
|
#
|