Browse Source

Script to plot real part of Pz

Konstantin Ladutenko 10 years ago
parent
commit
46b5953381
3 changed files with 261 additions and 8 deletions
  1. 10 7
      tests/python/field-Ag-flow.py
  2. 2 1
      tests/python/field-SiAgSi-flow.py
  3. 249 0
      tests/python/lfield-Ag-flow.py

+ 10 - 7
tests/python/field-Ag-flow.py

@@ -66,12 +66,12 @@ def GetFlow(scale_x, scale_z, Ec, Hc, a, b, nmax):
         #print x_idx, z_idx
         S=np.cross(Ec[npts*z_idx+x_idx], Hc[npts*z_idx+x_idx])
         #if (np.linalg.norm(S)> 1e-4):
-        Snorm=S/np.linalg.norm(S)
-        Snorm=Snorm.real
+        Snorm=S.real/np.linalg.norm(S)
+        #Snorm=Snorm.real
         #2. Evaluate displacement = half of the discrete and new position
         dpos = abs(scale_z[0]-scale_z[1])/2.0
-        dx = dpos*Snorm[0]/abs(Snorm[2])
-        dz = dpos*Snorm[2]/abs(Snorm[2])
+        dx = dpos*Snorm[0];
+        dz = dpos*Snorm[2];
         x_pos = x_pos+dx
         z_pos = z_pos+dz
         #3. Save result
@@ -159,9 +159,12 @@ try:
     #print H[0, idxs][0, :, 1]
     axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, P[idxs], fmt = 'r', label = 'Poynting vector')
     #axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, np.linalg.norm(E[0, idxs][0], axis = 1), fmt = 'g', label = 'E')
-    axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, np.linalg.norm(H[0, idxs][0], axis = 1), fmt = 'b', label = 'H')
-    axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, H[0, idxs][0, :, 1].real, fmt = 'k', label = 'H.r')
-    axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, H[0, idxs][0, :, 1].imag, fmt = 'b', label = 'H.i')
+    # axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, np.linalg.norm(H[0, idxs][0], axis = 1), fmt = 'b', label = 'H')
+    # axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, H[0, idxs][0, :, 1].real, fmt = 'k', label = 'H.r')
+    # axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, H[0, idxs][0, :, 1].imag, fmt = 'b', label = 'H.i')
+    axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, H[0, idxs][0, :, 0].real, fmt = 'b', label = 'Px')
+    axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, H[0, idxs][0, :, 1].real, fmt = 'k', label = 'Py')
+    axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, H[0, idxs][0, :, 2].real, fmt = 'b', label = 'Pz')
 
     axs[0].legend()
 

+ 2 - 1
tests/python/field-SiAgSi-flow.py

@@ -208,7 +208,8 @@ try:
 
     from matplotlib.path import Path
     #import matplotlib.patches as patches
-    flow_total = 131
+
+    flow_total = 41
     for flow in range(0,flow_total):
         flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
                                  min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),

+ 249 - 0
tests/python/lfield-Ag-flow.py

@@ -0,0 +1,249 @@
+#!/usr/bin/env python
+# -*- coding: UTF-8 -*-
+#
+#    Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
+#
+#    This file is part of python-scattnlay
+#
+#    This program is free software: you can redistribute it and/or modify
+#    it under the terms of the GNU General Public License as published by
+#    the Free Software Foundation, either version 3 of the License, or
+#    (at your option) any later version.
+#
+#    This program is distributed in the hope that it will be useful,
+#    but WITHOUT ANY WARRANTY; without even the implied warranty of
+#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+#    GNU General Public License for more details.
+#
+#    The only additional remark is that we expect that all publications
+#    describing work using this software, or all commercial products
+#    using it, cite the following reference:
+#    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
+#        a multilayered sphere," Computer Physics Communications,
+#        vol. 180, Nov. 2009, pp. 2348-2354.
+#
+#    You should have received a copy of the GNU General Public License
+#    along with this program.  If not, see <http://www.gnu.org/licenses/>.
+
+# This test case calculates the electric field in the 
+# E-k plane, for an spherical Si-Ag-Si nanoparticle. Core radius is 17.74 nm,
+# inner layer 23.31nm, outer layer 22.95nm. Working wavelength is 800nm, we use
+# silicon epsilon=13.64+i0.047, silver epsilon= -28.05+i1.525
+
+import scattnlay
+from scattnlay import fieldnlay
+from scattnlay import scattnlay
+import numpy as np
+import cmath
+
+
+def get_index(array,value):
+    idx = (np.abs(array-value)).argmin()
+    return idx
+
+#Ec = np.resize(Ec, (npts, npts)).T
+
+
+def GetFlow(scale_x, scale_z, Ec, Hc, a, b, nmax):
+    # Initial position
+    flow_x = [a]
+    flow_z = [b]
+    x_pos = flow_x[-1]
+    z_pos = flow_z[-1]
+    x_idx = get_index(scale_x, x_pos)
+    z_idx = get_index(scale_z, z_pos)
+    S=np.cross(Ec[npts*z_idx+x_idx], Hc[npts*z_idx+x_idx]).real
+    #if (np.linalg.norm(S)> 1e-4):
+    Snorm_prev=S/np.linalg.norm(S)
+    for n in range(0, nmax):
+        #Get the next position
+        #1. Find Poynting vector and normalize it
+        x_pos = flow_x[-1]
+        z_pos = flow_z[-1]
+        x_idx = get_index(scale_x, x_pos)
+        z_idx = get_index(scale_z, z_pos)
+        #print x_idx, z_idx
+        S=np.cross(Ec[npts*z_idx+x_idx], Hc[npts*z_idx+x_idx]).real
+        #if (np.linalg.norm(S)> 1e-4):
+        Snorm=S/np.linalg.norm(S)
+        #2. Evaluate displacement = half of the discrete and new position
+        dpos = abs(scale_z[0]-scale_z[1])/2.0
+        dx = dpos*Snorm[0]
+        dz = dpos*Snorm[2]
+        x_pos = x_pos+dx
+        z_pos = z_pos+dz
+        #3. Save result
+        flow_x.append(x_pos)
+        flow_z.append(z_pos)
+    return flow_x, flow_z
+
+# # a)
+#WL=400 #nm
+#core_r = WL/20.0
+#epsilon_Ag = -2.0 + 10.0j
+
+# # b)
+#WL=400 #nm
+#core_r = WL/20.0
+#epsilon_Ag = -2.0 + 1.0j
+
+# c)
+WL=354 #nm
+core_r = WL/20.0
+epsilon_Ag = -2.0 + 0.28j
+
+# # d)
+# WL=367 #nm
+# core_r = WL/20.0
+# epsilon_Ag = -2.71 + 0.25j
+
+
+index_Ag = np.sqrt(epsilon_Ag)
+print(index_Ag)
+
+
+# n1 = 1.53413
+# n2 = 0.565838 + 7.23262j
+nm = 1.0
+
+x = np.ones((1, 1), dtype = np.float64)
+x[0, 0] = 2.0*np.pi*core_r/WL
+
+m = np.ones((1, 1), dtype = np.complex128)
+m[0, 0] = index_Ag/nm
+
+print "x =", x
+print "m =", m
+
+npts = 281
+
+factor=2
+scan = np.linspace(-factor*x[0, 0], factor*x[0, 0], npts)
+
+coord = np.zeros((npts, 3), dtype = np.float64)
+coord[:, 2] = scan
+
+terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m)
+terms, E, H = fieldnlay(x, m, coord)
+
+P = np.array(map(lambda n:  np.cross(E[0][n], H[0][n])[2].real, range(0, len(E[0]))))
+
+Ec = E[0, :, :]
+Hc = H[0, :, :]
+
+result = np.vstack((scan, P)).transpose()
+
+try:
+    import matplotlib.pyplot as plt
+
+    fig = plt.figure()
+    ax = fig.add_subplot(111)
+
+    ax.errorbar(result[:, 0], result[:, 1], fmt = 'r', label = 'X axis')
+
+    ax.legend()
+
+    plt.xlabel('X')
+#    plt.ylabel('|P|/|Eo|')
+
+    plt.draw()
+    plt.show()
+finally:
+    np.savetxt("lfield.txt", result, fmt = "%.5f")
+    print result
+
+
+# try:
+#     import matplotlib.pyplot as plt
+#     from matplotlib import cm
+#     from matplotlib.colors import LogNorm
+
+#     # min_tick = 0.0
+#     # max_tick = 1.0
+
+#     Eabs_data = np.resize(P, (npts, npts)).T
+
+#     #Eabs_data = np.resize(Eabs, (npts, npts)).T
+#     #Eabs_data = np.resize(Eangle, (npts, npts)).T
+#     #Eabs_data = np.resize(Habs, (npts, npts)).T
+#     #Eabs_data = np.resize(Hangle, (npts, npts)).T
+
+#     fig, ax = plt.subplots(1,1)#, sharey=True, sharex=True)
+#     #fig.tight_layout()
+#     # Rescale to better show the axes
+#     scale_x = np.linspace(min(coordX)*WL/2.0/np.pi/nm, max(coordX)*WL/2.0/np.pi/nm, npts)
+#     scale_z = np.linspace(min(coordZ)*WL/2.0/np.pi/nm, max(coordZ)*WL/2.0/np.pi/nm, npts)
+
+#     # Define scale ticks
+#     min_tick = np.amin(Eabs_data)
+#     max_tick = np.amax(Eabs_data)
+#     # scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
+#     scale_ticks = np.linspace(min_tick, max_tick, 11)
+
+#     # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
+#     #ax.set_title('Eabs')
+#     cax = ax.imshow(Eabs_data, interpolation = 'nearest', cmap = cm.jet,
+#                     origin = 'lower'
+#                     #, vmin = min_tick, vmax = max_tick
+#                     , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
+#                     #,norm = LogNorm()
+#                     )
+#     ax.axis("image")
+
+#     # # Add colorbar
+#     cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
+#     cbar.ax.set_yticklabels(['%5.3g' % (a) for a in scale_ticks]) # vertically oriented colorbar
+#     # pos = list(cbar.ax.get_position().bounds)
+#     # fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
+
+#     plt.xlabel('Z, nm')
+#     plt.ylabel('X, nm')
+
+#     # This part draws the nanoshell
+#     from matplotlib import patches
+#     s1 = patches.Arc((0, 0), 2.0*core_r, 2.0*core_r,  angle=0.0, zorder=2,
+#                      theta1=0.0, theta2=360.0, linewidth=1, color='black')
+#     ax.add_patch(s1)
+
+#     from matplotlib.path import Path
+#     #import matplotlib.patches as patches
+#     flow_total = 41
+#     for flow in range(0,flow_total):
+#         flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
+#                                  min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
+#                                  min(scale_z),
+#                                  npts*6)
+#         verts = np.vstack((flow_z, flow_x)).transpose().tolist()
+#         #codes = [Path.CURVE4]*len(verts)
+#         codes = [Path.LINETO]*len(verts)
+#         codes[0] = Path.MOVETO
+#         path = Path(verts, codes)
+#         patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='white')
+#         ax.add_patch(patch)
+#     # # Start powerflow lines in the middle of the image
+#     # flow_total = 131
+#     # for flow in range(0,flow_total):
+#     #     flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
+#     #                              min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
+#     #                              15.0, #min(scale_z),
+#     #                              npts*6)
+#     #     verts = np.vstack((flow_z, flow_x)).transpose().tolist()
+#     #     #codes = [Path.CURVE4]*len(verts)
+#     #     codes = [Path.LINETO]*len(verts)
+#     #     codes[0] = Path.MOVETO
+#     #     path = Path(verts, codes)
+#     #     patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='white')
+#     #     ax.add_patch(patch)
+ 
+#     plt.savefig("Ag-flow.png")
+#     plt.draw()
+
+#     plt.show()
+
+#     plt.clf()
+#     plt.close()
+# finally:
+#     print("Qabs = "+str(Qabs));
+# #
+
+