|
@@ -0,0 +1,249 @@
|
|
|
+#!/usr/bin/env python
|
|
|
+# -*- coding: UTF-8 -*-
|
|
|
+#
|
|
|
+# Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
|
|
|
+#
|
|
|
+# This file is part of python-scattnlay
|
|
|
+#
|
|
|
+# This program is free software: you can redistribute it and/or modify
|
|
|
+# it under the terms of the GNU General Public License as published by
|
|
|
+# the Free Software Foundation, either version 3 of the License, or
|
|
|
+# (at your option) any later version.
|
|
|
+#
|
|
|
+# This program is distributed in the hope that it will be useful,
|
|
|
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
+# GNU General Public License for more details.
|
|
|
+#
|
|
|
+# The only additional remark is that we expect that all publications
|
|
|
+# describing work using this software, or all commercial products
|
|
|
+# using it, cite the following reference:
|
|
|
+# [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
|
|
|
+# a multilayered sphere," Computer Physics Communications,
|
|
|
+# vol. 180, Nov. 2009, pp. 2348-2354.
|
|
|
+#
|
|
|
+# You should have received a copy of the GNU General Public License
|
|
|
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
+
|
|
|
+# This test case calculates the electric field in the
|
|
|
+# E-k plane, for an spherical Si-Ag-Si nanoparticle. Core radius is 17.74 nm,
|
|
|
+# inner layer 23.31nm, outer layer 22.95nm. Working wavelength is 800nm, we use
|
|
|
+# silicon epsilon=13.64+i0.047, silver epsilon= -28.05+i1.525
|
|
|
+
|
|
|
+import scattnlay
|
|
|
+from scattnlay import fieldnlay
|
|
|
+from scattnlay import scattnlay
|
|
|
+import numpy as np
|
|
|
+import cmath
|
|
|
+
|
|
|
+
|
|
|
+def get_index(array,value):
|
|
|
+ idx = (np.abs(array-value)).argmin()
|
|
|
+ return idx
|
|
|
+
|
|
|
+#Ec = np.resize(Ec, (npts, npts)).T
|
|
|
+
|
|
|
+
|
|
|
+def GetFlow(scale_x, scale_z, Ec, Hc, a, b, nmax):
|
|
|
+ # Initial position
|
|
|
+ flow_x = [a]
|
|
|
+ flow_z = [b]
|
|
|
+ x_pos = flow_x[-1]
|
|
|
+ z_pos = flow_z[-1]
|
|
|
+ x_idx = get_index(scale_x, x_pos)
|
|
|
+ z_idx = get_index(scale_z, z_pos)
|
|
|
+ S=np.cross(Ec[npts*z_idx+x_idx], Hc[npts*z_idx+x_idx]).real
|
|
|
+ #if (np.linalg.norm(S)> 1e-4):
|
|
|
+ Snorm_prev=S/np.linalg.norm(S)
|
|
|
+ for n in range(0, nmax):
|
|
|
+ #Get the next position
|
|
|
+ #1. Find Poynting vector and normalize it
|
|
|
+ x_pos = flow_x[-1]
|
|
|
+ z_pos = flow_z[-1]
|
|
|
+ x_idx = get_index(scale_x, x_pos)
|
|
|
+ z_idx = get_index(scale_z, z_pos)
|
|
|
+ #print x_idx, z_idx
|
|
|
+ S=np.cross(Ec[npts*z_idx+x_idx], Hc[npts*z_idx+x_idx]).real
|
|
|
+ #if (np.linalg.norm(S)> 1e-4):
|
|
|
+ Snorm=S/np.linalg.norm(S)
|
|
|
+ #2. Evaluate displacement = half of the discrete and new position
|
|
|
+ dpos = abs(scale_z[0]-scale_z[1])/2.0
|
|
|
+ dx = dpos*Snorm[0]
|
|
|
+ dz = dpos*Snorm[2]
|
|
|
+ x_pos = x_pos+dx
|
|
|
+ z_pos = z_pos+dz
|
|
|
+ #3. Save result
|
|
|
+ flow_x.append(x_pos)
|
|
|
+ flow_z.append(z_pos)
|
|
|
+ return flow_x, flow_z
|
|
|
+
|
|
|
+# # a)
|
|
|
+#WL=400 #nm
|
|
|
+#core_r = WL/20.0
|
|
|
+#epsilon_Ag = -2.0 + 10.0j
|
|
|
+
|
|
|
+# # b)
|
|
|
+#WL=400 #nm
|
|
|
+#core_r = WL/20.0
|
|
|
+#epsilon_Ag = -2.0 + 1.0j
|
|
|
+
|
|
|
+# c)
|
|
|
+WL=354 #nm
|
|
|
+core_r = WL/20.0
|
|
|
+epsilon_Ag = -2.0 + 0.28j
|
|
|
+
|
|
|
+# # d)
|
|
|
+# WL=367 #nm
|
|
|
+# core_r = WL/20.0
|
|
|
+# epsilon_Ag = -2.71 + 0.25j
|
|
|
+
|
|
|
+
|
|
|
+index_Ag = np.sqrt(epsilon_Ag)
|
|
|
+print(index_Ag)
|
|
|
+
|
|
|
+
|
|
|
+# n1 = 1.53413
|
|
|
+# n2 = 0.565838 + 7.23262j
|
|
|
+nm = 1.0
|
|
|
+
|
|
|
+x = np.ones((1, 1), dtype = np.float64)
|
|
|
+x[0, 0] = 2.0*np.pi*core_r/WL
|
|
|
+
|
|
|
+m = np.ones((1, 1), dtype = np.complex128)
|
|
|
+m[0, 0] = index_Ag/nm
|
|
|
+
|
|
|
+print "x =", x
|
|
|
+print "m =", m
|
|
|
+
|
|
|
+npts = 281
|
|
|
+
|
|
|
+factor=2
|
|
|
+scan = np.linspace(-factor*x[0, 0], factor*x[0, 0], npts)
|
|
|
+
|
|
|
+coord = np.zeros((npts, 3), dtype = np.float64)
|
|
|
+coord[:, 2] = scan
|
|
|
+
|
|
|
+terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m)
|
|
|
+terms, E, H = fieldnlay(x, m, coord)
|
|
|
+
|
|
|
+P = np.array(map(lambda n: np.cross(E[0][n], H[0][n])[2].real, range(0, len(E[0]))))
|
|
|
+
|
|
|
+Ec = E[0, :, :]
|
|
|
+Hc = H[0, :, :]
|
|
|
+
|
|
|
+result = np.vstack((scan, P)).transpose()
|
|
|
+
|
|
|
+try:
|
|
|
+ import matplotlib.pyplot as plt
|
|
|
+
|
|
|
+ fig = plt.figure()
|
|
|
+ ax = fig.add_subplot(111)
|
|
|
+
|
|
|
+ ax.errorbar(result[:, 0], result[:, 1], fmt = 'r', label = 'X axis')
|
|
|
+
|
|
|
+ ax.legend()
|
|
|
+
|
|
|
+ plt.xlabel('X')
|
|
|
+# plt.ylabel('|P|/|Eo|')
|
|
|
+
|
|
|
+ plt.draw()
|
|
|
+ plt.show()
|
|
|
+finally:
|
|
|
+ np.savetxt("lfield.txt", result, fmt = "%.5f")
|
|
|
+ print result
|
|
|
+
|
|
|
+
|
|
|
+# try:
|
|
|
+# import matplotlib.pyplot as plt
|
|
|
+# from matplotlib import cm
|
|
|
+# from matplotlib.colors import LogNorm
|
|
|
+
|
|
|
+# # min_tick = 0.0
|
|
|
+# # max_tick = 1.0
|
|
|
+
|
|
|
+# Eabs_data = np.resize(P, (npts, npts)).T
|
|
|
+
|
|
|
+# #Eabs_data = np.resize(Eabs, (npts, npts)).T
|
|
|
+# #Eabs_data = np.resize(Eangle, (npts, npts)).T
|
|
|
+# #Eabs_data = np.resize(Habs, (npts, npts)).T
|
|
|
+# #Eabs_data = np.resize(Hangle, (npts, npts)).T
|
|
|
+
|
|
|
+# fig, ax = plt.subplots(1,1)#, sharey=True, sharex=True)
|
|
|
+# #fig.tight_layout()
|
|
|
+# # Rescale to better show the axes
|
|
|
+# scale_x = np.linspace(min(coordX)*WL/2.0/np.pi/nm, max(coordX)*WL/2.0/np.pi/nm, npts)
|
|
|
+# scale_z = np.linspace(min(coordZ)*WL/2.0/np.pi/nm, max(coordZ)*WL/2.0/np.pi/nm, npts)
|
|
|
+
|
|
|
+# # Define scale ticks
|
|
|
+# min_tick = np.amin(Eabs_data)
|
|
|
+# max_tick = np.amax(Eabs_data)
|
|
|
+# # scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
|
|
|
+# scale_ticks = np.linspace(min_tick, max_tick, 11)
|
|
|
+
|
|
|
+# # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
|
|
|
+# #ax.set_title('Eabs')
|
|
|
+# cax = ax.imshow(Eabs_data, interpolation = 'nearest', cmap = cm.jet,
|
|
|
+# origin = 'lower'
|
|
|
+# #, vmin = min_tick, vmax = max_tick
|
|
|
+# , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
|
|
|
+# #,norm = LogNorm()
|
|
|
+# )
|
|
|
+# ax.axis("image")
|
|
|
+
|
|
|
+# # # Add colorbar
|
|
|
+# cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
|
|
|
+# cbar.ax.set_yticklabels(['%5.3g' % (a) for a in scale_ticks]) # vertically oriented colorbar
|
|
|
+# # pos = list(cbar.ax.get_position().bounds)
|
|
|
+# # fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
|
|
|
+
|
|
|
+# plt.xlabel('Z, nm')
|
|
|
+# plt.ylabel('X, nm')
|
|
|
+
|
|
|
+# # This part draws the nanoshell
|
|
|
+# from matplotlib import patches
|
|
|
+# s1 = patches.Arc((0, 0), 2.0*core_r, 2.0*core_r, angle=0.0, zorder=2,
|
|
|
+# theta1=0.0, theta2=360.0, linewidth=1, color='black')
|
|
|
+# ax.add_patch(s1)
|
|
|
+
|
|
|
+# from matplotlib.path import Path
|
|
|
+# #import matplotlib.patches as patches
|
|
|
+# flow_total = 41
|
|
|
+# for flow in range(0,flow_total):
|
|
|
+# flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
|
|
|
+# min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
|
|
|
+# min(scale_z),
|
|
|
+# npts*6)
|
|
|
+# verts = np.vstack((flow_z, flow_x)).transpose().tolist()
|
|
|
+# #codes = [Path.CURVE4]*len(verts)
|
|
|
+# codes = [Path.LINETO]*len(verts)
|
|
|
+# codes[0] = Path.MOVETO
|
|
|
+# path = Path(verts, codes)
|
|
|
+# patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='white')
|
|
|
+# ax.add_patch(patch)
|
|
|
+# # # Start powerflow lines in the middle of the image
|
|
|
+# # flow_total = 131
|
|
|
+# # for flow in range(0,flow_total):
|
|
|
+# # flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
|
|
|
+# # min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
|
|
|
+# # 15.0, #min(scale_z),
|
|
|
+# # npts*6)
|
|
|
+# # verts = np.vstack((flow_z, flow_x)).transpose().tolist()
|
|
|
+# # #codes = [Path.CURVE4]*len(verts)
|
|
|
+# # codes = [Path.LINETO]*len(verts)
|
|
|
+# # codes[0] = Path.MOVETO
|
|
|
+# # path = Path(verts, codes)
|
|
|
+# # patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='white')
|
|
|
+# # ax.add_patch(patch)
|
|
|
+
|
|
|
+# plt.savefig("Ag-flow.png")
|
|
|
+# plt.draw()
|
|
|
+
|
|
|
+# plt.show()
|
|
|
+
|
|
|
+# plt.clf()
|
|
|
+# plt.close()
|
|
|
+# finally:
|
|
|
+# print("Qabs = "+str(Qabs));
|
|
|
+# #
|
|
|
+
|
|
|
+
|