Quellcode durchsuchen

single peak fit for d param works

Konstantin Ladutenko vor 2 Jahren
Ursprung
Commit
3af709f71b

+ 29 - 0
examples/NatureComm-2020-Plasmon–emitter_interactions_at_the_nanoscale/eval_spectra.py

@@ -0,0 +1,29 @@
+from numba import njit, prange, complex128, float64
+import numpy as np
+
+
+@njit(complex128(float64, float64[:]),
+      fastmath=True, cache=True)
+def lorentzian(omega, xvec):
+    res = 0
+    poles = len(xvec)//4
+    for i in range(poles):
+        gamma = xvec[i+0]
+        omega_n = xvec[i+1]
+        f = xvec[i+2] + 1j*xvec[i+3]
+        res = res + f / (omega * (omega + 1j*gamma) - omega_n**2)
+    return res
+
+
+@njit(complex128[:](float64[:], float64[:]),
+      parallel=True, fastmath=True, cache=True)
+def spectra(omega, xvec):
+    poles = len(xvec)//4
+    for i in range(poles):
+        xvec[i] = np.absolute(xvec[i])
+        xvec[i+1] = np.absolute(xvec[i+1])
+
+    val = np.zeros(omega.size, dtype=np.cdouble)
+    for i in prange(omega.size):
+        val[i] = lorentzian(omega[i], xvec)
+    return val

+ 83 - 0
examples/NatureComm-2020-Plasmon–emitter_interactions_at_the_nanoscale/fit_d_param.py

@@ -0,0 +1,83 @@
+#!/usr/bin/env python3
+# -*- coding: UTF-8 -*-
+from functools import lru_cache
+from matplotlib import markers, pyplot as plt
+from scipy.optimize import curve_fit
+import numpy as np
+import cma
+# import pyfde
+from numba import njit, float64
+from eval_spectra import spectra
+
+from mealpy.physics_based.EO import AdaptiveEO
+
+
+from_disk = np.loadtxt('rs4-d_perp_interpolated.txt')
+step = 5
+omega_ratio = np.copy(from_disk[0, ::step])
+d_perp_rs4 = from_disk[1, ::step] + 1j*from_disk[2, ::step]
+
+
+def rms(x0):
+    d_fit = spectra(omega_ratio, x0)
+    diff_re = np.real(d_perp_rs4 - d_fit)
+    rms = np.sqrt(np.sum(np.abs(diff_re)**2))
+    diff_im = np.imag(d_perp_rs4 - d_fit)
+    rms += np.sqrt(np.sum(np.abs(diff_im)**2))
+    return rms
+
+
+poles = 1
+dim = poles*4
+x0 = np.random.random(dim)
+
+
+problem_dict1 = {
+    "fit_func": rms,
+    "lb": [0,  0, -10, -10],
+    "ub": [10, 10, 10, 10],
+    "minmax": "min",
+}
+epoch = 300
+pop_size = 10
+model = AdaptiveEO(problem_dict1, epoch, pop_size)
+# x, best_fitness = model.solve()
+# print(f"Solution: {x}, Fitness: {best_fitness}")
+
+x, es = cma.fmin2(rms, x0, sigma0=0.2)
+
+
+d_fit = spectra(omega_ratio, x)
+print('first round x =', x)
+
+
+print('x =', x)
+# print('ex =', es)
+
+# print('d_fit =', d_fit)
+
+plt.figure('rs4')
+# plt.title('rms = '+str(rms(x)/x.size))
+plt.plot(omega_ratio, np.real(d_perp_rs4), label='re d')
+plt.plot(omega_ratio, np.imag(d_perp_rs4), label='im d')
+
+plt.plot(omega_ratio, np.real(d_fit), label='re d fit', alpha=0.2, lw=3)
+plt.plot(omega_ratio, np.imag(d_fit), label='im d fit', alpha=0.2, lw=3)
+
+# plt.plot(omega_ratio, func(xdata, *popt), 'r-',
+
+#          label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))
+plt.legend()
+plt.show()
+
+
+# from_disk = np.loadtxt('silver-d_perp_interpolated.txt')
+# plt.figure('silver')
+# plt.plot(from_disk[0, :], from_disk[1, :], label='re d perp')
+# plt.plot(from_disk[0, :], from_disk[2, :], label='im d perp')
+# from_disk = np.loadtxt('silver-d_parl_interpolated.txt')
+# plt.plot(from_disk[0, :], from_disk[1, :], label='re d parl')
+# plt.plot(from_disk[0, :], from_disk[2, :], label='im d parl')
+
+# plt.legend()
+# plt.show()