Browse Source

python script for SiAgSi

Konstantin Ladutenko 10 years ago
parent
commit
34b057c0b9
2 changed files with 149 additions and 1 deletions
  1. 148 0
      tests/python/field-SiAgSi.py
  2. 1 1
      tests/python/field-dielectric-sphere.py

+ 148 - 0
tests/python/field-SiAgSi.py

@@ -0,0 +1,148 @@
+#!/usr/bin/env python
+# -*- coding: UTF-8 -*-
+#
+#    Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
+#
+#    This file is part of python-scattnlay
+#
+#    This program is free software: you can redistribute it and/or modify
+#    it under the terms of the GNU General Public License as published by
+#    the Free Software Foundation, either version 3 of the License, or
+#    (at your option) any later version.
+#
+#    This program is distributed in the hope that it will be useful,
+#    but WITHOUT ANY WARRANTY; without even the implied warranty of
+#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+#    GNU General Public License for more details.
+#
+#    The only additional remark is that we expect that all publications
+#    describing work using this software, or all commercial products
+#    using it, cite the following reference:
+#    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
+#        a multilayered sphere," Computer Physics Communications,
+#        vol. 180, Nov. 2009, pp. 2348-2354.
+#
+#    You should have received a copy of the GNU General Public License
+#    along with this program.  If not, see <http://www.gnu.org/licenses/>.
+
+# This test case calculates the electric field in the 
+# E-k plane, for an spherical Si-Ag-Si nanoparticle. Core radius is 17.74 nm,
+# inner layer 23.31nm, outer layer 22.95nm. Working wavelength is 800nm, we use
+# silicon epsilon=13.64+i0.047, silver epsilon= -28.05+i1.525
+
+import scattnlay
+from scattnlay import fieldnlay
+import numpy as np
+
+epsilon_Si = 13.64 + 0.047j
+epsilon_Ag = -28.05 + 1.525j
+index_Si = epsilon_Si*epsilon_Si
+index_Ag = epsilon_Ag*epsilon_Ag
+
+WL=800 #nm
+core_width = 17.74 #nm Si
+inner_width = 23.31 #nm Ag
+outer_width = 22.95 #nm  Si
+
+core_r = core_width
+inner_r = core_r+inner_width
+outer_r = inner_r+outer_width
+
+# n1 = 1.53413
+# n2 = 0.565838 + 7.23262j
+# nm = 1.3205
+
+x = np.ones((1, 3), dtype = np.float64)
+x[0, 0] = 2.0*np.pi*core_r/WL
+x[0, 1] = 2.0*np.pi*inner_r/WL
+x[0, 2] = 2.0*np.pi*outer_r/WL
+
+m = np.ones((1, 3), dtype = np.complex128)
+m[0, 0] = index_Si
+m[0, 1] = index_Ag
+m[0, 2] = index_Si
+
+print "x =", x
+print "m =", m
+
+npts = 281
+
+scan = np.linspace(-2.0*x[0, 2], 2.0*x[0, 2], npts)
+
+coordX, coordZ = np.meshgrid(scan, scan)
+coordX.resize(npts*npts)
+coordZ.resize(npts*npts)
+coordY = np.zeros(npts*npts, dtype = np.float64)
+
+coord = np.vstack((coordX, coordY, coordZ)).transpose()
+
+terms, E, H = fieldnlay(x, m, coord)
+
+Er = np.absolute(E)
+
+# |E|/|Eo|
+Eh = np.sqrt(Er[0, :, 0]**2 + Er[0, :, 1]**2 + Er[0, :, 2]**2)
+
+result = np.vstack((coordX, coordY, coordZ, Eh)).transpose()
+
+try:
+    import matplotlib.pyplot as plt
+    from matplotlib import cm
+    from matplotlib.colors import LogNorm
+
+    min_tick = 0.1
+    max_tick = 1.0
+
+    edata = np.resize(Eh, (npts, npts))
+
+    fig = plt.figure()
+    ax = fig.add_subplot(111)
+    # Rescale to better show the axes
+    scale_x = np.linspace(min(coordX)*1.064/2.0/np.pi/nm, max(coordX)*1.064/2.0/np.pi/nm, npts)
+    scale_y = np.linspace(min(coordY)*1.064/2.0/np.pi/nm, max(coordY)*1.064/2.0/np.pi/nm, npts)
+
+    # Define scale ticks
+    min_tick = min(min_tick, np.amin(edata))
+    max_tick = max(max_tick, np.amax(edata))
+    # scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
+    scale_ticks = np.linspace(np.log10(min_tick), np.log10(max_tick), 6)
+
+    # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
+    cax = ax.imshow(edata, interpolation = 'nearest', cmap = cm.jet,
+                    origin = 'lower', vmin = min_tick, vmax = max_tick,
+                    extent = (min(scale_x), max(scale_x), min(scale_y), max(scale_y))
+                    #,norm = LogNorm()
+                    )
+
+    # Add colorbar
+    cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
+    cbar.ax.set_yticklabels(['%3.1e' % (a) for a in scale_ticks]) # vertically oriented colorbar
+    pos = list(cbar.ax.get_position().bounds)
+    fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
+
+    plt.xlabel('X')
+    plt.ylabel('Y')
+
+    # This part draws the nanoshell
+#    from matplotlib import patches
+
+#    s1 = patches.Arc((0, 0), 2.0*x[0, 0], 2.0*x[0, 0], angle=0.0, zorder=2,
+#                      theta1=0.0, theta2=360.0, linewidth=1, color='#00fa9a')
+#    ax.add_patch(s1)
+
+#    s2 = patches.Arc((0, 0), 2.0*x[0, 1], 2.0*x[0, 1], angle=0.0, zorder=2,
+#                      theta1=0.0, theta2=360.0, linewidth=1, color='#00fa9a')
+#    ax.add_patch(s2)
+    # End of drawing
+
+    plt.draw()
+
+    plt.show()
+
+    plt.clf()
+    plt.close()
+finally:
+    np.savetxt("field.txt", result, fmt = "%.5f")
+    print result
+
+

+ 1 - 1
tests/python/field-dielectric-sphere.py

@@ -52,7 +52,7 @@ m[0, 0] = 2.0
 
 npts = 501
 
-scan = np.linspace(-2.0*x[0, 0], 2.0*x[0, 0], npts)
+scan = np.linspace(-1.5*x[0, 0], 1.5*x[0, 0], npts)
 
 coordX, coordY = np.meshgrid(scan, scan)
 coordX.resize(npts*npts)