|  | @@ -34,8 +34,11 @@ import scattnlay
 | 
	
		
			
				|  |  |  from scattnlay import fieldnlay
 | 
	
		
			
				|  |  |  import numpy as np
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -epsilon_Si = 13.64 + 0.047j
 | 
	
		
			
				|  |  | -epsilon_Ag = -28.05 + 1.525j
 | 
	
		
			
				|  |  | +# epsilon_Si = 13.64 + 0.047j
 | 
	
		
			
				|  |  | +# epsilon_Ag = -28.05 + 1.525j
 | 
	
		
			
				|  |  | +epsilon_Si = 2.0 + 0.047j
 | 
	
		
			
				|  |  | +epsilon_Ag = -2.0 + 1.525j
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  |  index_Si = epsilon_Si*epsilon_Si
 | 
	
		
			
				|  |  |  index_Ag = epsilon_Ag*epsilon_Ag
 | 
	
		
			
				|  |  |  
 | 
	
	
		
			
				|  | @@ -50,7 +53,7 @@ outer_r = inner_r+outer_width
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  # n1 = 1.53413
 | 
	
		
			
				|  |  |  # n2 = 0.565838 + 7.23262j
 | 
	
		
			
				|  |  | -# nm = 1.3205
 | 
	
		
			
				|  |  | +nm = 1.0
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  x = np.ones((1, 3), dtype = np.float64)
 | 
	
		
			
				|  |  |  x[0, 0] = 2.0*np.pi*core_r/WL
 | 
	
	
		
			
				|  | @@ -65,7 +68,7 @@ m[0, 2] = index_Si
 | 
	
		
			
				|  |  |  print "x =", x
 | 
	
		
			
				|  |  |  print "m =", m
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -npts = 281
 | 
	
		
			
				|  |  | +npts = 28
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  scan = np.linspace(-2.0*x[0, 2], 2.0*x[0, 2], npts)
 | 
	
		
			
				|  |  |  
 | 
	
	
		
			
				|  | @@ -99,18 +102,18 @@ try:
 | 
	
		
			
				|  |  |      ax = fig.add_subplot(111)
 | 
	
		
			
				|  |  |      # Rescale to better show the axes
 | 
	
		
			
				|  |  |      scale_x = np.linspace(min(coordX)*1.064/2.0/np.pi/nm, max(coordX)*1.064/2.0/np.pi/nm, npts)
 | 
	
		
			
				|  |  | -    scale_y = np.linspace(min(coordY)*1.064/2.0/np.pi/nm, max(coordY)*1.064/2.0/np.pi/nm, npts)
 | 
	
		
			
				|  |  | +    scale_z = np.linspace(min(coordZ)*1.064/2.0/np.pi/nm, max(coordZ)*1.064/2.0/np.pi/nm, npts)
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      # Define scale ticks
 | 
	
		
			
				|  |  |      min_tick = min(min_tick, np.amin(edata))
 | 
	
		
			
				|  |  |      max_tick = max(max_tick, np.amax(edata))
 | 
	
		
			
				|  |  |      # scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
 | 
	
		
			
				|  |  | -    scale_ticks = np.linspace(np.log10(min_tick), np.log10(max_tick), 6)
 | 
	
		
			
				|  |  | +    scale_ticks = np.linspace(min_tick, max_tick, 6)
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
 | 
	
		
			
				|  |  |      cax = ax.imshow(edata, interpolation = 'nearest', cmap = cm.jet,
 | 
	
		
			
				|  |  |                      origin = 'lower', vmin = min_tick, vmax = max_tick,
 | 
	
		
			
				|  |  | -                    extent = (min(scale_x), max(scale_x), min(scale_y), max(scale_y))
 | 
	
		
			
				|  |  | +                    extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
 | 
	
		
			
				|  |  |                      #,norm = LogNorm()
 | 
	
		
			
				|  |  |                      )
 | 
	
		
			
				|  |  |  
 | 
	
	
		
			
				|  | @@ -121,7 +124,7 @@ try:
 | 
	
		
			
				|  |  |      fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      plt.xlabel('X')
 | 
	
		
			
				|  |  | -    plt.ylabel('Y')
 | 
	
		
			
				|  |  | +    plt.ylabel('Z')
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      # This part draws the nanoshell
 | 
	
		
			
				|  |  |  #    from matplotlib import patches
 |