Konstantin Ladutenko 8 yıl önce
ebeveyn
işleme
26d6268033
1 değiştirilmiş dosya ile 1165 ekleme ve 0 silme
  1. 1165 0
      src/nmie-impl.hpp

+ 1165 - 0
src/nmie-impl.hpp

@@ -0,0 +1,1165 @@
+#ifndef SRC_NMIE_IMPL_H_
+#define SRC_NMIE_IMPL_H_
+//**********************************************************************************//
+//    Copyright (C) 2009-2016  Ovidio Pena <ovidio@bytesfall.com>                   //
+//    Copyright (C) 2013-2016  Konstantin Ladutenko <kostyfisik@gmail.com>          //
+//                                                                                  //
+//    This file is part of scattnlay                                                //
+//                                                                                  //
+//    This program is free software: you can redistribute it and/or modify          //
+//    it under the terms of the GNU General Public License as published by          //
+//    the Free Software Foundation, either version 3 of the License, or             //
+//    (at your option) any later version.                                           //
+//                                                                                  //
+//    This program is distributed in the hope that it will be useful,               //
+//    but WITHOUT ANY WARRANTY; without even the implied warranty of                //
+//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                 //
+//    GNU General Public License for more details.                                  //
+//                                                                                  //
+//    The only additional remark is that we expect that all publications            //
+//    describing work using this software, or all commercial products               //
+//    using it, cite the following reference:                                       //
+//    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by           //
+//        a multilayered sphere," Computer Physics Communications,                  //
+//        vol. 180, Nov. 2009, pp. 2348-2354.                                       //
+//                                                                                  //
+//    You should have received a copy of the GNU General Public License             //
+//    along with this program.  If not, see <http://www.gnu.org/licenses/>.         //
+//**********************************************************************************//
+
+//**********************************************************************************//
+// This class implements the algorithm for a multilayered sphere described by:      //
+//    [1] W. Yang, "Improved recursive algorithm for light scattering by a          //
+//        multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720.  //
+//                                                                                  //
+// You can find the description of all the used equations in:                       //
+//    [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by           //
+//        a multilayered sphere," Computer Physics Communications,                  //
+//        vol. 180, Nov. 2009, pp. 2348-2354.                                       //
+//                                                                                  //
+// Hereinafter all equations numbers refer to [2]                                   //
+//**********************************************************************************//
+#include "nmie.hpp"
+#include <array>
+#include <algorithm>
+#include <cstdio>
+#include <cstdlib>
+#include <iostream>
+#include <iomanip>
+#include <stdexcept>
+#include <vector>
+#include <boost/multiprecision/cpp_int.hpp>
+#include <boost/multiprecision/cpp_bin_float.hpp>
+#include <boost/multiprecision/cpp_dec_float.hpp>
+#include <boost/multiprecision/number.hpp>
+
+namespace nmie {  
+  //helpers
+
+  //namespace nmm = std;
+  namespace nmm = boost::multiprecision;
+  
+  
+  template<class T> inline T pow2(const T value) {return value*value;}
+
+  template<class T> inline T cabs(const std::complex<T> value)
+  {return nmm::sqrt(pow2(value.real()) + pow2(value.imag()));}
+
+  template <typename FloatType>
+  int newround(FloatType x) {
+    return x >= 0 ? static_cast<int>(x + 0.5):static_cast<int>(x - 0.5);
+    //return x >= 0 ? (x + 0.5).convert_to<int>():(x - 0.5).convert_to<int>();
+  }
+  template<typename T>
+  inline std::complex<T> my_exp(const std::complex<T>& x) { 
+    using std::exp; // use ADL
+    T const& r = exp(x.real());
+    return std::polar(r, x.imag()); 
+  }  
+
+  template <typename ToFloatType, typename FromFloatType>
+  std::vector<ToFloatType> ConvertVector(std::vector<FromFloatType> x) {
+    std::vector<ToFloatType> new_x;
+    for (auto element : x) {
+      new_x.push_back(static_cast<ToFloatType>(element));
+    }
+    return new_x;
+  }
+
+  template <typename ToFloatType, typename FromFloatType>
+  std::vector<std::complex<ToFloatType> > ConvertComplexVector(std::vector<std::complex<FromFloatType> > x) {
+    std::vector<std::complex<ToFloatType> > new_x;
+    for (auto element : x) {
+      new_x.push_back(std::complex<ToFloatType>(static_cast<ToFloatType>(element.real()),
+						static_cast<ToFloatType>(element.imag())
+						)
+		      );
+    }
+    return new_x;
+  }
+
+  template <typename ToFloatType, typename FromFloatType>
+  std::vector<std::vector<std::complex<ToFloatType> > > ConvertComplexVectorVector(std::vector<std::vector<std::complex<FromFloatType> > > x) {
+    std::vector<std::vector<std::complex<ToFloatType> > > new_x;
+    std::vector<std::complex<ToFloatType> >  new_y;
+    for (auto y : x) {
+      new_y.clear();
+      for (auto element : y) {
+	new_y.push_back(std::complex<ToFloatType>(static_cast<ToFloatType>(element.real()),
+						static_cast<ToFloatType>(element.imag())
+						  )
+			);
+      }
+      new_x.push_back(new_y);
+    }
+    return new_x;
+  }
+  
+  
+
+
+  // ********************************************************************** //
+  // Returns previously calculated Qext                                     //
+  // ********************************************************************** //
+  template <typename FloatType>
+  FloatType MultiLayerMie<FloatType>::GetQext() {
+    if (!isMieCalculated_)
+      throw std::invalid_argument("You should run calculations before result request!");
+    return Qext_;
+  }
+
+
+  // ********************************************************************** //
+  // Returns previously calculated Qabs                                     //
+  // ********************************************************************** //
+  template <typename FloatType>
+  FloatType MultiLayerMie<FloatType>::GetQabs() {
+    if (!isMieCalculated_)
+      throw std::invalid_argument("You should run calculations before result request!");
+    return Qabs_;
+  }
+
+
+  // ********************************************************************** //
+  // Returns previously calculated Qsca                                     //
+  // ********************************************************************** //
+  template <typename FloatType>
+  FloatType MultiLayerMie<FloatType>::GetQsca() {
+    if (!isMieCalculated_)
+      throw std::invalid_argument("You should run calculations before result request!");
+    return Qsca_;
+  }
+
+
+  // ********************************************************************** //
+  // Returns previously calculated Qbk                                      //
+  // ********************************************************************** //
+  template <typename FloatType>
+  FloatType MultiLayerMie<FloatType>::GetQbk() {
+    if (!isMieCalculated_)
+      throw std::invalid_argument("You should run calculations before result request!");
+    return Qbk_;
+  }
+
+
+  // ********************************************************************** //
+  // Returns previously calculated Qpr                                      //
+  // ********************************************************************** //
+  template <typename FloatType>
+  FloatType MultiLayerMie<FloatType>::GetQpr() {
+    if (!isMieCalculated_)
+      throw std::invalid_argument("You should run calculations before result request!");
+    return Qpr_;
+  }
+
+
+  // ********************************************************************** //
+  // Returns previously calculated assymetry factor                         //
+  // ********************************************************************** //
+  template <typename FloatType>
+  FloatType MultiLayerMie<FloatType>::GetAsymmetryFactor() {
+    if (!isMieCalculated_)
+      throw std::invalid_argument("You should run calculations before result request!");
+    return asymmetry_factor_;
+  }
+
+
+  // ********************************************************************** //
+  // Returns previously calculated Albedo                                   //
+  // ********************************************************************** //
+  template <typename FloatType>
+  FloatType MultiLayerMie<FloatType>::GetAlbedo() {
+    if (!isMieCalculated_)
+      throw std::invalid_argument("You should run calculations before result request!");
+    return albedo_;
+  }
+
+
+  // ********************************************************************** //
+  // Returns previously calculated S1                                       //
+  // ********************************************************************** //
+  template <typename FloatType>
+  std::vector<std::complex<FloatType> > MultiLayerMie<FloatType>::GetS1() {
+    if (!isMieCalculated_)
+      throw std::invalid_argument("You should run calculations before result request!");
+    return S1_;
+  }
+
+
+  // ********************************************************************** //
+  // Returns previously calculated S2                                       //
+  // ********************************************************************** //
+  template <typename FloatType>
+  std::vector<std::complex<FloatType> > MultiLayerMie<FloatType>::GetS2() {
+    if (!isMieCalculated_)
+      throw std::invalid_argument("You should run calculations before result request!");
+    return S2_;
+  }
+
+
+  // ********************************************************************** //
+  // Modify scattering (theta) angles                                       //
+  // ********************************************************************** //
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::SetAngles(const std::vector<FloatType>& angles) {
+    MarkUncalculated();
+    theta_ = angles;
+  }
+
+
+  // ********************************************************************** //
+  // Modify size of all layers                                             //
+  // ********************************************************************** //
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::SetLayersSize(const std::vector<FloatType>& layer_size) {
+    MarkUncalculated();
+    size_param_.clear();
+    FloatType prev_layer_size = 0.0;
+    for (auto curr_layer_size : layer_size) {
+      if (curr_layer_size <= 0.0)
+        throw std::invalid_argument("Size parameter should be positive!");
+      if (prev_layer_size > curr_layer_size)
+        throw std::invalid_argument
+          ("Size parameter for next layer should be larger than the previous one!");
+      prev_layer_size = curr_layer_size;
+      size_param_.push_back(curr_layer_size);
+    }
+  }
+
+
+  // ********************************************************************** //
+  // Modify refractive index of all layers                                  //
+  // ********************************************************************** //
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::SetLayersIndex(const std::vector< std::complex<FloatType> >& index) {
+    MarkUncalculated();
+    refractive_index_ = index;
+  }
+
+
+  // ********************************************************************** //
+  // Modify coordinates for field calculation                               //
+  // ********************************************************************** //
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::SetFieldCoords(const std::vector< std::vector<FloatType> >& coords) {
+    if (coords.size() != 3)
+      throw std::invalid_argument("Error! Wrong dimension of field monitor points!");
+    if (coords[0].size() != coords[1].size() || coords[0].size() != coords[2].size())
+      throw std::invalid_argument("Error! Missing coordinates for field monitor points!");
+    coords_ = coords;
+  }
+
+
+  // ********************************************************************** //
+  // Modify index of PEC layer                                              //
+  // ********************************************************************** //
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::SetPECLayer(int layer_position) {
+    MarkUncalculated();
+    if (layer_position < 0 && layer_position != -1)
+      throw std::invalid_argument("Error! Layers are numbered from 0!");
+    PEC_layer_position_ = layer_position;
+  }
+
+
+  // ********************************************************************** //
+  // Set maximun number of terms to be used                                 //
+  // ********************************************************************** //
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::SetMaxTerms(int nmax) {
+    MarkUncalculated();
+    nmax_preset_ = nmax;
+  }
+
+
+  // ********************************************************************** //
+  // Get total size parameter of particle                                   //
+  // ********************************************************************** //
+  template <typename FloatType>
+  FloatType MultiLayerMie<FloatType>::GetSizeParameter() {
+    if (size_param_.size() > 0)
+      return size_param_.back();
+    else
+      return 0;
+  }
+
+  // ********************************************************************** //
+  // Mark uncalculated                                                      //
+  // ********************************************************************** //
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::MarkUncalculated() {
+    isExpCoeffsCalc_ = false;
+    isScaCoeffsCalc_ = false;
+
+    isMieCalculated_ = false;
+  }
+  // ********************************************************************** //
+  // Clear layer information                                                //
+  // ********************************************************************** //
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::ClearLayers() {
+    MarkUncalculated();
+    size_param_.clear();
+    refractive_index_.clear();
+  }
+
+
+  // ********************************************************************** //
+  // ********************************************************************** //
+  // ********************************************************************** //
+  //                         Computational core
+  // ********************************************************************** //
+  // ********************************************************************** //
+  // ********************************************************************** //
+
+
+  // ********************************************************************** //
+  // Calculate calcNstop - equation (17)                                    //
+  // ********************************************************************** //
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::calcNstop() {
+    const FloatType& xL = size_param_.back();
+    if (xL <= 8) {
+      nmax_ = newround(xL + 4.0*pow(xL, 1.0/3.0) + 1);
+    } else if (xL <= 4200) {
+      nmax_ = newround(xL + 4.05*pow(xL, 1.0/3.0) + 2);
+    } else {
+      nmax_ = newround(xL + 4.0*pow(xL, 1.0/3.0) + 2);
+    }
+  }
+
+
+  // ********************************************************************** //
+  // Maximum number of terms required for the calculation                   //
+  // ********************************************************************** //
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::calcNmax(unsigned int first_layer) {
+    int ri, riM1;
+    const std::vector<FloatType>& x = size_param_;
+    const std::vector<std::complex<FloatType> >& m = refractive_index_;
+    calcNstop();  // Set initial nmax_ value
+    for (unsigned int i = first_layer; i < x.size(); i++) {
+      if (static_cast<int>(i) > PEC_layer_position_)  // static_cast used to avoid warning
+        ri = newround(cabs(x[i]*m[i]));
+      else
+        ri = 0;
+      nmax_ = std::max(nmax_, ri);
+      // first layer is pec, if pec is present
+      if ((i > first_layer) && (static_cast<int>(i - 1) > PEC_layer_position_))
+        riM1 = newround(cabs(x[i - 1]* m[i]));
+      else
+        riM1 = 0;
+      nmax_ = std::max(nmax_, riM1);
+    }
+    nmax_ += 15;  // Final nmax_ value
+    // nmax_ *= nmax_;
+    // printf("using nmax %i\n", nmax_);
+  }
+
+
+  // ********************************************************************** //
+  // Calculate an - equation (5)                                            //
+  // ********************************************************************** //
+  template <typename FloatType>
+  std::complex<FloatType> MultiLayerMie<FloatType>::calc_an(int n, FloatType XL, std::complex<FloatType> Ha, std::complex<FloatType> mL,
+                                              std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL,
+                                              std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1) {
+
+    std::complex<FloatType> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
+    std::complex<FloatType> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
+    // std::cout<< std::setprecision(100)
+    // 	     << "Ql "	<< PsiXL
+    // 	     <<std::endl;
+
+
+    return Num/Denom;
+  }
+
+
+  // ********************************************************************** //
+  // Calculate bn - equation (6)                                            //
+  // ********************************************************************** //
+  template <typename FloatType>
+  std::complex<FloatType> MultiLayerMie<FloatType>::calc_bn(int n, FloatType XL, std::complex<FloatType> Hb, std::complex<FloatType> mL,
+                                              std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL,
+                                              std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1) {
+
+    std::complex<FloatType> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
+    std::complex<FloatType> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
+
+    return Num/Denom;
+  }
+
+
+  // ********************************************************************** //
+  // Calculates S1 - equation (25a)                                         //
+  // ********************************************************************** //
+  template <typename FloatType>
+  std::complex<FloatType> MultiLayerMie<FloatType>::calc_S1(int n, std::complex<FloatType> an, std::complex<FloatType> bn,
+                                              FloatType Pi, FloatType Tau) {
+    return FloatType(n + n + 1)*(Pi*an + Tau*bn)/FloatType(n*n + n);
+  }
+
+
+  // ********************************************************************** //
+  // Calculates S2 - equation (25b) (it's the same as (25a), just switches  //
+  // Pi and Tau)                                                            //
+  // ********************************************************************** //
+  template <typename FloatType>
+  std::complex<FloatType> MultiLayerMie<FloatType>::calc_S2(int n, std::complex<FloatType> an, std::complex<FloatType> bn,
+                                              FloatType Pi, FloatType Tau) {
+    return calc_S1(n, an, bn, Tau, Pi);
+  }
+
+
+  //**********************************************************************************//
+  // This function calculates the logarithmic derivatives of the Riccati-Bessel       //
+  // functions (D1 and D3) for a complex argument (z).                                //
+  // Equations (16a), (16b) and (18a) - (18d)                                         //
+  //                                                                                  //
+  // Input parameters:                                                                //
+  //   z: Complex argument to evaluate D1 and D3                                      //
+  //   nmax_: Maximum number of terms to calculate D1 and D3                          //
+  //                                                                                  //
+  // Output parameters:                                                               //
+  //   D1, D3: Logarithmic derivatives of the Riccati-Bessel functions                //
+  //**********************************************************************************//
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::calcD1D3(const std::complex<FloatType> z,
+                               std::vector<std::complex<FloatType> >& D1,
+                               std::vector<std::complex<FloatType> >& D3) {
+
+    // Downward recurrence for D1 - equations (16a) and (16b)
+    D1[nmax_] = std::complex<FloatType>(0.0, 0.0);
+    std::complex<FloatType> c_one(1.0, 0.0);
+    const std::complex<FloatType> zinv = std::complex<FloatType>(1.0, 0.0)/z;
+    for (int n = nmax_; n > 0; n--) {
+      D1[n - 1] = static_cast<FloatType>(n)*zinv - c_one/(D1[n] + static_cast<FloatType>(n)*zinv);
+    }
+    // TODO: Do we need this check?
+    // if (cabs(D1[0]) > 1.0e15) {
+    //   throw std::invalid_argument("Unstable D1! Please, try to change input parameters!\n");
+    // //printf("Warning: Potentially unstable D1! Please, try to change input parameters!\n");
+    // }
+
+    // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
+    PsiZeta_[0] = static_cast<FloatType>(0.5)*(static_cast<FloatType>(1.0) - std::complex<FloatType>(nmm::cos(2.0*z.real()), nmm::sin(2.0*z.real()))
+		       *static_cast<FloatType>(nmm::exp(-2.0*z.imag())));
+    D3[0] = std::complex<FloatType>(0.0, 1.0);
+
+    for (int n = 1; n <= nmax_; n++) {
+      PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<FloatType>(n)*zinv - D1[n - 1])
+                                   *(static_cast<FloatType>(n)*zinv - D3[n - 1]);
+      D3[n] = D1[n] + std::complex<FloatType>(0.0, 1.0)/PsiZeta_[n];
+    }
+  }
+
+
+  //**********************************************************************************//
+  // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a       //
+  // complex argument (z).                                                            //
+  // Equations (20a) - (21b)                                                          //
+  //                                                                                  //
+  // Input parameters:                                                                //
+  //   z: Complex argument to evaluate Psi and Zeta                                   //
+  //   nmax: Maximum number of terms to calculate Psi and Zeta                        //
+  //                                                                                  //
+  // Output parameters:                                                               //
+  //   Psi, Zeta: Riccati-Bessel functions                                            //
+  //**********************************************************************************//
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::calcPsiZeta(std::complex<FloatType> z,
+                                  std::vector<std::complex<FloatType> >& Psi,
+                                  std::vector<std::complex<FloatType> >& Zeta) {
+  
+    std::complex<FloatType> c_i(0.0, 1.0);
+    std::vector<std::complex<FloatType> > D1(nmax_ + 1), D3(nmax_ + 1);
+
+    // First, calculate the logarithmic derivatives
+    calcD1D3(z, D1, D3);
+
+    // Now, use the upward recurrence to calculate Psi and Zeta - equations (20a) - (21b)
+    Psi[0] = std::sin(z);
+    Zeta[0] = std::sin(z) - c_i*std::cos(z);
+    for (int n = 1; n <= nmax_; n++) {
+      Psi[n]  =  Psi[n - 1]*(std::complex<FloatType>(n,0.0)/z - D1[n - 1]);
+      Zeta[n] = Zeta[n - 1]*(std::complex<FloatType>(n,0.0)/z - D3[n - 1]);
+    }
+  }
+
+
+  //**********************************************************************************//
+  // This function calculates Pi and Tau for a given value of cos(Theta).             //
+  // Equations (26a) - (26c)                                                          //
+  //                                                                                  //
+  // Input parameters:                                                                //
+  //   nmax_: Maximum number of terms to calculate Pi and Tau                         //
+  //   nTheta: Number of scattering angles                                            //
+  //   Theta: Array containing all the scattering angles where the scattering         //
+  //          amplitudes will be calculated                                           //
+  //                                                                                  //
+  // Output parameters:                                                               //
+  //   Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c)   //
+  //**********************************************************************************//
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::calcPiTau(const FloatType& costheta,
+                                std::vector<FloatType>& Pi, std::vector<FloatType>& Tau) {
+
+    int i;
+    //****************************************************//
+    // Equations (26a) - (26c)                            //
+    //****************************************************//
+    // Initialize Pi and Tau
+    Pi[0] = 1.0;  // n=1
+    Tau[0] = costheta;
+    // Calculate the actual values
+    if (nmax_ > 1) {
+      Pi[1] = 3*costheta*Pi[0]; //n=2
+      Tau[1] = 2*costheta*Pi[1] - 3*Pi[0];
+      for (i = 2; i < nmax_; i++) { //n=[3..nmax_]
+        Pi[i] = ((i + i + 1)*costheta*Pi[i - 1] - (i + 1)*Pi[i - 2])/i;
+        Tau[i] = (i + 1)*costheta*Pi[i] - (i + 2)*Pi[i - 1];
+      }
+    }
+  }  // end of MultiLayerMie::calcPiTau(...)
+
+
+  //**********************************************************************************//
+  // This function calculates vector spherical harmonics (eq. 4.50, p. 95 BH),        //
+  // required to calculate the near-field parameters.                                 //
+  //                                                                                  //
+  // Input parameters:                                                                //
+  //   Rho: Radial distance                                                           //
+  //   Phi: Azimuthal angle                                                           //
+  //   Theta: Polar angle                                                             //
+  //   rn: Either the spherical Ricatti-Bessel function of first or third kind        //
+  //   Dn: Logarithmic derivative of rn                                               //
+  //   Pi, Tau: Angular functions Pi and Tau                                          //
+  //   n: Order of vector spherical harmonics                                         //
+  //                                                                                  //
+  // Output parameters:                                                               //
+  //   Mo1n, Me1n, No1n, Ne1n: Complex vector spherical harmonics                     //
+  //**********************************************************************************//
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::calcSpherHarm(const std::complex<FloatType> Rho, const FloatType Theta, const FloatType Phi,
+                                    const std::complex<FloatType>& rn, const std::complex<FloatType>& Dn,
+                                    const FloatType& Pi, const FloatType& Tau, const FloatType& n,
+                                    std::vector<std::complex<FloatType> >& Mo1n, std::vector<std::complex<FloatType> >& Me1n, 
+                                    std::vector<std::complex<FloatType> >& No1n, std::vector<std::complex<FloatType> >& Ne1n) {
+
+    // using eq 4.50 in BH
+    std::complex<FloatType> c_zero(0.0, 0.0);
+
+    using nmm::sin;
+    using nmm::cos;
+    Mo1n[0] = c_zero;
+    Mo1n[1] = cos(Phi)*Pi*rn/Rho;
+    Mo1n[2] = -sin(Phi)*Tau*rn/Rho;
+    Me1n[0] = c_zero;
+    Me1n[1] = -sin(Phi)*Pi*rn/Rho;
+    Me1n[2] = -cos(Phi)*Tau*rn/Rho;
+    No1n[0] = sin(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;
+    No1n[1] = sin(Phi)*Tau*Dn*rn/Rho;
+    No1n[2] = cos(Phi)*Pi*Dn*rn/Rho;
+    Ne1n[0] = cos(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;
+    Ne1n[1] = cos(Phi)*Tau*Dn*rn/Rho;
+    Ne1n[2] = -sin(Phi)*Pi*Dn*rn/Rho;
+  }  // end of MultiLayerMie::calcSpherHarm(...)
+
+
+  //**********************************************************************************//
+  // This function calculates the scattering coefficients required to calculate       //
+  // both the near- and far-field parameters.                                         //
+  //                                                                                  //
+  // Input parameters:                                                                //
+  //   L: Number of layers                                                            //
+  //   pl: Index of PEC layer. If there is none just send -1                          //
+  //   x: Array containing the size parameters of the layers [0..L-1]                 //
+  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
+  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
+  //         calculations. Only use it if you know what you are doing, otherwise      //
+  //         set this parameter to -1 and the function will calculate it.             //
+  //                                                                                  //
+  // Output parameters:                                                               //
+  //   an, bn: Complex scattering amplitudes                                          //
+  //                                                                                  //
+  // Return value:                                                                    //
+  //   Number of multipolar expansion terms used for the calculations                 //
+  //**********************************************************************************//
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::calcScattCoeffs() {
+
+    isScaCoeffsCalc_ = false;
+
+    const std::vector<FloatType>& x = size_param_;
+    const std::vector<std::complex<FloatType> >& m = refractive_index_;
+    const int& pl = PEC_layer_position_;
+    const int L = refractive_index_.size();
+
+
+    //************************************************************************//
+    // Calculate the index of the first layer. It can be either 0 (default)   //
+    // or the index of the outermost PEC layer. In the latter case all layers //
+    // below the PEC are discarded.                                           //
+    // ***********************************************************************//
+    int fl = (pl > 0) ? pl : 0;
+    if (nmax_preset_ <= 0) calcNmax(fl);
+    else nmax_ = nmax_preset_;
+
+    std::complex<FloatType> z1, z2;
+    //**************************************************************************//
+    // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which  //
+    // means that index = layer number - 1 or index = n - 1. The only exception //
+    // are the arrays for representing D1, D3 and Q because they need a value   //
+    // for the index 0 (zero), hence it is important to consider this shift     //
+    // between different arrays. The change was done to optimize memory usage.  //
+    //**************************************************************************//
+    // Allocate memory to the arrays
+    std::vector<std::complex<FloatType> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
+                                       D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
+
+    std::vector<std::vector<std::complex<FloatType> > > Q(L), Ha(L), Hb(L);
+
+    for (int l = 0; l < L; l++) {
+      Q[l].resize(nmax_ + 1);
+      Ha[l].resize(nmax_);
+      Hb[l].resize(nmax_);
+    }
+
+    an_.resize(nmax_);
+    bn_.resize(nmax_);
+    PsiZeta_.resize(nmax_ + 1);
+
+    std::vector<std::complex<FloatType> > PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
+
+    //*************************************************//
+    // Calculate D1 and D3 for z1 in the first layer   //
+    //*************************************************//
+    if (fl == pl) {  // PEC layer
+      for (int n = 0; n <= nmax_; n++) {
+        D1_mlxl[n] = std::complex<FloatType>(0.0, - 1.0);
+        D3_mlxl[n] = std::complex<FloatType>(0.0, 1.0);
+      }
+    } else { // Regular layer
+      z1 = x[fl]* m[fl];
+      // Calculate D1 and D3
+      calcD1D3(z1, D1_mlxl, D3_mlxl);
+    }
+
+
+    //******************************************************************//
+    // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
+    //******************************************************************//
+    for (int n = 0; n < nmax_; n++) {
+      Ha[fl][n] = D1_mlxl[n + 1];
+      Hb[fl][n] = D1_mlxl[n + 1];
+    }
+    //*****************************************************//
+    // Iteration from the second layer to the last one (L) //
+    //*****************************************************//
+    std::complex<FloatType> Temp, Num, Denom;
+    std::complex<FloatType> G1, G2;
+    for (int l = fl + 1; l < L; l++) {
+      //************************************************************//
+      //Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L   //
+      //************************************************************//
+      z1 = x[l]*m[l];
+      z2 = x[l - 1]*m[l];
+      //Calculate D1 and D3 for z1
+      calcD1D3(z1, D1_mlxl, D3_mlxl);
+      //Calculate D1 and D3 for z2
+      calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
+
+      //*************************************************//
+      //Calculate Q, Ha and Hb in the layers fl + 1..L   //
+      //*************************************************//
+      // Upward recurrence for Q - equations (19a) and (19b)
+      Num = std::complex<FloatType>(nmm::exp(-2.0*(z1.imag() - z2.imag())), 0.0)
+	*std::complex<FloatType>(nmm::cos(-2.0*z2.real()) - nmm::exp(-2.0*z2.imag()), nmm::sin(-2.0*z2.real()));
+      Denom = std::complex<FloatType>(nmm::cos(-2.0*z1.real()) - nmm::exp(-2.0*z1.imag()), nmm::sin(-2.0*z1.real()));
+      Q[l][0] = Num/Denom;
+
+      for (int n = 1; n <= nmax_; n++) {
+        Num = (z1*D1_mlxl[n] + FloatType(n))*(FloatType(n) - z1*D3_mlxl[n - 1]);
+        Denom = (z2*D1_mlxlM1[n] + FloatType(n))*(FloatType(n) - z2*D3_mlxlM1[n - 1]);
+        Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
+      }
+      // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
+      for (int n = 1; n <= nmax_; n++) {
+        //Ha
+        if ((l - 1) == pl) { // The layer below the current one is a PEC layer
+          G1 = -D1_mlxlM1[n];
+          G2 = -D3_mlxlM1[n];
+        } else {
+          G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
+          G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
+        }  // end of if PEC
+        Temp = Q[l][n]*G1;
+        Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
+        Denom = G2 - Temp;
+        Ha[l][n - 1] = Num/Denom;
+        //Hb
+        if ((l - 1) == pl) { // The layer below the current one is a PEC layer
+          G1 = Hb[l - 1][n - 1];
+          G2 = Hb[l - 1][n - 1];
+        } else {
+          G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
+          G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
+        }  // end of if PEC
+
+        Temp = Q[l][n]*G1;
+        Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
+        Denom = (G2- Temp);
+        Hb[l][n - 1] = (Num/ Denom);
+      }  // end of for Ha and Hb terms
+    }  // end of for layers iteration
+
+    //**************************************//
+    //Calculate Psi and Zeta for XL         //
+    //**************************************//
+    // Calculate PsiXL and ZetaXL
+    calcPsiZeta(std::complex<FloatType>(x[L - 1],0.0), PsiXL, ZetaXL);
+
+
+    //*********************************************************************//
+    // Finally, we calculate the scattering coefficients (an and bn) and   //
+    // the angular functions (Pi and Tau). Note that for these arrays the  //
+    // first layer is 0 (zero), in future versions all arrays will follow  //
+    // this convention to save memory. (13 Nov, 2014)                      //
+    //*********************************************************************//
+    for (int n = 0; n < nmax_; n++) {
+      //********************************************************************//
+      //Expressions for calculating an and bn coefficients are not valid if //
+      //there is only one PEC layer (ie, for a simple PEC sphere).          //
+      //********************************************************************//
+      if (pl < (L - 1)) {
+        an_[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
+        bn_[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
+      } else {
+        an_[n] = calc_an(n + 1, x[L - 1], std::complex<FloatType>(0.0, 0.0), std::complex<FloatType>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
+        bn_[n] = PsiXL[n + 1]/ZetaXL[n + 1];
+      }
+    }  // end of for an and bn terms
+    isScaCoeffsCalc_ = true;
+  }  // end of MultiLayerMie::calcScattCoeffs()
+
+
+  //**********************************************************************************//
+  // This function calculates the actual scattering parameters and amplitudes         //
+  //                                                                                  //
+  // Input parameters:                                                                //
+  //   L: Number of layers                                                            //
+  //   pl: Index of PEC layer. If there is none just send -1                          //
+  //   x: Array containing the size parameters of the layers [0..L-1]                 //
+  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
+  //   nTheta: Number of scattering angles                                            //
+  //   Theta: Array containing all the scattering angles where the scattering         //
+  //          amplitudes will be calculated                                           //
+  //   nmax_: Maximum number of multipolar expansion terms to be used for the         //
+  //         calculations. Only use it if you know what you are doing, otherwise      //
+  //         set this parameter to -1 and the function will calculate it              //
+  //                                                                                  //
+  // Output parameters:                                                               //
+  //   Qext: Efficiency factor for extinction                                         //
+  //   Qsca: Efficiency factor for scattering                                         //
+  //   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
+  //   Qbk: Efficiency factor for backscattering                                      //
+  //   Qpr: Efficiency factor for the radiation pressure                              //
+  //   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
+  //   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
+  //   S1, S2: Complex scattering amplitudes                                          //
+  //                                                                                  //
+  // Return value:                                                                    //
+  //   Number of multipolar expansion terms used for the calculations                 //
+  //**********************************************************************************//
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::RunMieCalculation() {
+    if (size_param_.size() != refractive_index_.size())
+      throw std::invalid_argument("Each size parameter should have only one index!");
+    if (size_param_.size() == 0)
+      throw std::invalid_argument("Initialize model first!");
+
+    const std::vector<FloatType>& x = size_param_;
+
+    MarkUncalculated();
+
+    // Calculate scattering coefficients
+    calcScattCoeffs();
+
+    // Initialize the scattering parameters
+    Qext_ = 0.0;
+    Qsca_ = 0.0;
+    Qabs_ = 0.0;
+    Qbk_ = 0.0;
+    Qpr_ = 0.0;
+
+    asymmetry_factor_ = 0.0;
+    albedo_ = 0.0;
+
+    // Initialize the scattering amplitudes
+    std::vector<std::complex<FloatType> > tmp1(theta_.size(),std::complex<FloatType>(0.0, 0.0));
+    S1_.swap(tmp1);
+    S2_ = S1_;
+
+    std::vector<FloatType> Pi(nmax_), Tau(nmax_);
+
+    std::complex<FloatType> Qbktmp(0.0, 0.0);
+    std::vector< std::complex<FloatType> > Qbktmp_ch(nmax_ - 1, Qbktmp);
+    // By using downward recurrence we avoid loss of precision due to float rounding errors
+    // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
+    //      http://en.wikipedia.org/wiki/Loss_of_significance
+    for (int i = nmax_ - 2; i >= 0; i--) {
+      const int n = i + 1;
+      // Equation (27)
+      Qext_ += (n + n + 1.0)*(an_[i].real() + bn_[i].real());
+      // Equation (28)
+      Qsca_ += (n + n + 1.0)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
+                            + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
+      // Equation (29)
+      Qpr_ += ((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real())
+               + ((FloatType)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real());
+      // Equation (33)
+      Qbktmp += (FloatType)(n + n + 1)*(1 - 2*(n % 2))*(an_[i]- bn_[i]);
+      // Calculate the scattering amplitudes (S1 and S2)    //
+      // Precalculate cos(theta) - gives about 5% speed up.
+      std::vector<FloatType> costheta(theta_.size(), 0.0);
+      for (int t = 0; t < theta_.size(); t++) {
+	costheta[t] = nmm::cos(theta_[t]);
+      }
+      // Equations (25a) - (25b)                            //
+      for (unsigned int t = 0; t < theta_.size(); t++) {
+        calcPiTau(costheta[t], Pi, Tau);
+
+        S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[i], Tau[i]);
+        S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[i], Tau[i]);
+      }
+    }
+    FloatType x2 = pow2(x.back());
+    Qext_ = 2.0*(Qext_)/x2;                                 // Equation (27)
+    Qsca_ = 2.0*(Qsca_)/x2;                                 // Equation (28)
+    Qpr_ = Qext_ - 4.0*(Qpr_)/x2;                           // Equation (29)
+    Qabs_ = Qext_ - Qsca_;                                  // Equation (30)
+    albedo_ = Qsca_/Qext_;                                  // Equation (31)
+    asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_;               // Equation (32)
+    Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2;    // Equation (33)
+
+    isMieCalculated_ = true;
+  }
+
+
+  //**********************************************************************************//
+  // This function calculates the expansion coefficients inside the particle,         //
+  // required to calculate the near-field parameters.                                 //
+  //                                                                                  //
+  // Input parameters:                                                                //
+  //   L: Number of layers                                                            //
+  //   pl: Index of PEC layer. If there is none just send -1                          //
+  //   x: Array containing the size parameters of the layers [0..L-1]                 //
+  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
+  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
+  //         calculations. Only use it if you know what you are doing, otherwise      //
+  //         set this parameter to -1 and the function will calculate it.             //
+  //                                                                                  //
+  // Output parameters:                                                               //
+  //   aln, bln, cln, dln: Complex scattering amplitudes inside the particle          //
+  //                                                                                  //
+  // Return value:                                                                    //
+  //   Number of multipolar expansion terms used for the calculations                 //
+  //**********************************************************************************//
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::calcExpanCoeffs() {
+    if (!isScaCoeffsCalc_)
+      throw std::invalid_argument("(calcExpanCoeffs) You should calculate external coefficients first!");
+
+    isExpCoeffsCalc_ = false;
+
+    std::complex<FloatType> c_one(1.0, 0.0), c_zero(0.0, 0.0);
+
+    const int L = refractive_index_.size();
+
+    aln_.resize(L + 1);
+    bln_.resize(L + 1);
+    cln_.resize(L + 1);
+    dln_.resize(L + 1);
+    for (int l = 0; l <= L; l++) {
+      aln_[l].resize(nmax_);
+      bln_[l].resize(nmax_);
+      cln_[l].resize(nmax_);
+      dln_[l].resize(nmax_);
+    }
+
+    // Yang, paragraph under eq. A3
+    // a^(L + 1)_n = a_n, d^(L + 1) = 1 ...
+    for (int n = 0; n < nmax_; n++) {
+      aln_[L][n] = an_[n];
+      bln_[L][n] = bn_[n];
+      cln_[L][n] = c_one;
+      dln_[L][n] = c_one;
+    }
+
+    std::vector<std::complex<FloatType> > D1z(nmax_ + 1), D1z1(nmax_ + 1), D3z(nmax_ + 1), D3z1(nmax_ + 1);
+    std::vector<std::complex<FloatType> > Psiz(nmax_ + 1), Psiz1(nmax_ + 1), Zetaz(nmax_ + 1), Zetaz1(nmax_ + 1);
+    std::complex<FloatType> denomZeta, denomPsi, T1, T2, T3, T4;
+
+    auto& m = refractive_index_;
+    std::vector< std::complex<FloatType> > m1(L);
+
+    for (int l = 0; l < L - 1; l++) m1[l] = m[l + 1];
+    m1[L - 1] = std::complex<FloatType> (1.0, 0.0);
+
+    std::complex<FloatType> z, z1;
+    for (int l = L - 1; l >= 0; l--) {
+      if (l <= PEC_layer_position_) { // We are inside a PEC. All coefficients must be zero!!!
+        for (int n = 0; n < nmax_; n++) {
+          // aln
+          aln_[l][n] = c_zero;
+          // bln
+          bln_[l][n] = c_zero;
+          // cln
+          cln_[l][n] = c_zero;
+          // dln
+          dln_[l][n] = c_zero;
+        }
+      } else { // Regular material, just do the calculation
+        z = size_param_[l]*m[l];
+        z1 = size_param_[l]*m1[l];
+
+        calcD1D3(z, D1z, D3z);
+        calcD1D3(z1, D1z1, D3z1);
+        calcPsiZeta(z, Psiz, Zetaz);
+        calcPsiZeta(z1, Psiz1, Zetaz1);
+
+        for (int n = 0; n < nmax_; n++) {
+          int n1 = n + 1;
+
+          denomZeta = Zetaz[n1]*(D1z[n1] - D3z[n1]);
+          denomPsi  =  Psiz[n1]*(D1z[n1] - D3z[n1]);
+
+          T1 =  aln_[l + 1][n]*Zetaz1[n1] - dln_[l + 1][n]*Psiz1[n1];
+          T2 = (bln_[l + 1][n]*Zetaz1[n1] - cln_[l + 1][n]*Psiz1[n1])*m[l]/m1[l];
+
+          T3 = (dln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - aln_[l + 1][n]*D3z1[n1]*Zetaz1[n1])*m[l]/m1[l];
+          T4 =  cln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - bln_[l + 1][n]*D3z1[n1]*Zetaz1[n1];
+
+          // aln
+          aln_[l][n] = (D1z[n1]*T1 + T3)/denomZeta;
+          // bln
+          bln_[l][n] = (D1z[n1]*T2 + T4)/denomZeta;
+          // cln
+          cln_[l][n] = (D3z[n1]*T2 + T4)/denomPsi;
+          // dln
+          dln_[l][n] = (D3z[n1]*T1 + T3)/denomPsi;
+        }  // end of all n
+      }  // end PEC condition
+    }  // end of all l
+
+    // Check the result and change  aln_[0][n] and aln_[0][n] for exact zero
+    for (int n = 0; n < nmax_; ++n) {
+      if (cabs(aln_[0][n]) < 1e-10) aln_[0][n] = 0.0;
+      else {
+        //throw std::invalid_argument("Unstable calculation of aln_[0][n]!");
+	std::cout<< std::setprecision(100)
+		 << "Warning: Potentially unstable calculation of aln[0]["
+		 << n << "] = "<< aln_[0][n] <<std::endl;
+        aln_[0][n] = 0.0;
+      }
+      if (cabs(bln_[0][n]) < 1e-10) bln_[0][n] = 0.0;
+      else {
+        //throw std::invalid_argument("Unstable calculation of bln_[0][n]!");
+	std::cout<< std::setprecision(100)
+		 << "Warning: Potentially unstable calculation of bln[0]["
+		 << n << "] = "<< bln_[0][n] <<std::endl;
+        bln_[0][n] = 0.0;
+      }
+    }
+
+    isExpCoeffsCalc_ = true;
+  }  // end of   void MultiLayerMie::calcExpanCoeffs()
+
+
+  //**********************************************************************************//
+  // This function calculates the electric (E) and magnetic (H) fields inside and     //
+  // around the particle.                                                             //
+  //                                                                                  //
+  // Input parameters (coordinates of the point):                                     //
+  //   Rho: Radial distance                                                           //
+  //   Phi: Azimuthal angle                                                           //
+  //   Theta: Polar angle                                                             //
+  //                                                                                  //
+  // Output parameters:                                                               //
+  //   E, H: Complex electric and magnetic fields                                     //
+  //**********************************************************************************//
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::calcField(const FloatType Rho, const FloatType Theta, const FloatType Phi,
+                                std::vector<std::complex<FloatType> >& E, std::vector<std::complex<FloatType> >& H)  {
+
+    std::complex<FloatType> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
+    std::vector<std::complex<FloatType> > ipow = {c_one, c_i, -c_one, -c_i}; // Vector containing precomputed integer powers of i to avoid computation
+    std::vector<std::complex<FloatType> > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3);
+    std::vector<std::complex<FloatType> > M1o1n(3), M1e1n(3), N1o1n(3), N1e1n(3);
+    std::vector<std::complex<FloatType> > Psi(nmax_ + 1), D1n(nmax_ + 1), Zeta(nmax_ + 1), D3n(nmax_ + 1);
+    std::vector<FloatType> Pi(nmax_), Tau(nmax_);
+
+    int l = 0;  // Layer number
+    std::complex<FloatType> ml;
+
+    // Initialize E and H
+    for (int i = 0; i < 3; i++) {
+      E[i] = c_zero;
+      H[i] = c_zero;
+    }
+    
+    if (Rho > size_param_.back()) {
+      l = size_param_.size();
+      ml = c_one;
+    } else {
+      for (int i = size_param_.size() - 1; i >= 0 ; i--) {
+        if (Rho <= size_param_[i]) {
+          l = i;
+        }
+      }
+      ml = refractive_index_[l];
+    }
+
+    // Calculate logarithmic derivative of the Ricatti-Bessel functions
+    calcD1D3(Rho*ml, D1n, D3n);
+    // Calculate Ricatti-Bessel functions
+    calcPsiZeta(Rho*ml, Psi, Zeta);
+
+    // Calculate angular functions Pi and Tau
+    calcPiTau(nmm::cos(Theta), Pi, Tau);
+
+    for (int n = nmax_ - 2; n >= 0; n--) {
+      int n1 = n + 1;
+      FloatType rn = static_cast<FloatType>(n1);
+
+      // using BH 4.12 and 4.50
+      calcSpherHarm(Rho*ml, Theta, Phi, Psi[n1], D1n[n1], Pi[n], Tau[n], rn, M1o1n, M1e1n, N1o1n, N1e1n);
+      calcSpherHarm(Rho*ml, Theta, Phi, Zeta[n1], D3n[n1], Pi[n], Tau[n], rn, M3o1n, M3e1n, N3o1n, N3e1n);
+
+      // Total field in the lth layer: eqs. (1) and (2) in Yang, Appl. Opt., 42 (2003) 1710-1720
+      std::complex<FloatType> En = ipow[n1 % 4]
+	*static_cast<FloatType>((rn + rn + 1.0)/(rn*rn + rn));
+      for (int i = 0; i < 3; i++) {
+        // electric field E [V m - 1] = EF*E0
+        E[i] += En*(cln_[l][n]*M1o1n[i] - c_i*dln_[l][n]*N1e1n[i]
+              + c_i*aln_[l][n]*N3e1n[i] -     bln_[l][n]*M3o1n[i]);
+
+        H[i] += En*(-dln_[l][n]*M1e1n[i] - c_i*cln_[l][n]*N1o1n[i]
+              +  c_i*bln_[l][n]*N3o1n[i] +     aln_[l][n]*M3e1n[i]);
+      }
+    }  // end of for all n
+
+    // magnetic field
+    std::complex<FloatType> hffact = ml/static_cast<FloatType>(cc_*mu_);
+    for (int i = 0; i < 3; i++) {
+      H[i] = hffact*H[i];
+    }
+   }  // end of MultiLayerMie::calcField(...)
+
+
+  //**********************************************************************************//
+  // This function calculates complex electric and magnetic field in the surroundings //
+  // and inside the particle.                                                         //
+  //                                                                                  //
+  // Input parameters:                                                                //
+  //   L: Number of layers                                                            //
+  //   pl: Index of PEC layer. If there is none just send 0 (zero)                    //
+  //   x: Array containing the size parameters of the layers [0..L-1]                 //
+  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
+  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
+  //         calculations. Only use it if you know what you are doing, otherwise      //
+  //         set this parameter to 0 (zero) and the function will calculate it.       //
+  //   ncoord: Number of coordinate points                                            //
+  //   Coords: Array containing all coordinates where the complex electric and        //
+  //           magnetic fields will be calculated                                     //
+  //                                                                                  //
+  // Output parameters:                                                               //
+  //   E, H: Complex electric and magnetic field at the provided coordinates          //
+  //                                                                                  //
+  // Return value:                                                                    //
+  //   Number of multipolar expansion terms used for the calculations                 //
+  //**********************************************************************************//
+  template <typename FloatType>
+  void MultiLayerMie<FloatType>::RunFieldCalculation() {
+    FloatType Rho, Theta, Phi;
+
+    // Calculate scattering coefficients an_ and bn_
+    calcScattCoeffs();
+
+    // Calculate expansion coefficients aln_,  bln_, cln_, and dln_
+    calcExpanCoeffs();
+
+    long total_points = coords_[0].size();
+    E_.resize(total_points);
+    H_.resize(total_points);
+    for (auto& f : E_) f.resize(3);
+    for (auto& f : H_) f.resize(3);
+
+    for (int point = 0; point < total_points; point++) {
+      const FloatType& Xp = coords_[0][point];
+      const FloatType& Yp = coords_[1][point];
+      const FloatType& Zp = coords_[2][point];
+
+      // Convert to spherical coordinates
+      Rho = nmm::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
+
+      // If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
+      Theta = (Rho > 0.0) ? nmm::acos(Zp/Rho) : 0.0;
+
+      // If Xp=Yp=0 then Phi is undefined. Just set it to zero to avoid problems
+      if (Xp == 0.0)
+        Phi = (Yp != 0.0) ? nmm::asin(Yp/nmm::sqrt(pow2(Xp) + pow2(Yp))) : 0.0;
+      else
+        Phi = nmm::acos(Xp/nmm::sqrt(pow2(Xp) + pow2(Yp)));
+
+      // Avoid convergence problems due to Rho too small
+      if (Rho < 1e-5) Rho = 1e-5;
+
+      //*******************************************************//
+      // external scattering field = incident + scattered      //
+      // BH p.92 (4.37), 94 (4.45), 95 (4.50)                  //
+      // assume: medium is non-absorbing; refim = 0; Uabs = 0  //
+      //*******************************************************//
+
+      // This array contains the fields in spherical coordinates
+      std::vector<std::complex<FloatType> > Es(3), Hs(3);
+
+      // Do the actual calculation of electric and magnetic field
+      calcField(Rho, Theta, Phi, Es, Hs);
+
+      { //Now, convert the fields back to cartesian coordinates
+        using nmm::sin;
+        using nmm::cos;
+        E_[point][0] = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];
+        E_[point][1] = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];
+        E_[point][2] = cos(Theta)*Es[0] - sin(Theta)*Es[1];
+
+        H_[point][0] = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];
+        H_[point][1] = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
+        H_[point][2] = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
+      }
+    }  // end of for all field coordinates
+  }  //  end of MultiLayerMie::RunFieldCalculation()
+}  // end of namespace nmie
+#endif  // SRC_NMIE_IMPL_H_