|
@@ -0,0 +1,110 @@
|
|
|
|
+#!/usr/bin/env python
|
|
|
|
+# -*- coding: UTF-8 -*-
|
|
|
|
+#
|
|
|
|
+# Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
|
|
|
|
+#
|
|
|
|
+# This file is part of python-scattnlay
|
|
|
|
+#
|
|
|
|
+# This program is free software: you can redistribute it and/or modify
|
|
|
|
+# it under the terms of the GNU General Public License as published by
|
|
|
|
+# the Free Software Foundation, either version 3 of the License, or
|
|
|
|
+# (at your option) any later version.
|
|
|
|
+#
|
|
|
|
+# This program is distributed in the hope that it will be useful,
|
|
|
|
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
+# GNU General Public License for more details.
|
|
|
|
+#
|
|
|
|
+# The only additional remark is that we expect that all publications
|
|
|
|
+# describing work using this software, or all commercial products
|
|
|
|
+# using it, cite the following reference:
|
|
|
|
+# [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
|
|
|
|
+# a multilayered sphere," Computer Physics Communications,
|
|
|
|
+# vol. 180, Nov. 2009, pp. 2348-2354.
|
|
|
|
+#
|
|
|
|
+# You should have received a copy of the GNU General Public License
|
|
|
|
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
+
|
|
|
|
+# This test case calculates the electric field in the
|
|
|
|
+# E-k plane, for an spherical Si-Ag-Si nanoparticle. Core radius is 17.74 nm,
|
|
|
|
+# inner layer 23.31nm, outer layer 22.95nm. Working wavelength is 800nm, we use
|
|
|
|
+# silicon epsilon=13.64+i0.047, silver epsilon= -28.05+i1.525
|
|
|
|
+
|
|
|
|
+import scattnlay
|
|
|
|
+from scattnlay import fieldnlay
|
|
|
|
+import numpy as np
|
|
|
|
+
|
|
|
|
+# epsilon_Si = 13.64 + 0.047j
|
|
|
|
+# epsilon_Ag = -28.05 + 1.525j
|
|
|
|
+epsilon_Si = 2.0 + 0.047j
|
|
|
|
+epsilon_Ag = -2.0 + 1.525j
|
|
|
|
+
|
|
|
|
+index_Si = np.sqrt(epsilon_Si)
|
|
|
|
+index_Ag = np.sqrt(epsilon_Ag)
|
|
|
|
+
|
|
|
|
+# Values for 800 nm, taken from http://refractiveindex.info/
|
|
|
|
+index_Si = 3.69410 + 0.0065435j
|
|
|
|
+index_Ag = 0.18599 + 4.9886j
|
|
|
|
+
|
|
|
|
+WL=800 #nm
|
|
|
|
+core_width = 17.74 #nm Si
|
|
|
|
+inner_width = 23.31 #nm Ag
|
|
|
|
+outer_width = 22.95 #nm Si
|
|
|
|
+
|
|
|
|
+core_r = core_width
|
|
|
|
+inner_r = core_r+inner_width
|
|
|
|
+outer_r = inner_r+outer_width
|
|
|
|
+
|
|
|
|
+# n1 = 1.53413
|
|
|
|
+# n2 = 0.565838 + 7.23262j
|
|
|
|
+nm = 1.0
|
|
|
|
+
|
|
|
|
+x = np.ones((1, 3), dtype = np.float64)
|
|
|
|
+x[0, 0] = 2.0*np.pi*core_r/WL
|
|
|
|
+x[0, 1] = 2.0*np.pi*inner_r/WL
|
|
|
|
+x[0, 2] = 2.0*np.pi*outer_r/WL
|
|
|
|
+
|
|
|
|
+m = np.ones((1, 3), dtype = np.complex128)
|
|
|
|
+m[0, 0] = index_Si/nm
|
|
|
|
+m[0, 1] = index_Ag/nm
|
|
|
|
+m[0, 2] = index_Si/nm
|
|
|
|
+
|
|
|
|
+print "x =", x
|
|
|
|
+print "m =", m
|
|
|
|
+
|
|
|
|
+npts = 281
|
|
|
|
+
|
|
|
|
+scan = np.linspace(-2.0*x[0, 2], 2.0*x[0, 2], npts)
|
|
|
|
+
|
|
|
|
+coord = np.zeros((npts, 3), dtype = np.float64)
|
|
|
|
+coord[:, 0] = scan
|
|
|
|
+
|
|
|
|
+terms, E, H = fieldnlay(x, m, coord)
|
|
|
|
+
|
|
|
|
+Er = np.absolute(E)
|
|
|
|
+
|
|
|
|
+# |E|/|Eo|
|
|
|
|
+Eh = np.sqrt(Er[0, :, 0]**2 + Er[0, :, 1]**2 + Er[0, :, 2]**2)
|
|
|
|
+
|
|
|
|
+result = np.vstack((scan, Eh)).transpose()
|
|
|
|
+
|
|
|
|
+try:
|
|
|
|
+ import matplotlib.pyplot as plt
|
|
|
|
+
|
|
|
|
+ fig = plt.figure()
|
|
|
|
+ ax = fig.add_subplot(111)
|
|
|
|
+
|
|
|
|
+ ax.errorbar(result[:, 0], result[:, 1], fmt = 'r', label = 'X axis')
|
|
|
|
+
|
|
|
|
+ ax.legend()
|
|
|
|
+
|
|
|
|
+ plt.xlabel('X')
|
|
|
|
+ plt.ylabel('|E|/|Eo|')
|
|
|
|
+
|
|
|
|
+ plt.draw()
|
|
|
|
+ plt.show()
|
|
|
|
+finally:
|
|
|
|
+ np.savetxt("lfield.txt", result, fmt = "%.5f")
|
|
|
|
+ print result
|
|
|
|
+
|
|
|
|
+
|