|
@@ -1,5 +1,6 @@
|
|
|
//**********************************************************************************//
|
|
|
// Copyright (C) 2009-2015 Ovidio Pena <ovidio@bytesfall.com> //
|
|
|
+// Copyright (C) 2013-2015 Konstantin Ladutenko <kostyfisik@gmail.com> //
|
|
|
// //
|
|
|
// This file is part of scattnlay //
|
|
|
// //
|
|
@@ -25,9 +26,9 @@
|
|
|
//**********************************************************************************//
|
|
|
|
|
|
//**********************************************************************************//
|
|
|
-// This library implements the algorithm for a multilayered sphere described by: //
|
|
|
+// This class implements the algorithm for a multilayered sphere described by: //
|
|
|
// [1] W. Yang, "Improved recursive algorithm for light scattering by a //
|
|
|
-// multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. //
|
|
|
+// multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. //
|
|
|
// //
|
|
|
// You can find the description of all the used equations in: //
|
|
|
// [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
|
|
@@ -36,970 +37,1500 @@
|
|
|
// //
|
|
|
// Hereinafter all equations numbers refer to [2] //
|
|
|
//**********************************************************************************//
|
|
|
-#include <math.h>
|
|
|
-#include <stdlib.h>
|
|
|
-#include <stdio.h>
|
|
|
#include "nmie.h"
|
|
|
+#include <array>
|
|
|
+#include <algorithm>
|
|
|
+#include <cstdio>
|
|
|
+#include <cstdlib>
|
|
|
+#include <stdexcept>
|
|
|
+#include <vector>
|
|
|
+
|
|
|
+namespace nmie {
|
|
|
+ //helpers
|
|
|
+ template<class T> inline T pow2(const T value) {return value*value;}
|
|
|
+
|
|
|
+ int round(double x) {
|
|
|
+ return x >= 0 ? (int)(x + 0.5):(int)(x - 0.5);
|
|
|
+ }
|
|
|
|
|
|
-#define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
|
|
|
|
|
|
-const double PI=3.14159265358979323846;
|
|
|
-// light speed [m s-1]
|
|
|
-double const cc = 2.99792458e8;
|
|
|
-// assume non-magnetic (MU=MU0=const) [N A-2]
|
|
|
-double const mu = 4.0*PI*1.0e-7;
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function emulates a C call to calculate the actual scattering parameters //
|
|
|
+ // and amplitudes. //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // L: Number of layers //
|
|
|
+ // pl: Index of PEC layer. If there is none just send -1 //
|
|
|
+ // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+ // nTheta: Number of scattering angles //
|
|
|
+ // Theta: Array containing all the scattering angles where the scattering //
|
|
|
+ // amplitudes will be calculated //
|
|
|
+ // nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+ // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
+ // set this parameter to -1 and the function will calculate it //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // Qext: Efficiency factor for extinction //
|
|
|
+ // Qsca: Efficiency factor for scattering //
|
|
|
+ // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
+ // Qbk: Efficiency factor for backscattering //
|
|
|
+ // Qpr: Efficiency factor for the radiation pressure //
|
|
|
+ // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
+ // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
+ // S1, S2: Complex scattering amplitudes //
|
|
|
+ // //
|
|
|
+ // Return value: //
|
|
|
+ // Number of multipolar expansion terms used for the calculations //
|
|
|
+ //**********************************************************************************//
|
|
|
+ int nMie(const int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
+
|
|
|
+ if (x.size() != L || m.size() != L)
|
|
|
+ throw std::invalid_argument("Declared number of layers do not fit x and m!");
|
|
|
+ if (Theta.size() != nTheta)
|
|
|
+ throw std::invalid_argument("Declared number of sample for Theta is not correct!");
|
|
|
+ try {
|
|
|
+ MultiLayerMie multi_layer_mie;
|
|
|
+ multi_layer_mie.SetLayersSize(x);
|
|
|
+ multi_layer_mie.SetLayersIndex(m);
|
|
|
+ multi_layer_mie.SetAngles(Theta);
|
|
|
+
|
|
|
+ multi_layer_mie.RunMieCalculation();
|
|
|
+
|
|
|
+ *Qext = multi_layer_mie.GetQext();
|
|
|
+ *Qsca = multi_layer_mie.GetQsca();
|
|
|
+ *Qabs = multi_layer_mie.GetQabs();
|
|
|
+ *Qbk = multi_layer_mie.GetQbk();
|
|
|
+ *Qpr = multi_layer_mie.GetQpr();
|
|
|
+ *g = multi_layer_mie.GetAsymmetryFactor();
|
|
|
+ *Albedo = multi_layer_mie.GetAlbedo();
|
|
|
+ S1 = multi_layer_mie.GetS1();
|
|
|
+ S2 = multi_layer_mie.GetS2();
|
|
|
+ } catch(const std::invalid_argument& ia) {
|
|
|
+ // Will catch if multi_layer_mie fails or other errors.
|
|
|
+ std::cerr << "Invalid argument: " << ia.what() << std::endl;
|
|
|
+ throw std::invalid_argument(ia);
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
|
|
|
-// Calculate Nstop - equation (17)
|
|
|
-int Nstop(double xL) {
|
|
|
- int result;
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
|
|
|
- if (xL <= 8) {
|
|
|
- result = round(xL + 4*pow(xL, 1.0/3.0) + 1);
|
|
|
- } else if (xL <= 4200) {
|
|
|
- result = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
|
|
|
- } else {
|
|
|
- result = round(xL + 4*pow(xL, 1.0/3.0) + 2);
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
+ // parameters, it is here mainly for compatibility with older versions of the //
|
|
|
+ // program. Also, you can use it if you neither have a PEC layer nor want to define //
|
|
|
+ // any limit for the maximum number of terms. //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // L: Number of layers //
|
|
|
+ // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+ // nTheta: Number of scattering angles //
|
|
|
+ // Theta: Array containing all the scattering angles where the scattering //
|
|
|
+ // amplitudes will be calculated //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // Qext: Efficiency factor for extinction //
|
|
|
+ // Qsca: Efficiency factor for scattering //
|
|
|
+ // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
+ // Qbk: Efficiency factor for backscattering //
|
|
|
+ // Qpr: Efficiency factor for the radiation pressure //
|
|
|
+ // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
+ // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
+ // S1, S2: Complex scattering amplitudes //
|
|
|
+ // //
|
|
|
+ // Return value: //
|
|
|
+ // Number of multipolar expansion terms used for the calculations //
|
|
|
+ //**********************************************************************************//
|
|
|
+ int nMie(const int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
+ return nmie::nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
}
|
|
|
|
|
|
- return result;
|
|
|
-}
|
|
|
|
|
|
-//**********************************************************************************//
|
|
|
-int Nmax(int L, int fl, int pl,
|
|
|
- std::vector<double> x,
|
|
|
- std::vector<std::complex<double> > m) {
|
|
|
- int i, result, ri, riM1;
|
|
|
- result = Nstop(x[L - 1]);
|
|
|
- for (i = fl; i < L; i++) {
|
|
|
- if (i > pl) {
|
|
|
- ri = round(std::abs(x[i]*m[i]));
|
|
|
- } else {
|
|
|
- ri = 0;
|
|
|
- }
|
|
|
- if (result < ri) {
|
|
|
- result = ri;
|
|
|
- }
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
+ // parameters, it is useful if you want to include a PEC layer but not a limit //
|
|
|
+ // for the maximum number of terms. //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // L: Number of layers //
|
|
|
+ // pl: Index of PEC layer. If there is none just send -1 //
|
|
|
+ // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+ // nTheta: Number of scattering angles //
|
|
|
+ // Theta: Array containing all the scattering angles where the scattering //
|
|
|
+ // amplitudes will be calculated //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // Qext: Efficiency factor for extinction //
|
|
|
+ // Qsca: Efficiency factor for scattering //
|
|
|
+ // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
+ // Qbk: Efficiency factor for backscattering //
|
|
|
+ // Qpr: Efficiency factor for the radiation pressure //
|
|
|
+ // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
+ // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
+ // S1, S2: Complex scattering amplitudes //
|
|
|
+ // //
|
|
|
+ // Return value: //
|
|
|
+ // Number of multipolar expansion terms used for the calculations //
|
|
|
+ //**********************************************************************************//
|
|
|
+ int nMie(const int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
+ return nmie::nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
+ }
|
|
|
|
|
|
- if ((i > fl) && ((i - 1) > pl)) {
|
|
|
- riM1 = round(std::abs(x[i - 1]* m[i]));
|
|
|
- } else {
|
|
|
- riM1 = 0;
|
|
|
- }
|
|
|
- if (result < riM1) {
|
|
|
- result = riM1;
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
+ // parameters, it is useful if you want to include a limit for the maximum number //
|
|
|
+ // of terms but not a PEC layer. //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // L: Number of layers //
|
|
|
+ // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+ // nTheta: Number of scattering angles //
|
|
|
+ // Theta: Array containing all the scattering angles where the scattering //
|
|
|
+ // amplitudes will be calculated //
|
|
|
+ // nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+ // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
+ // set this parameter to -1 and the function will calculate it //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // Qext: Efficiency factor for extinction //
|
|
|
+ // Qsca: Efficiency factor for scattering //
|
|
|
+ // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
+ // Qbk: Efficiency factor for backscattering //
|
|
|
+ // Qpr: Efficiency factor for the radiation pressure //
|
|
|
+ // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
+ // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
+ // S1, S2: Complex scattering amplitudes //
|
|
|
+ // //
|
|
|
+ // Return value: //
|
|
|
+ // Number of multipolar expansion terms used for the calculations //
|
|
|
+ //**********************************************************************************//
|
|
|
+ int nMie(const int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
+ return nmie::nMie(L, -1, x, m, nTheta, Theta, nmax, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function emulates a C call to calculate complex electric and magnetic field //
|
|
|
+ // in the surroundings and inside (TODO) the particle. //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // L: Number of layers //
|
|
|
+ // pl: Index of PEC layer. If there is none just send 0 (zero) //
|
|
|
+ // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+ // nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+ // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
+ // set this parameter to 0 (zero) and the function will calculate it. //
|
|
|
+ // ncoord: Number of coordinate points //
|
|
|
+ // Coords: Array containing all coordinates where the complex electric and //
|
|
|
+ // magnetic fields will be calculated //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // E, H: Complex electric and magnetic field at the provided coordinates //
|
|
|
+ // //
|
|
|
+ // Return value: //
|
|
|
+ // Number of multipolar expansion terms used for the calculations //
|
|
|
+ //**********************************************************************************//
|
|
|
+ int nField(const int L, const int pl, const std::vector<double>& x, const std::vector<std::complex<double> >& m, const int nmax, const int ncoord, const std::vector<double>& Xp_vec, const std::vector<double>& Yp_vec, const std::vector<double>& Zp_vec, std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
|
|
|
+ if (x.size() != L || m.size() != L)
|
|
|
+ throw std::invalid_argument("Declared number of layers do not fit x and m!");
|
|
|
+ if (Xp_vec.size() != ncoord || Yp_vec.size() != ncoord || Zp_vec.size() != ncoord
|
|
|
+ || E.size() != ncoord || H.size() != ncoord)
|
|
|
+ throw std::invalid_argument("Declared number of coords do not fit Xp, Yp, Zp, E, or H!");
|
|
|
+ for (auto f:E)
|
|
|
+ if (f.size() != 3)
|
|
|
+ throw std::invalid_argument("Field E is not 3D!");
|
|
|
+ for (auto f:H)
|
|
|
+ if (f.size() != 3)
|
|
|
+ throw std::invalid_argument("Field H is not 3D!");
|
|
|
+ try {
|
|
|
+ MultiLayerMie multi_layer_mie;
|
|
|
+ //multi_layer_mie.SetPECLayer(pl);
|
|
|
+ multi_layer_mie.SetLayersSize(x);
|
|
|
+ multi_layer_mie.SetLayersIndex(m);
|
|
|
+ multi_layer_mie.SetFieldCoords({Xp_vec, Yp_vec, Zp_vec});
|
|
|
+ multi_layer_mie.RunFieldCalculation();
|
|
|
+ E = multi_layer_mie.GetFieldE();
|
|
|
+ H = multi_layer_mie.GetFieldH();
|
|
|
+ //multi_layer_mie.GetFailed();
|
|
|
+ } catch(const std::invalid_argument& ia) {
|
|
|
+ // Will catch if multi_layer_mie fails or other errors.
|
|
|
+ std::cerr << "Invalid argument: " << ia.what() << std::endl;
|
|
|
+ throw std::invalid_argument(ia);
|
|
|
+ return - 1;
|
|
|
}
|
|
|
+
|
|
|
+ return 0;
|
|
|
}
|
|
|
- return result + 15;
|
|
|
-}
|
|
|
|
|
|
-//**********************************************************************************//
|
|
|
-// This function calculates the spherical Bessel (jn) and Hankel (h1n) functions //
|
|
|
-// and their derivatives for a given complex value z. See pag. 87 B&H. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// z: Real argument to evaluate jn and h1n //
|
|
|
-// nmax: Maximum number of terms to calculate jn and h1n //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// jn, h1n: Spherical Bessel and Hankel functions //
|
|
|
-// jnp, h1np: Derivatives of the spherical Bessel and Hankel functions //
|
|
|
-// //
|
|
|
-// The implementation follows the algorithm by I.J. Thompson and A.R. Barnett, //
|
|
|
-// Comp. Phys. Comm. 47 (1987) 245-257. //
|
|
|
-// //
|
|
|
-// Complex spherical Bessel functions from n=0..nmax-1 for z in the upper half //
|
|
|
-// plane (Im(z) > -3). //
|
|
|
-// //
|
|
|
-// j[n] = j/n(z) Regular solution: j[0]=sin(z)/z //
|
|
|
-// j'[n] = d[j/n(z)]/dz //
|
|
|
-// h1[n] = h[0]/n(z) Irregular Hankel function: //
|
|
|
-// h1'[n] = d[h[0]/n(z)]/dz h1[0] = j0(z) + i*y0(z) //
|
|
|
-// = (sin(z)-i*cos(z))/z //
|
|
|
-// = -i*exp(i*z)/z //
|
|
|
-// Using complex CF1, and trigonometric forms for n=0 solutions. //
|
|
|
-//**********************************************************************************//
|
|
|
-int sbesjh(std::complex<double> z, int nmax, std::vector<std::complex<double> >& jn, std::vector<std::complex<double> >& jnp, std::vector<std::complex<double> >& h1n, std::vector<std::complex<double> >& h1np) {
|
|
|
|
|
|
- const int limit = 20000;
|
|
|
- double const accur = 1.0e-12;
|
|
|
- double const tm30 = 1e-30;
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Returns previously calculated Qext //
|
|
|
+ // ********************************************************************** //
|
|
|
+ double MultiLayerMie::GetQext() {
|
|
|
+ if (!isMieCalculated_)
|
|
|
+ throw std::invalid_argument("You should run calculations before result request!");
|
|
|
+ return Qext_;
|
|
|
+ }
|
|
|
|
|
|
- int n;
|
|
|
- double absc;
|
|
|
- std::complex<double> zi, w;
|
|
|
- std::complex<double> pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb;
|
|
|
|
|
|
- absc = std::abs(std::real(z)) + std::abs(std::imag(z));
|
|
|
- if ((absc < accur) || (std::imag(z) < -3.0)) {
|
|
|
- return -1;
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Returns previously calculated Qabs //
|
|
|
+ // ********************************************************************** //
|
|
|
+ double MultiLayerMie::GetQabs() {
|
|
|
+ if (!isMieCalculated_)
|
|
|
+ throw std::invalid_argument("You should run calculations before result request!");
|
|
|
+ return Qabs_;
|
|
|
}
|
|
|
|
|
|
- zi = 1.0/z;
|
|
|
- w = zi + zi;
|
|
|
|
|
|
- pl = double(nmax)*zi;
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Returns previously calculated Qsca //
|
|
|
+ // ********************************************************************** //
|
|
|
+ double MultiLayerMie::GetQsca() {
|
|
|
+ if (!isMieCalculated_)
|
|
|
+ throw std::invalid_argument("You should run calculations before result request!");
|
|
|
+ return Qsca_;
|
|
|
+ }
|
|
|
|
|
|
- f = pl + zi;
|
|
|
- b = f + f + zi;
|
|
|
- d = 0.0;
|
|
|
- c = f;
|
|
|
- for (n = 0; n < limit; n++) {
|
|
|
- d = b - d;
|
|
|
- c = b - 1.0/c;
|
|
|
|
|
|
- absc = std::abs(std::real(d)) + std::abs(std::imag(d));
|
|
|
- if (absc < tm30) {
|
|
|
- d = tm30;
|
|
|
- }
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Returns previously calculated Qbk //
|
|
|
+ // ********************************************************************** //
|
|
|
+ double MultiLayerMie::GetQbk() {
|
|
|
+ if (!isMieCalculated_)
|
|
|
+ throw std::invalid_argument("You should run calculations before result request!");
|
|
|
+ return Qbk_;
|
|
|
+ }
|
|
|
|
|
|
- absc = std::abs(std::real(c)) + std::abs(std::imag(c));
|
|
|
- if (absc < tm30) {
|
|
|
- c = tm30;
|
|
|
- }
|
|
|
|
|
|
- d = 1.0/d;
|
|
|
- del = d*c;
|
|
|
- f = f*del;
|
|
|
- b += w;
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Returns previously calculated Qpr //
|
|
|
+ // ********************************************************************** //
|
|
|
+ double MultiLayerMie::GetQpr() {
|
|
|
+ if (!isMieCalculated_)
|
|
|
+ throw std::invalid_argument("You should run calculations before result request!");
|
|
|
+ return Qpr_;
|
|
|
+ }
|
|
|
|
|
|
- absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
|
|
|
|
|
|
- if (absc < accur) {
|
|
|
- // We have obtained the desired accuracy
|
|
|
- break;
|
|
|
- }
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Returns previously calculated assymetry factor //
|
|
|
+ // ********************************************************************** //
|
|
|
+ double MultiLayerMie::GetAsymmetryFactor() {
|
|
|
+ if (!isMieCalculated_)
|
|
|
+ throw std::invalid_argument("You should run calculations before result request!");
|
|
|
+ return asymmetry_factor_;
|
|
|
}
|
|
|
|
|
|
- if (absc > accur) {
|
|
|
- // We were not able to obtain the desired accuracy
|
|
|
- return -2;
|
|
|
+
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Returns previously calculated Albedo //
|
|
|
+ // ********************************************************************** //
|
|
|
+ double MultiLayerMie::GetAlbedo() {
|
|
|
+ if (!isMieCalculated_)
|
|
|
+ throw std::invalid_argument("You should run calculations before result request!");
|
|
|
+ return albedo_;
|
|
|
}
|
|
|
|
|
|
- jn[nmax - 1] = tm30;
|
|
|
- jnp[nmax - 1] = f*jn[nmax - 1];
|
|
|
|
|
|
- // Downward recursion to n=0 (N.B. Coulomb Functions)
|
|
|
- for (n = nmax - 2; n >= 0; n--) {
|
|
|
- jn[n] = pl*jn[n + 1] + jnp[n + 1];
|
|
|
- jnp[n] = pl*jn[n] - jn[n + 1];
|
|
|
- pl = pl - zi;
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Returns previously calculated S1 //
|
|
|
+ // ********************************************************************** //
|
|
|
+ std::vector<std::complex<double> > MultiLayerMie::GetS1() {
|
|
|
+ if (!isMieCalculated_)
|
|
|
+ throw std::invalid_argument("You should run calculations before result request!");
|
|
|
+ return S1_;
|
|
|
}
|
|
|
|
|
|
- // Calculate the n=0 Bessel Functions
|
|
|
- jn0 = zi*std::sin(z);
|
|
|
- h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
|
|
|
- h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
|
|
|
|
|
|
- // Rescale j[n], j'[n], converting to spherical Bessel functions.
|
|
|
- // Recur h1[n], h1'[n] as spherical Bessel functions.
|
|
|
- w = 1.0/jn[0];
|
|
|
- pl = zi;
|
|
|
- for (n = 0; n < nmax; n++) {
|
|
|
- jn[n] = jn0*(w*jn[n]);
|
|
|
- jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
|
|
|
- if (n != 0) {
|
|
|
- h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Returns previously calculated S2 //
|
|
|
+ // ********************************************************************** //
|
|
|
+ std::vector<std::complex<double> > MultiLayerMie::GetS2() {
|
|
|
+ if (!isMieCalculated_)
|
|
|
+ throw std::invalid_argument("You should run calculations before result request!");
|
|
|
+ return S2_;
|
|
|
+ }
|
|
|
|
|
|
- // check if hankel is increasing (upward stable)
|
|
|
- if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
|
|
|
- jndb = z;
|
|
|
- h1nldb = h1n[n];
|
|
|
- h1nbdb = h1n[n - 1];
|
|
|
- }
|
|
|
|
|
|
- pl += zi;
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Modify scattering (theta) angles //
|
|
|
+ // ********************************************************************** //
|
|
|
+ void MultiLayerMie::SetAngles(const std::vector<double>& angles) {
|
|
|
+ areIntCoeffsCalc_ = false;
|
|
|
+ areExtCoeffsCalc_ = false;
|
|
|
+ isMieCalculated_ = false;
|
|
|
+ theta_ = angles;
|
|
|
+ }
|
|
|
|
|
|
- h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
|
|
|
+
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Modify size of all layers //
|
|
|
+ // ********************************************************************** //
|
|
|
+ void MultiLayerMie::SetLayersSize(const std::vector<double>& layer_size) {
|
|
|
+ areIntCoeffsCalc_ = false;
|
|
|
+ areExtCoeffsCalc_ = false;
|
|
|
+ isMieCalculated_ = false;
|
|
|
+ size_param_.clear();
|
|
|
+ double prev_layer_size = 0.0;
|
|
|
+ for (auto curr_layer_size : layer_size) {
|
|
|
+ if (curr_layer_size <= 0.0)
|
|
|
+ throw std::invalid_argument("Size parameter should be positive!");
|
|
|
+ if (prev_layer_size > curr_layer_size)
|
|
|
+ throw std::invalid_argument
|
|
|
+ ("Size parameter for next layer should be larger than the previous one!");
|
|
|
+ prev_layer_size = curr_layer_size;
|
|
|
+ size_param_.push_back(curr_layer_size);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- // success
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-//**********************************************************************************//
|
|
|
-// This function calculates the spherical Bessel functions (bj and by) and the //
|
|
|
-// logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// z: Complex argument to evaluate bj, by and bd //
|
|
|
-// nmax: Maximum number of terms to calculate bj, by and bd //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// bj, by: Spherical Bessel functions //
|
|
|
-// bd: Logarithmic derivative //
|
|
|
-//**********************************************************************************//
|
|
|
-void sphericalBessel(std::complex<double> z, int nmax, std::vector<std::complex<double> >& bj, std::vector<std::complex<double> >& by, std::vector<std::complex<double> >& bd) {
|
|
|
-
|
|
|
- std::vector<std::complex<double> > jn, jnp, h1n, h1np;
|
|
|
- jn.resize(nmax);
|
|
|
- jnp.resize(nmax);
|
|
|
- h1n.resize(nmax);
|
|
|
- h1np.resize(nmax);
|
|
|
-
|
|
|
- // TODO verify that the function succeeds
|
|
|
- int ifail = sbesjh(z, nmax, jn, jnp, h1n, h1np);
|
|
|
-
|
|
|
- for (int n = 0; n < nmax; n++) {
|
|
|
- bj[n] = jn[n];
|
|
|
- by[n] = (h1n[n] - jn[n])/std::complex<double>(0.0, 1.0);
|
|
|
- bd[n] = jnp[n]/jn[n] + 1.0/z;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-// external scattering field = incident + scattered
|
|
|
-// BH p.92 (4.37), 94 (4.45), 95 (4.50)
|
|
|
-// assume: medium is non-absorbing; refim = 0; Uabs = 0
|
|
|
-void fieldExt(int nmax, double Rho, double Phi, double Theta, std::vector<double> Pi, std::vector<double> Tau,
|
|
|
- std::vector<std::complex<double> > an, std::vector<std::complex<double> > bn,
|
|
|
- std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
|
|
|
-
|
|
|
- int i, n, n1;
|
|
|
- double rn;
|
|
|
- std::complex<double> ci, zn, xxip, encap;
|
|
|
- std::vector<std::complex<double> > vm3o1n, vm3e1n, vn3o1n, vn3e1n;
|
|
|
- vm3o1n.resize(3);
|
|
|
- vm3e1n.resize(3);
|
|
|
- vn3o1n.resize(3);
|
|
|
- vn3e1n.resize(3);
|
|
|
-
|
|
|
- std::vector<std::complex<double> > Ei, Hi, Es, Hs;
|
|
|
- Ei.resize(3);
|
|
|
- Hi.resize(3);
|
|
|
- Es.resize(3);
|
|
|
- Hs.resize(3);
|
|
|
- for (i = 0; i < 3; i++) {
|
|
|
- Ei[i] = std::complex<double>(0.0, 0.0);
|
|
|
- Hi[i] = std::complex<double>(0.0, 0.0);
|
|
|
- Es[i] = std::complex<double>(0.0, 0.0);
|
|
|
- Hs[i] = std::complex<double>(0.0, 0.0);
|
|
|
- }
|
|
|
-
|
|
|
- std::vector<std::complex<double> > bj, by, bd;
|
|
|
- bj.resize(nmax+1);
|
|
|
- by.resize(nmax+1);
|
|
|
- bd.resize(nmax+1);
|
|
|
-
|
|
|
- // Calculate spherical Bessel and Hankel functions
|
|
|
- sphericalBessel(Rho, nmax, bj, by, bd);
|
|
|
-
|
|
|
- ci = std::complex<double>(0.0, 1.0);
|
|
|
- for (n = 0; n < nmax; n++) {
|
|
|
- n1 = n + 1;
|
|
|
- rn = double(n + 1);
|
|
|
-
|
|
|
- zn = bj[n1] + ci*by[n1];
|
|
|
- xxip = Rho*(bj[n] + ci*by[n]) - rn*zn;
|
|
|
-
|
|
|
- vm3o1n[0] = std::complex<double>(0.0, 0.0);
|
|
|
- vm3o1n[1] = std::cos(Phi)*Pi[n]*zn;
|
|
|
- vm3o1n[2] = -std::sin(Phi)*Tau[n]*zn;
|
|
|
- vm3e1n[0] = std::complex<double>(0.0, 0.0);
|
|
|
- vm3e1n[1] = -std::sin(Phi)*Pi[n]*zn;
|
|
|
- vm3e1n[2] = -std::cos(Phi)*Tau[n]*zn;
|
|
|
- vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
|
|
|
- vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho;
|
|
|
- vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho;
|
|
|
- vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
|
|
|
- vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho;
|
|
|
- vn3e1n[2] = -std::sin(Phi)*Pi[n]*xxip/Rho;
|
|
|
-
|
|
|
- // scattered field: BH p.94 (4.45)
|
|
|
- encap = std::pow(ci, rn)*(2.0*rn + 1.0)/(rn*rn + rn);
|
|
|
- for (i = 0; i < 3; i++) {
|
|
|
- Es[i] = Es[i] + encap*(ci*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]);
|
|
|
- Hs[i] = Hs[i] + encap*(ci*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
|
|
|
- // basis unit vectors = er, etheta, ephi
|
|
|
- std::complex<double> eifac = std::exp(std::complex<double>(0.0, Rho*std::cos(Theta)));
|
|
|
-
|
|
|
- Ei[0] = eifac*std::sin(Theta)*std::cos(Phi);
|
|
|
- Ei[1] = eifac*std::cos(Theta)*std::cos(Phi);
|
|
|
- Ei[2] = -eifac*std::sin(Phi);
|
|
|
-
|
|
|
- // magnetic field
|
|
|
- double hffact = 1.0/(cc*mu);
|
|
|
- for (i = 0; i < 3; i++) {
|
|
|
- Hs[i] = hffact*Hs[i];
|
|
|
- }
|
|
|
-
|
|
|
- // incident H field: BH p.26 (2.43), p.89 (4.21)
|
|
|
- std::complex<double> hffacta = hffact;
|
|
|
- std::complex<double> hifac = eifac*hffacta;
|
|
|
-
|
|
|
- Hi[0] = hifac*std::sin(Theta)*std::sin(Phi);
|
|
|
- Hi[1] = hifac*std::cos(Theta)*std::sin(Phi);
|
|
|
- Hi[2] = hifac*std::cos(Phi);
|
|
|
-
|
|
|
- for (i = 0; i < 3; i++) {
|
|
|
- // electric field E [V m-1] = EF*E0
|
|
|
- E[i] = Ei[i] + Es[i];
|
|
|
- H[i] = Hi[i] + Hs[i];
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-// Calculate an - equation (5)
|
|
|
-std::complex<double> calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
|
|
|
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
-
|
|
|
- std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
|
|
|
- std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
|
|
|
-
|
|
|
- return Num/Denom;
|
|
|
-}
|
|
|
|
|
|
-// Calculate bn - equation (6)
|
|
|
-std::complex<double> calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
|
|
|
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Modify refractive index of all layers //
|
|
|
+ // ********************************************************************** //
|
|
|
+ void MultiLayerMie::SetLayersIndex(const std::vector< std::complex<double> >& index) {
|
|
|
+ areIntCoeffsCalc_ = false;
|
|
|
+ areExtCoeffsCalc_ = false;
|
|
|
+ isMieCalculated_ = false;
|
|
|
+ refr_index_ = index;
|
|
|
+ }
|
|
|
|
|
|
- std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
|
|
|
- std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
|
|
|
|
|
|
- return Num/Denom;
|
|
|
-}
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Modify coordinates for field calculation //
|
|
|
+ // ********************************************************************** //
|
|
|
+ void MultiLayerMie::SetFieldCoords(const std::vector< std::vector<double> >& coords) {
|
|
|
+ if (coords.size() != 3)
|
|
|
+ throw std::invalid_argument("Error! Wrong dimension of field monitor points!");
|
|
|
+ if (coords[0].size() != coords[1].size() || coords[0].size() != coords[2].size())
|
|
|
+ throw std::invalid_argument("Error! Missing coordinates for field monitor points!");
|
|
|
+ coords_ = coords;
|
|
|
+ }
|
|
|
|
|
|
-// Calculates S1 - equation (25a)
|
|
|
-std::complex<double> calc_S1(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
- double Pi, double Tau) {
|
|
|
|
|
|
- return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
|
|
|
-}
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ void MultiLayerMie::SetPECLayer(int layer_position) {
|
|
|
+ areIntCoeffsCalc_ = false;
|
|
|
+ areExtCoeffsCalc_ = false;
|
|
|
+ isMieCalculated_ = false;
|
|
|
+ if (layer_position < 0)
|
|
|
+ throw std::invalid_argument("Error! Layers are numbered from 0!");
|
|
|
+ PEC_layer_position_ = layer_position;
|
|
|
+ }
|
|
|
|
|
|
-// Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
|
|
|
-std::complex<double> calc_S2(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
- double Pi, double Tau) {
|
|
|
|
|
|
- return calc_S1(n, an, bn, Tau, Pi);
|
|
|
-}
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Set maximun number of terms to be used //
|
|
|
+ // ********************************************************************** //
|
|
|
+ void MultiLayerMie::SetMaxTerms(int nmax) {
|
|
|
+ areIntCoeffsCalc_ = false;
|
|
|
+ areExtCoeffsCalc_ = false;
|
|
|
+ isMieCalculated_ = false;
|
|
|
+ nmax_preset_ = nmax;
|
|
|
+ }
|
|
|
|
|
|
|
|
|
-//**********************************************************************************//
|
|
|
-// This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
|
|
|
-// real argument (x). //
|
|
|
-// Equations (20a) - (21b) //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// x: Real argument to evaluate Psi and Zeta //
|
|
|
-// nmax: Maximum number of terms to calculate Psi and Zeta //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// Psi, Zeta: Riccati-Bessel functions //
|
|
|
-//**********************************************************************************//
|
|
|
-void calcPsiZeta(double x, int nmax,
|
|
|
- std::vector<std::complex<double> > D1,
|
|
|
- std::vector<std::complex<double> > D3,
|
|
|
- std::vector<std::complex<double> >& Psi,
|
|
|
- std::vector<std::complex<double> >& Zeta) {
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ double MultiLayerMie::GetSizeParameter() {
|
|
|
+ if (size_param_.size() > 0)
|
|
|
+ return size_param_.back();
|
|
|
+ else
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
|
|
|
- int n;
|
|
|
|
|
|
- //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
|
|
|
- Psi[0] = std::complex<double>(sin(x), 0);
|
|
|
- Zeta[0] = std::complex<double>(sin(x), -cos(x));
|
|
|
- for (n = 1; n <= nmax; n++) {
|
|
|
- Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
|
|
|
- Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Clear layer information //
|
|
|
+ // ********************************************************************** //
|
|
|
+ void MultiLayerMie::ClearLayers() {
|
|
|
+ areIntCoeffsCalc_ = false;
|
|
|
+ areExtCoeffsCalc_ = false;
|
|
|
+ isMieCalculated_ = false;
|
|
|
+ size_param_.clear();
|
|
|
+ refr_index_.clear();
|
|
|
}
|
|
|
-}
|
|
|
-
|
|
|
-//**********************************************************************************//
|
|
|
-// This function calculates the logarithmic derivatives of the Riccati-Bessel //
|
|
|
-// functions (D1 and D3) for a complex argument (z). //
|
|
|
-// Equations (16a), (16b) and (18a) - (18d) //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// z: Complex argument to evaluate D1 and D3 //
|
|
|
-// nmax: Maximum number of terms to calculate D1 and D3 //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
|
|
|
-//**********************************************************************************//
|
|
|
-void calcD1D3(std::complex<double> z, int nmax,
|
|
|
- std::vector<std::complex<double> >& D1,
|
|
|
- std::vector<std::complex<double> >& D3) {
|
|
|
|
|
|
- int n;
|
|
|
- std::complex<double> nz, PsiZeta;
|
|
|
|
|
|
- // Downward recurrence for D1 - equations (16a) and (16b)
|
|
|
- D1[nmax] = std::complex<double>(0.0, 0.0);
|
|
|
- for (n = nmax; n > 0; n--) {
|
|
|
- nz = double(n)/z;
|
|
|
- D1[n - 1] = nz - 1.0/(D1[n] + nz);
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Computational core
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+
|
|
|
+
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Calculate calcNstop - equation (17) //
|
|
|
+ // ********************************************************************** //
|
|
|
+ void MultiLayerMie::calcNstop() {
|
|
|
+ const double& xL = size_param_.back();
|
|
|
+ if (xL <= 8) {
|
|
|
+ nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 1);
|
|
|
+ } else if (xL <= 4200) {
|
|
|
+ nmax_ = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
|
|
|
+ } else {
|
|
|
+ nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 2);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
|
|
|
- PsiZeta = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
|
|
|
- D3[0] = std::complex<double>(0.0, 1.0);
|
|
|
- for (n = 1; n <= nmax; n++) {
|
|
|
- nz = double(n)/z;
|
|
|
- PsiZeta = PsiZeta*(nz - D1[n - 1])*(nz - D3[n - 1]);
|
|
|
- D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta;
|
|
|
- }
|
|
|
-}
|
|
|
|
|
|
-//**********************************************************************************//
|
|
|
-// This function calculates Pi and Tau for all values of Theta. //
|
|
|
-// Equations (26a) - (26c) //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// nmax: Maximum number of terms to calculate Pi and Tau //
|
|
|
-// nTheta: Number of scattering angles //
|
|
|
-// Theta: Array containing all the scattering angles where the scattering //
|
|
|
-// amplitudes will be calculated //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
|
|
|
-//**********************************************************************************//
|
|
|
-void calcPiTau(int nmax, double Theta, std::vector<double>& Pi, std::vector<double>& Tau) {
|
|
|
-
|
|
|
- int n;
|
|
|
- //****************************************************//
|
|
|
- // Equations (26a) - (26c) //
|
|
|
- //****************************************************//
|
|
|
- // Initialize Pi and Tau
|
|
|
- Pi[0] = 1.0;
|
|
|
- Tau[0] = cos(Theta);
|
|
|
- // Calculate the actual values
|
|
|
- if (nmax > 1) {
|
|
|
- Pi[1] = 3*Tau[0]*Pi[0];
|
|
|
- Tau[1] = 2*Tau[0]*Pi[1] - 3*Pi[0];
|
|
|
- for (n = 2; n < nmax; n++) {
|
|
|
- Pi[n] = ((n + n + 1)*Tau[0]*Pi[n - 1] - (n + 1)*Pi[n - 2])/n;
|
|
|
- Tau[n] = (n + 1)*Tau[0]*Pi[n] - (n + 2)*Pi[n - 1];
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Maximum number of terms required for the calculation //
|
|
|
+ // ********************************************************************** //
|
|
|
+ void MultiLayerMie::calcNmax(int first_layer) {
|
|
|
+ int ri, riM1;
|
|
|
+ const std::vector<double>& x = size_param_;
|
|
|
+ const std::vector<std::complex<double> >& m = refr_index_;
|
|
|
+ calcNstop(); // Set initial nmax_ value
|
|
|
+ for (int i = first_layer; i < x.size(); i++) {
|
|
|
+ if (i > PEC_layer_position_)
|
|
|
+ ri = round(std::abs(x[i]*m[i]));
|
|
|
+ else
|
|
|
+ ri = 0;
|
|
|
+ nmax_ = std::max(nmax_, ri);
|
|
|
+ // first layer is pec, if pec is present
|
|
|
+ if ((i > first_layer) && ((i - 1) > PEC_layer_position_))
|
|
|
+ riM1 = round(std::abs(x[i - 1]* m[i]));
|
|
|
+ else
|
|
|
+ riM1 = 0;
|
|
|
+ nmax_ = std::max(nmax_, riM1);
|
|
|
+ }
|
|
|
+ nmax_ += 15; // Final nmax_ value
|
|
|
+ }
|
|
|
|
|
|
-//**********************************************************************************//
|
|
|
-// This function calculates the scattering coefficients required to calculate //
|
|
|
-// both the near- and far-field parameters. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// L: Number of layers //
|
|
|
-// pl: Index of PEC layer. If there is none just send -1 //
|
|
|
-// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
-// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
-// calculations. Only use it if you know what you are doing, otherwise //
|
|
|
-// set this parameter to -1 and the function will calculate it. //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// an, bn: Complex scattering amplitudes //
|
|
|
-// //
|
|
|
-// Return value: //
|
|
|
-// Number of multipolar expansion terms used for the calculations //
|
|
|
-//**********************************************************************************//
|
|
|
-int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
|
|
|
- std::vector<std::complex<double> >& an, std::vector<std::complex<double> >& bn) {
|
|
|
- //************************************************************************//
|
|
|
- // Calculate the index of the first layer. It can be either 0 (default) //
|
|
|
- // or the index of the outermost PEC layer. In the latter case all layers //
|
|
|
- // below the PEC are discarded. //
|
|
|
- //************************************************************************//
|
|
|
|
|
|
- int fl = (pl > 0) ? pl : 0;
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function calculates the spherical Bessel (jn) and Hankel (h1n) functions //
|
|
|
+ // and their derivatives for a given complex value z. See pag. 87 B&H. //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // z: Complex argument to evaluate jn and h1n //
|
|
|
+ // nmax_: Maximum number of terms to calculate jn and h1n //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // jn, h1n: Spherical Bessel and Hankel functions //
|
|
|
+ // jnp, h1np: Derivatives of the spherical Bessel and Hankel functions //
|
|
|
+ // //
|
|
|
+ // The implementation follows the algorithm by I.J. Thompson and A.R. Barnett, //
|
|
|
+ // Comp. Phys. Comm. 47 (1987) 245-257. //
|
|
|
+ // //
|
|
|
+ // Complex spherical Bessel functions from n=0..nmax_-1 for z in the upper half //
|
|
|
+ // plane (Im(z) > -3). //
|
|
|
+ // //
|
|
|
+ // j[n] = j/n(z) Regular solution: j[0]=sin(z)/z //
|
|
|
+ // j'[n] = d[j/n(z)]/dz //
|
|
|
+ // h1[n] = h[0]/n(z) Irregular Hankel function: //
|
|
|
+ // h1'[n] = d[h[0]/n(z)]/dz h1[0] = j0(z) + i*y0(z) //
|
|
|
+ // = (sin(z)-i*cos(z))/z //
|
|
|
+ // = -i*exp(i*z)/z //
|
|
|
+ // Using complex CF1, and trigonometric forms for n=0 solutions. //
|
|
|
+ //**********************************************************************************//
|
|
|
+ void MultiLayerMie::sbesjh(std::complex<double> z,
|
|
|
+ std::vector<std::complex<double> >& jn, std::vector<std::complex<double> >& jnp,
|
|
|
+ std::vector<std::complex<double> >& h1n, std::vector<std::complex<double> >& h1np) {
|
|
|
+ const int limit = 20000;
|
|
|
+ const double accur = 1.0e-12;
|
|
|
+ const double tm30 = 1e-30;
|
|
|
+ const std::complex<double> c_i(0.0, 1.0);
|
|
|
+
|
|
|
+ double absc;
|
|
|
+ std::complex<double> zi, w;
|
|
|
+ std::complex<double> pl, f, b, d, c, del, jn0;
|
|
|
+
|
|
|
+ absc = std::abs(std::real(z)) + std::abs(std::imag(z));
|
|
|
+ if ((absc < accur) || (std::imag(z) < -3.0)) {
|
|
|
+ throw std::invalid_argument("TODO add error description for condition if ((absc < accur) || (std::imag(z) < -3.0))");
|
|
|
+ }
|
|
|
|
|
|
- if (nmax <= 0) {
|
|
|
- nmax = Nmax(L, fl, pl, x, m);
|
|
|
- }
|
|
|
+ zi = 1.0/z;
|
|
|
+ w = zi + zi;
|
|
|
|
|
|
- std::complex<double> z1, z2;
|
|
|
- std::complex<double> Num, Denom;
|
|
|
- std::complex<double> G1, G2;
|
|
|
- std::complex<double> Temp;
|
|
|
+ pl = double(nmax_)*zi;
|
|
|
|
|
|
- int n, l;
|
|
|
+ f = pl + zi;
|
|
|
+ b = f + f + zi;
|
|
|
+ d = 0.0;
|
|
|
+ c = f;
|
|
|
+ for (int l = 0; l < limit; l++) {
|
|
|
+ d = b - d;
|
|
|
+ c = b - 1.0/c;
|
|
|
|
|
|
- //**************************************************************************//
|
|
|
- // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
|
|
|
- // means that index = layer number - 1 or index = n - 1. The only exception //
|
|
|
- // are the arrays for representing D1, D3 and Q because they need a value //
|
|
|
- // for the index 0 (zero), hence it is important to consider this shift //
|
|
|
- // between different arrays. The change was done to optimize memory usage. //
|
|
|
- //**************************************************************************//
|
|
|
+ absc = std::abs(std::real(d)) + std::abs(std::imag(d));
|
|
|
+ if (absc < tm30) {
|
|
|
+ d = tm30;
|
|
|
+ }
|
|
|
|
|
|
- // Allocate memory to the arrays
|
|
|
- std::vector<std::vector<std::complex<double> > > D1_mlxl, D1_mlxlM1;
|
|
|
- D1_mlxl.resize(L);
|
|
|
- D1_mlxlM1.resize(L);
|
|
|
+ absc = std::abs(std::real(c)) + std::abs(std::imag(c));
|
|
|
+ if (absc < tm30) {
|
|
|
+ c = tm30;
|
|
|
+ }
|
|
|
|
|
|
- std::vector<std::vector<std::complex<double> > > D3_mlxl, D3_mlxlM1;
|
|
|
- D3_mlxl.resize(L);
|
|
|
- D3_mlxlM1.resize(L);
|
|
|
+ d = 1.0/d;
|
|
|
+ del = d*c;
|
|
|
+ f = f*del;
|
|
|
+ b += w;
|
|
|
|
|
|
- std::vector<std::vector<std::complex<double> > > Q;
|
|
|
- Q.resize(L);
|
|
|
+ absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
|
|
|
|
|
|
- std::vector<std::vector<std::complex<double> > > Ha, Hb;
|
|
|
- Ha.resize(L);
|
|
|
- Hb.resize(L);
|
|
|
+ // We have obtained the desired accuracy
|
|
|
+ if (absc < accur) break;
|
|
|
+ }
|
|
|
|
|
|
- for (l = 0; l < L; l++) {
|
|
|
- D1_mlxl[l].resize(nmax + 1);
|
|
|
- D1_mlxlM1[l].resize(nmax + 1);
|
|
|
+ if (absc > accur) {
|
|
|
+ throw std::invalid_argument("We were not able to obtain the desired accuracy (MultiLayerMie::sbesjh)");
|
|
|
+ }
|
|
|
|
|
|
- D3_mlxl[l].resize(nmax + 1);
|
|
|
- D3_mlxlM1[l].resize(nmax + 1);
|
|
|
+ jn[nmax_ - 1] = tm30;
|
|
|
+ jnp[nmax_ - 1] = f*jn[nmax_ - 1];
|
|
|
|
|
|
- Q[l].resize(nmax + 1);
|
|
|
+ // Downward recursion to n=0 (N.B. Coulomb Functions)
|
|
|
+ for (int n = nmax_ - 2; n >= 0; n--) {
|
|
|
+ jn[n] = pl*jn[n + 1] + jnp[n + 1];
|
|
|
+ jnp[n] = pl*jn[n] - jn[n + 1];
|
|
|
+ pl = pl - zi;
|
|
|
+ }
|
|
|
|
|
|
- Ha[l].resize(nmax);
|
|
|
- Hb[l].resize(nmax);
|
|
|
+ // Calculate the n=0 Bessel Functions
|
|
|
+ jn0 = zi*std::sin(z);
|
|
|
+ h1n[0] = -c_i*zi*std::exp(c_i*z);
|
|
|
+ h1np[0] = h1n[0]*(c_i - zi);
|
|
|
+
|
|
|
+ // Rescale j[n], j'[n], converting to spherical Bessel functions.
|
|
|
+ // Recur h1[n], h1'[n] as spherical Bessel functions.
|
|
|
+ w = 1.0/jn[0];
|
|
|
+ pl = zi;
|
|
|
+ for (int n = 0; n < nmax_; n++) {
|
|
|
+ jn[n] = jn0*w*jn[n];
|
|
|
+ jnp[n] = jn0*w*jnp[n] - zi*jn[n];
|
|
|
+ if (n > 0) {
|
|
|
+ h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
|
|
|
+
|
|
|
+ // check if hankel is increasing (upward stable)
|
|
|
+ if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
|
|
|
+ throw std::invalid_argument("Error: Hankel not increasing! (MultiLayerMie::sbesjh)");
|
|
|
+ }
|
|
|
+
|
|
|
+ pl += zi;
|
|
|
+
|
|
|
+ h1np[n] = -pl*h1n[n] + h1n[n - 1];
|
|
|
+ }
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- an.resize(nmax);
|
|
|
- bn.resize(nmax);
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Calculate an - equation (5) //
|
|
|
+ // ********************************************************************** //
|
|
|
+ std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
|
|
|
+ std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
+ std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
|
|
|
- std::vector<std::complex<double> > D1XL, D3XL;
|
|
|
- D1XL.resize(nmax + 1);
|
|
|
- D3XL.resize(nmax + 1);
|
|
|
+ std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
|
|
|
+ std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
|
|
|
|
|
|
+ return Num/Denom;
|
|
|
+ }
|
|
|
|
|
|
- std::vector<std::complex<double> > PsiXL, ZetaXL;
|
|
|
- PsiXL.resize(nmax + 1);
|
|
|
- ZetaXL.resize(nmax + 1);
|
|
|
|
|
|
- //*************************************************//
|
|
|
- // Calculate D1 and D3 for z1 in the first layer //
|
|
|
- //*************************************************//
|
|
|
- if (fl == pl) { // PEC layer
|
|
|
- for (n = 0; n <= nmax; n++) {
|
|
|
- D1_mlxl[fl][n] = std::complex<double>(0.0, -1.0);
|
|
|
- D3_mlxl[fl][n] = std::complex<double>(0.0, 1.0);
|
|
|
- }
|
|
|
- } else { // Regular layer
|
|
|
- z1 = x[fl]* m[fl];
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Calculate bn - equation (6) //
|
|
|
+ // ********************************************************************** //
|
|
|
+ std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
|
|
|
+ std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
+ std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
+
|
|
|
+ std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
|
|
|
+ std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
|
|
|
|
|
|
- // Calculate D1 and D3
|
|
|
- calcD1D3(z1, nmax, D1_mlxl[fl], D3_mlxl[fl]);
|
|
|
+ return Num/Denom;
|
|
|
}
|
|
|
|
|
|
- //******************************************************************//
|
|
|
- // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
|
|
|
- //******************************************************************//
|
|
|
- for (n = 0; n < nmax; n++) {
|
|
|
- Ha[fl][n] = D1_mlxl[fl][n + 1];
|
|
|
- Hb[fl][n] = D1_mlxl[fl][n + 1];
|
|
|
+
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Calculates S1 - equation (25a) //
|
|
|
+ // ********************************************************************** //
|
|
|
+ std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
+ double Pi, double Tau) {
|
|
|
+ return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
|
|
|
}
|
|
|
|
|
|
- //*****************************************************//
|
|
|
- // Iteration from the second layer to the last one (L) //
|
|
|
- //*****************************************************//
|
|
|
- for (l = fl + 1; l < L; l++) {
|
|
|
- //************************************************************//
|
|
|
- //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L //
|
|
|
- //************************************************************//
|
|
|
- z1 = x[l]*m[l];
|
|
|
- z2 = x[l - 1]*m[l];
|
|
|
|
|
|
- //Calculate D1 and D3 for z1
|
|
|
- calcD1D3(z1, nmax, D1_mlxl[l], D3_mlxl[l]);
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Calculates S2 - equation (25b) (it's the same as (25a), just switches //
|
|
|
+ // Pi and Tau) //
|
|
|
+ // ********************************************************************** //
|
|
|
+ std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
+ double Pi, double Tau) {
|
|
|
+ return calc_S1(n, an, bn, Tau, Pi);
|
|
|
+ }
|
|
|
|
|
|
- //Calculate D1 and D3 for z2
|
|
|
- calcD1D3(z2, nmax, D1_mlxlM1[l], D3_mlxlM1[l]);
|
|
|
|
|
|
- //*********************************************//
|
|
|
- //Calculate Q, Ha and Hb in the layers fl+1..L //
|
|
|
- //*********************************************//
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
|
|
|
+ // real argument (x). //
|
|
|
+ // Equations (20a) - (21b) //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // x: Real argument to evaluate Psi and Zeta //
|
|
|
+ // nmax: Maximum number of terms to calculate Psi and Zeta //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // Psi, Zeta: Riccati-Bessel functions //
|
|
|
+ //**********************************************************************************//
|
|
|
+ void MultiLayerMie::calcPsiZeta(std::complex<double> z,
|
|
|
+ std::vector<std::complex<double> > D1,
|
|
|
+ std::vector<std::complex<double> > D3,
|
|
|
+ std::vector<std::complex<double> >& Psi,
|
|
|
+ std::vector<std::complex<double> >& Zeta) {
|
|
|
+
|
|
|
+ //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
|
|
|
+ std::complex<double> c_i(0.0, 1.0);
|
|
|
+ Psi[0] = std::sin(z);
|
|
|
+ Zeta[0] = std::sin(z) - c_i*std::cos(z);
|
|
|
+ for (int n = 1; n <= nmax_; n++) {
|
|
|
+ Psi[n] = Psi[n - 1]*(static_cast<double>(n)/z - D1[n - 1]);
|
|
|
+ Zeta[n] = Zeta[n - 1]*(static_cast<double>(n)/z - D3[n - 1]);
|
|
|
+ }
|
|
|
|
|
|
- // Upward recurrence for Q - equations (19a) and (19b)
|
|
|
- Num = exp(-2.0*(z1.imag() - z2.imag()))*std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
|
|
|
- Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
|
|
|
- Q[l][0] = Num/Denom;
|
|
|
+ }
|
|
|
|
|
|
- for (n = 1; n <= nmax; n++) {
|
|
|
- Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]);
|
|
|
- Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]);
|
|
|
|
|
|
- Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom;
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function calculates the logarithmic derivatives of the Riccati-Bessel //
|
|
|
+ // functions (D1 and D3) for a complex argument (z). //
|
|
|
+ // Equations (16a), (16b) and (18a) - (18d) //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // z: Complex argument to evaluate D1 and D3 //
|
|
|
+ // nmax_: Maximum number of terms to calculate D1 and D3 //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
|
|
|
+ //**********************************************************************************//
|
|
|
+ void MultiLayerMie::calcD1D3(const std::complex<double> z,
|
|
|
+ std::vector<std::complex<double> >& D1,
|
|
|
+ std::vector<std::complex<double> >& D3) {
|
|
|
+
|
|
|
+ // Downward recurrence for D1 - equations (16a) and (16b)
|
|
|
+ D1[nmax_] = std::complex<double>(0.0, 0.0);
|
|
|
+ const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
|
|
|
+
|
|
|
+ for (int n = nmax_; n > 0; n--) {
|
|
|
+ D1[n - 1] = double(n)*zinv - 1.0/(D1[n] + double(n)*zinv);
|
|
|
}
|
|
|
|
|
|
- // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
|
|
|
- for (n = 1; n <= nmax; n++) {
|
|
|
- //Ha
|
|
|
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
- G1 = -D1_mlxlM1[l][n];
|
|
|
- G2 = -D3_mlxlM1[l][n];
|
|
|
- } else {
|
|
|
- G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]);
|
|
|
- G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]);
|
|
|
+ if (std::abs(D1[0]) > 100000.0)
|
|
|
+ throw std::invalid_argument("Unstable D1! Please, try to change input parameters!\n");
|
|
|
+
|
|
|
+ // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
|
|
|
+ PsiZeta_[0] = 0.5*(1.0 - std::complex<double>(std::cos(2.0*z.real()), std::sin(2.0*z.real()))
|
|
|
+ *std::exp(-2.0*z.imag()));
|
|
|
+ D3[0] = std::complex<double>(0.0, 1.0);
|
|
|
+ for (int n = 1; n <= nmax_; n++) {
|
|
|
+ PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<double>(n)*zinv - D1[n - 1])
|
|
|
+ *(static_cast<double>(n)*zinv- D3[n - 1]);
|
|
|
+ D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta_[n];
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function calculates Pi and Tau for a given value of cos(Theta). //
|
|
|
+ // Equations (26a) - (26c) //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // nmax_: Maximum number of terms to calculate Pi and Tau //
|
|
|
+ // nTheta: Number of scattering angles //
|
|
|
+ // Theta: Array containing all the scattering angles where the scattering //
|
|
|
+ // amplitudes will be calculated //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
|
|
|
+ //**********************************************************************************//
|
|
|
+ void MultiLayerMie::calcPiTau(const double& costheta,
|
|
|
+ std::vector<double>& Pi, std::vector<double>& Tau) {
|
|
|
+
|
|
|
+ int n;
|
|
|
+ //****************************************************//
|
|
|
+ // Equations (26a) - (26c) //
|
|
|
+ //****************************************************//
|
|
|
+ // Initialize Pi and Tau
|
|
|
+ Pi[0] = 1.0;
|
|
|
+ Tau[0] = costheta;
|
|
|
+ // Calculate the actual values
|
|
|
+ if (nmax_ > 1) {
|
|
|
+ Pi[1] = 3*costheta*Pi[0];
|
|
|
+ Tau[1] = 2*costheta*Pi[1] - 3*Pi[0];
|
|
|
+ for (n = 2; n < nmax_; n++) {
|
|
|
+ Pi[n] = ((n + n + 1)*costheta*Pi[n - 1] - (n + 1)*Pi[n - 2])/n;
|
|
|
+ Tau[n] = (n + 1)*costheta*Pi[n] - (n + 2)*Pi[n - 1];
|
|
|
}
|
|
|
+ }
|
|
|
+ } // end of MultiLayerMie::calcPiTau(...)
|
|
|
+
|
|
|
+ void MultiLayerMie::calcSpherHarm(const double Rho, const double Phi, const double Theta,
|
|
|
+ const std::complex<double>& zn, const std::complex<double>& dzn,
|
|
|
+ const double& Pi, const double& Tau, const double& n,
|
|
|
+ std::vector<std::complex<double> >& Mo1n, std::vector<std::complex<double> >& Me1n,
|
|
|
+ std::vector<std::complex<double> >& No1n, std::vector<std::complex<double> >& Ne1n) {
|
|
|
+
|
|
|
+ // using eq 4.50 in BH
|
|
|
+ std::complex<double> c_zero(0.0, 0.0);
|
|
|
+ std::complex<double> deriv = Rho*dzn + zn;
|
|
|
+
|
|
|
+ using std::sin;
|
|
|
+ using std::cos;
|
|
|
+ Mo1n[0] = c_zero;
|
|
|
+ Mo1n[1] = cos(Phi)*Pi*zn;
|
|
|
+ Mo1n[2] = -sin(Phi)*Tau*zn;
|
|
|
+ Me1n[0] = c_zero;
|
|
|
+ Me1n[1] = -sin(Phi)*Pi*zn;
|
|
|
+ Me1n[2] = -cos(Phi)*Tau*zn;
|
|
|
+ No1n[0] = sin(Phi)*(n*n + n)*sin(Theta)*Pi*zn/Rho;
|
|
|
+ No1n[1] = sin(Phi)*Tau*deriv/Rho;
|
|
|
+ No1n[2] = cos(Phi)*Pi*deriv/Rho;
|
|
|
+ Ne1n[0] = cos(Phi)*(n*n + n)*sin(Theta)*Pi*zn/Rho;
|
|
|
+ Ne1n[1] = cos(Phi)*Tau*deriv/Rho;
|
|
|
+ Ne1n[2] = -sin(Phi)*Pi*deriv/Rho;
|
|
|
+ } // end of MultiLayerMie::calcSpherHarm(...)
|
|
|
+
|
|
|
+
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function calculates the scattering coefficients required to calculate //
|
|
|
+ // both the near- and far-field parameters. //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // L: Number of layers //
|
|
|
+ // pl: Index of PEC layer. If there is none just send -1 //
|
|
|
+ // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+ // nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+ // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
+ // set this parameter to -1 and the function will calculate it. //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // an, bn: Complex scattering amplitudes //
|
|
|
+ // //
|
|
|
+ // Return value: //
|
|
|
+ // Number of multipolar expansion terms used for the calculations //
|
|
|
+ //**********************************************************************************//
|
|
|
+ void MultiLayerMie::ExtScattCoeffs() {
|
|
|
+
|
|
|
+ areExtCoeffsCalc_ = false;
|
|
|
+
|
|
|
+ const std::vector<double>& x = size_param_;
|
|
|
+ const std::vector<std::complex<double> >& m = refr_index_;
|
|
|
+ const int& pl = PEC_layer_position_;
|
|
|
+ const int L = refr_index_.size();
|
|
|
+
|
|
|
+ //************************************************************************//
|
|
|
+ // Calculate the index of the first layer. It can be either 0 (default) //
|
|
|
+ // or the index of the outermost PEC layer. In the latter case all layers //
|
|
|
+ // below the PEC are discarded. //
|
|
|
+ // ***********************************************************************//
|
|
|
+ // TODO, is it possible for PEC to have a zero index? If yes than
|
|
|
+ // is should be:
|
|
|
+ // int fl = (pl > - 1) ? pl : 0;
|
|
|
+ // This will give the same result, however, it corresponds the
|
|
|
+ // logic - if there is PEC, than first layer is PEC.
|
|
|
+ // Well, I followed the logic: First layer is always zero unless it has
|
|
|
+ // an upper PEC layer.
|
|
|
+ int fl = (pl > 0) ? pl : 0;
|
|
|
+ if (nmax_preset_ <= 0) calcNmax(fl);
|
|
|
+ else nmax_ = nmax_preset_;
|
|
|
+
|
|
|
+ std::complex<double> z1, z2;
|
|
|
+ //**************************************************************************//
|
|
|
+ // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
|
|
|
+ // means that index = layer number - 1 or index = n - 1. The only exception //
|
|
|
+ // are the arrays for representing D1, D3 and Q because they need a value //
|
|
|
+ // for the index 0 (zero), hence it is important to consider this shift //
|
|
|
+ // between different arrays. The change was done to optimize memory usage. //
|
|
|
+ //**************************************************************************//
|
|
|
+ // Allocate memory to the arrays
|
|
|
+ std::vector<std::complex<double> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
|
|
|
+ D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
|
|
|
+
|
|
|
+ std::vector<std::vector<std::complex<double> > > Q(L), Ha(L), Hb(L);
|
|
|
+
|
|
|
+ for (int l = 0; l < L; l++) {
|
|
|
+ Q[l].resize(nmax_ + 1);
|
|
|
+ Ha[l].resize(nmax_);
|
|
|
+ Hb[l].resize(nmax_);
|
|
|
+ }
|
|
|
|
|
|
- Temp = Q[l][n]*G1;
|
|
|
+ an_.resize(nmax_);
|
|
|
+ bn_.resize(nmax_);
|
|
|
+ PsiZeta_.resize(nmax_ + 1);
|
|
|
|
|
|
- Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]);
|
|
|
- Denom = G2 - Temp;
|
|
|
+ std::vector<std::complex<double> > D1XL(nmax_ + 1), D3XL(nmax_ + 1),
|
|
|
+ PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
|
|
|
|
|
|
- Ha[l][n - 1] = Num/Denom;
|
|
|
+ //*************************************************//
|
|
|
+ // Calculate D1 and D3 for z1 in the first layer //
|
|
|
+ //*************************************************//
|
|
|
+ if (fl == pl) { // PEC layer
|
|
|
+ for (int n = 0; n <= nmax_; n++) {
|
|
|
+ D1_mlxl[n] = std::complex<double>(0.0, - 1.0);
|
|
|
+ D3_mlxl[n] = std::complex<double>(0.0, 1.0);
|
|
|
+ }
|
|
|
+ } else { // Regular layer
|
|
|
+ z1 = x[fl]* m[fl];
|
|
|
+ // Calculate D1 and D3
|
|
|
+ calcD1D3(z1, D1_mlxl, D3_mlxl);
|
|
|
+ }
|
|
|
|
|
|
- //Hb
|
|
|
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
- G1 = Hb[l - 1][n - 1];
|
|
|
- G2 = Hb[l - 1][n - 1];
|
|
|
+ //******************************************************************//
|
|
|
+ // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
|
|
|
+ //******************************************************************//
|
|
|
+ for (int n = 0; n < nmax_; n++) {
|
|
|
+ Ha[fl][n] = D1_mlxl[n + 1];
|
|
|
+ Hb[fl][n] = D1_mlxl[n + 1];
|
|
|
+ }
|
|
|
+ //*****************************************************//
|
|
|
+ // Iteration from the second layer to the last one (L) //
|
|
|
+ //*****************************************************//
|
|
|
+ std::complex<double> Temp, Num, Denom;
|
|
|
+ std::complex<double> G1, G2;
|
|
|
+ for (int l = fl + 1; l < L; l++) {
|
|
|
+ //************************************************************//
|
|
|
+ //Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L //
|
|
|
+ //************************************************************//
|
|
|
+ z1 = x[l]*m[l];
|
|
|
+ z2 = x[l - 1]*m[l];
|
|
|
+ //Calculate D1 and D3 for z1
|
|
|
+ calcD1D3(z1, D1_mlxl, D3_mlxl);
|
|
|
+ //Calculate D1 and D3 for z2
|
|
|
+ calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
|
|
|
+
|
|
|
+ //*********************************************//
|
|
|
+ //Calculate Q, Ha and Hb in the layers fl + 1..L //
|
|
|
+ //*********************************************//
|
|
|
+ // Upward recurrence for Q - equations (19a) and (19b)
|
|
|
+ Num = std::exp(-2.0*(z1.imag() - z2.imag()))
|
|
|
+ *std::complex<double>(std::cos(-2.0*z2.real()) - std::exp(-2.0*z2.imag()), std::sin(-2.0*z2.real()));
|
|
|
+ Denom = std::complex<double>(std::cos(-2.0*z1.real()) - std::exp(-2.0*z1.imag()), std::sin(-2.0*z1.real()));
|
|
|
+ Q[l][0] = Num/Denom;
|
|
|
+ for (int n = 1; n <= nmax_; n++) {
|
|
|
+ Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]);
|
|
|
+ Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]);
|
|
|
+ Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
|
|
|
+ }
|
|
|
+ // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
|
|
|
+ for (int n = 1; n <= nmax_; n++) {
|
|
|
+ //Ha
|
|
|
+ if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
+ G1 = -D1_mlxlM1[n];
|
|
|
+ G2 = -D3_mlxlM1[n];
|
|
|
+ } else {
|
|
|
+ G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
|
|
|
+ G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
|
|
|
+ } // end of if PEC
|
|
|
+ Temp = Q[l][n]*G1;
|
|
|
+ Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
|
|
|
+ Denom = G2 - Temp;
|
|
|
+ Ha[l][n - 1] = Num/Denom;
|
|
|
+ //Hb
|
|
|
+ if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
+ G1 = Hb[l - 1][n - 1];
|
|
|
+ G2 = Hb[l - 1][n - 1];
|
|
|
+ } else {
|
|
|
+ G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
|
|
|
+ G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
|
|
|
+ } // end of if PEC
|
|
|
+
|
|
|
+ Temp = Q[l][n]*G1;
|
|
|
+ Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
|
|
|
+ Denom = (G2- Temp);
|
|
|
+ Hb[l][n - 1] = (Num/ Denom);
|
|
|
+ } // end of for Ha and Hb terms
|
|
|
+ } // end of for layers iteration
|
|
|
+
|
|
|
+ //**************************************//
|
|
|
+ //Calculate D1, D3, Psi and Zeta for XL //
|
|
|
+ //**************************************//
|
|
|
+ // Calculate D1XL and D3XL
|
|
|
+ calcD1D3(x[L - 1], D1XL, D3XL);
|
|
|
+
|
|
|
+ // Calculate PsiXL and ZetaXL
|
|
|
+ calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL);
|
|
|
+ //*********************************************************************//
|
|
|
+ // Finally, we calculate the scattering coefficients (an and bn) and //
|
|
|
+ // the angular functions (Pi and Tau). Note that for these arrays the //
|
|
|
+ // first layer is 0 (zero), in future versions all arrays will follow //
|
|
|
+ // this convention to save memory. (13 Nov, 2014) //
|
|
|
+ //*********************************************************************//
|
|
|
+ for (int n = 0; n < nmax_; n++) {
|
|
|
+ //********************************************************************//
|
|
|
+ //Expressions for calculating an and bn coefficients are not valid if //
|
|
|
+ //there is only one PEC layer (ie, for a simple PEC sphere). //
|
|
|
+ //********************************************************************//
|
|
|
+ if (pl < (L - 1)) {
|
|
|
+ an_[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
+ bn_[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
} else {
|
|
|
- G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]);
|
|
|
- G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]);
|
|
|
+ an_[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
+ bn_[n] = PsiXL[n + 1]/ZetaXL[n + 1];
|
|
|
+ }
|
|
|
+ } // end of for an and bn terms
|
|
|
+ areExtCoeffsCalc_ = true;
|
|
|
+ } // end of void MultiLayerMie::ExtScattCoeffs(...)
|
|
|
+
|
|
|
+
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function calculates the actual scattering parameters and amplitudes //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // L: Number of layers //
|
|
|
+ // pl: Index of PEC layer. If there is none just send -1 //
|
|
|
+ // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+ // nTheta: Number of scattering angles //
|
|
|
+ // Theta: Array containing all the scattering angles where the scattering //
|
|
|
+ // amplitudes will be calculated //
|
|
|
+ // nmax_: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+ // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
+ // set this parameter to -1 and the function will calculate it //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // Qext: Efficiency factor for extinction //
|
|
|
+ // Qsca: Efficiency factor for scattering //
|
|
|
+ // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
+ // Qbk: Efficiency factor for backscattering //
|
|
|
+ // Qpr: Efficiency factor for the radiation pressure //
|
|
|
+ // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
+ // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
+ // S1, S2: Complex scattering amplitudes //
|
|
|
+ // //
|
|
|
+ // Return value: //
|
|
|
+ // Number of multipolar expansion terms used for the calculations //
|
|
|
+ //**********************************************************************************//
|
|
|
+ void MultiLayerMie::RunMieCalculation() {
|
|
|
+ if (size_param_.size() != refr_index_.size())
|
|
|
+ throw std::invalid_argument("Each size parameter should have only one index!");
|
|
|
+ if (size_param_.size() == 0)
|
|
|
+ throw std::invalid_argument("Initialize model first!");
|
|
|
+
|
|
|
+ const std::vector<double>& x = size_param_;
|
|
|
+
|
|
|
+ areIntCoeffsCalc_ = false;
|
|
|
+ areExtCoeffsCalc_ = false;
|
|
|
+ isMieCalculated_ = false;
|
|
|
+
|
|
|
+ // Calculate scattering coefficients
|
|
|
+ ExtScattCoeffs();
|
|
|
+
|
|
|
+// for (int i = 0; i < nmax_; i++) {
|
|
|
+// printf("a[%i] = %g, %g; b[%i] = %g, %g\n", i, an_[i].real(), an_[i].imag(), i, bn_[i].real(), bn_[i].imag());
|
|
|
+// }
|
|
|
+
|
|
|
+ if (!areExtCoeffsCalc_)
|
|
|
+ throw std::invalid_argument("Calculation of scattering coefficients failed!");
|
|
|
+
|
|
|
+ // Initialize the scattering parameters
|
|
|
+ Qext_ = 0;
|
|
|
+ Qsca_ = 0;
|
|
|
+ Qabs_ = 0;
|
|
|
+ Qbk_ = 0;
|
|
|
+ Qpr_ = 0;
|
|
|
+ asymmetry_factor_ = 0;
|
|
|
+ albedo_ = 0;
|
|
|
+ Qsca_ch_.clear();
|
|
|
+ Qext_ch_.clear();
|
|
|
+ Qabs_ch_.clear();
|
|
|
+ Qbk_ch_.clear();
|
|
|
+ Qpr_ch_.clear();
|
|
|
+ Qsca_ch_.resize(nmax_ - 1);
|
|
|
+ Qext_ch_.resize(nmax_ - 1);
|
|
|
+ Qabs_ch_.resize(nmax_ - 1);
|
|
|
+ Qbk_ch_.resize(nmax_ - 1);
|
|
|
+ Qpr_ch_.resize(nmax_ - 1);
|
|
|
+ Qsca_ch_norm_.resize(nmax_ - 1);
|
|
|
+ Qext_ch_norm_.resize(nmax_ - 1);
|
|
|
+ Qabs_ch_norm_.resize(nmax_ - 1);
|
|
|
+ Qbk_ch_norm_.resize(nmax_ - 1);
|
|
|
+ Qpr_ch_norm_.resize(nmax_ - 1);
|
|
|
+
|
|
|
+ // Initialize the scattering amplitudes
|
|
|
+ std::vector<std::complex<double> > tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
|
|
|
+ S1_.swap(tmp1);
|
|
|
+ S2_ = S1_;
|
|
|
+
|
|
|
+ std::vector<double> Pi(nmax_), Tau(nmax_);
|
|
|
+
|
|
|
+ std::complex<double> Qbktmp(0.0, 0.0);
|
|
|
+ std::vector< std::complex<double> > Qbktmp_ch(nmax_ - 1, Qbktmp);
|
|
|
+ // By using downward recurrence we avoid loss of precision due to float rounding errors
|
|
|
+ // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
|
|
|
+ // http://en.wikipedia.org/wiki/Loss_of_significance
|
|
|
+ for (int i = nmax_ - 2; i >= 0; i--) {
|
|
|
+ const int n = i + 1;
|
|
|
+ // Equation (27)
|
|
|
+ Qext_ch_norm_[i] = (an_[i].real() + bn_[i].real());
|
|
|
+ Qext_ch_[i] = (n + n + 1.0)*Qext_ch_norm_[i];
|
|
|
+ //Qext_ch_[i] = (n + n + 1)*(an_[i].real() + bn_[i].real());
|
|
|
+ Qext_ += Qext_ch_[i];
|
|
|
+ // Equation (28)
|
|
|
+ Qsca_ch_norm_[i] = (an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
|
|
|
+ + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
|
|
|
+ Qsca_ch_[i] = (n + n + 1.0)*Qsca_ch_norm_[i];
|
|
|
+ Qsca_ += Qsca_ch_[i];
|
|
|
+ // Qsca_ch_[i] += (n + n + 1)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
|
|
|
+ // + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
|
|
|
+
|
|
|
+ // Equation (29) TODO We must check carefully this equation. If we
|
|
|
+ // remove the typecast to double then the result changes. Which is
|
|
|
+ // the correct one??? Ovidio (2014/12/10) With cast ratio will
|
|
|
+ // give double, without cast (n + n + 1)/(n*(n + 1)) will be
|
|
|
+ // rounded to integer. Tig (2015/02/24)
|
|
|
+ Qpr_ch_[i]=((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real())
|
|
|
+ + ((double)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real());
|
|
|
+ Qpr_ += Qpr_ch_[i];
|
|
|
+ // Equation (33)
|
|
|
+ Qbktmp_ch[i] = (double)(n + n + 1)*(1 - 2*(n % 2))*(an_[i]- bn_[i]);
|
|
|
+ Qbktmp += Qbktmp_ch[i];
|
|
|
+ // Calculate the scattering amplitudes (S1 and S2) //
|
|
|
+ // Equations (25a) - (25b) //
|
|
|
+ for (int t = 0; t < theta_.size(); t++) {
|
|
|
+ calcPiTau(std::cos(theta_[t]), Pi, Tau);
|
|
|
+
|
|
|
+ S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[i], Tau[i]);
|
|
|
+ S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[i], Tau[i]);
|
|
|
}
|
|
|
+ }
|
|
|
+ double x2 = pow2(x.back());
|
|
|
+ Qext_ = 2.0*(Qext_)/x2; // Equation (27)
|
|
|
+ for (double& Q : Qext_ch_) Q = 2.0*Q/x2;
|
|
|
+ Qsca_ = 2.0*(Qsca_)/x2; // Equation (28)
|
|
|
+ for (double& Q : Qsca_ch_) Q = 2.0*Q/x2;
|
|
|
+ //for (double& Q : Qsca_ch_norm_) Q = 2.0*Q/x2;
|
|
|
+ Qpr_ = Qext_ - 4.0*(Qpr_)/x2; // Equation (29)
|
|
|
+ for (int i = 0; i < nmax_ - 1; ++i) Qpr_ch_[i] = Qext_ch_[i] - 4.0*Qpr_ch_[i]/x2;
|
|
|
+
|
|
|
+ Qabs_ = Qext_ - Qsca_; // Equation (30)
|
|
|
+ for (int i = 0; i < nmax_ - 1; ++i) {
|
|
|
+ Qabs_ch_[i] = Qext_ch_[i] - Qsca_ch_[i];
|
|
|
+ Qabs_ch_norm_[i] = Qext_ch_norm_[i] - Qsca_ch_norm_[i];
|
|
|
+ }
|
|
|
|
|
|
- Temp = Q[l][n]*G1;
|
|
|
+ albedo_ = Qsca_/Qext_; // Equation (31)
|
|
|
+ asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_; // Equation (32)
|
|
|
|
|
|
- Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]);
|
|
|
- Denom = (G2- Temp);
|
|
|
+ Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
|
|
|
|
|
|
- Hb[l][n - 1] = (Num/ Denom);
|
|
|
- }
|
|
|
+ isMieCalculated_ = true;
|
|
|
}
|
|
|
|
|
|
- //**************************************//
|
|
|
- //Calculate D1, D3, Psi and Zeta for XL //
|
|
|
- //**************************************//
|
|
|
|
|
|
- // Calculate D1XL and D3XL
|
|
|
- calcD1D3(x[L - 1], nmax, D1XL, D3XL);
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ void MultiLayerMie::IntScattCoeffs() {
|
|
|
+ if (!areExtCoeffsCalc_)
|
|
|
+ throw std::invalid_argument("(IntScattCoeffs) You should calculate external coefficients first!");
|
|
|
+
|
|
|
+ areIntCoeffsCalc_ = false;
|
|
|
+
|
|
|
+ std::complex<double> c_one(1.0, 0.0);
|
|
|
+ std::complex<double> c_zero(0.0, 0.0);
|
|
|
+
|
|
|
+ const int L = refr_index_.size();
|
|
|
+
|
|
|
+ // we need to fill
|
|
|
+ // std::vector< std::vector<std::complex<double> > > anl_, bnl_, cnl_, dnl_;
|
|
|
+ // for n = [0..nmax_) and for l=[L..0)
|
|
|
+ // TODO: to decrease cache miss outer loop is with n and inner with reversed l
|
|
|
+ // at the moment outer is forward l and inner in n
|
|
|
+ anl_.resize(L + 1);
|
|
|
+ bnl_.resize(L + 1);
|
|
|
+ cnl_.resize(L + 1);
|
|
|
+ dnl_.resize(L + 1);
|
|
|
+ for (auto& element:anl_) element.resize(nmax_);
|
|
|
+ for (auto& element:bnl_) element.resize(nmax_);
|
|
|
+ for (auto& element:cnl_) element.resize(nmax_);
|
|
|
+ for (auto& element:dnl_) element.resize(nmax_);
|
|
|
+
|
|
|
+ // Yang, paragraph under eq. A3
|
|
|
+ // a^(L + 1)_n = a_n, d^(L + 1) = 1 ...
|
|
|
+ for (int i = 0; i < nmax_; ++i) {
|
|
|
+ anl_[L][i] = an_[i];
|
|
|
+ bnl_[L][i] = bn_[i];
|
|
|
+ cnl_[L][i] = c_one;
|
|
|
+ dnl_[L][i] = c_one;
|
|
|
+ }
|
|
|
|
|
|
- // Calculate PsiXL and ZetaXL
|
|
|
- calcPsiZeta(x[L - 1], nmax, D1XL, D3XL, PsiXL, ZetaXL);
|
|
|
+ std::vector<std::complex<double> > z(L), z1(L);
|
|
|
+ for (int i = 0; i < L - 1; ++i) {
|
|
|
+ z[i] = size_param_[i]*refr_index_[i];
|
|
|
+ z1[i] = size_param_[i]*refr_index_[i + 1];
|
|
|
+ }
|
|
|
+ z[L - 1] = size_param_[L - 1]*refr_index_[L - 1];
|
|
|
+ z1[L - 1] = size_param_[L - 1];
|
|
|
+ std::vector< std::vector<std::complex<double> > > D1z(L), D1z1(L), D3z(L), D3z1(L);
|
|
|
+ std::vector< std::vector<std::complex<double> > > Psiz(L), Psiz1(L), Zetaz(L), Zetaz1(L);
|
|
|
+ for (int l = 0; l < L; ++l) {
|
|
|
+ D1z[l].resize(nmax_ + 1);
|
|
|
+ D1z1[l].resize(nmax_ + 1);
|
|
|
+ D3z[l].resize(nmax_ + 1);
|
|
|
+ D3z1[l].resize(nmax_ + 1);
|
|
|
+ Psiz[l].resize(nmax_ + 1);
|
|
|
+ Psiz1[l].resize(nmax_ + 1);
|
|
|
+ Zetaz[l].resize(nmax_ + 1);
|
|
|
+ Zetaz1[l].resize(nmax_ + 1);
|
|
|
+ }
|
|
|
|
|
|
- //*********************************************************************//
|
|
|
- // Finally, we calculate the scattering coefficients (an and bn) and //
|
|
|
- // the angular functions (Pi and Tau). Note that for these arrays the //
|
|
|
- // first layer is 0 (zero), in future versions all arrays will follow //
|
|
|
- // this convention to save memory. (13 Nov, 2014) //
|
|
|
- //*********************************************************************//
|
|
|
- for (n = 0; n < nmax; n++) {
|
|
|
- //********************************************************************//
|
|
|
- //Expressions for calculating an and bn coefficients are not valid if //
|
|
|
- //there is only one PEC layer (ie, for a simple PEC sphere). //
|
|
|
- //********************************************************************//
|
|
|
- if (pl < (L - 1)) {
|
|
|
- an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
- bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
- } else {
|
|
|
- an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
- bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
|
|
|
+ for (int l = 0; l < L; ++l) {
|
|
|
+ calcD1D3(z[l], D1z[l], D3z[l]);
|
|
|
+ calcD1D3(z1[l], D1z1[l], D3z1[l]);
|
|
|
+ calcPsiZeta(z[l], D1z[l], D3z[l], Psiz[l], Zetaz[l]);
|
|
|
+ calcPsiZeta(z1[l], D1z1[l], D3z1[l], Psiz1[l], Zetaz1[l]);
|
|
|
+ }
|
|
|
+ auto& m = refr_index_;
|
|
|
+ std::vector< std::complex<double> > m1(L);
|
|
|
+
|
|
|
+ for (int l = 0; l < L - 1; ++l) m1[l] = m[l + 1];
|
|
|
+ m1[L - 1] = std::complex<double> (1.0, 0.0);
|
|
|
+
|
|
|
+ // for (auto zz : m) printf ("m[i]=%g \n\n ", zz.real());
|
|
|
+ for (int l = L - 1; l >= 0; l--) {
|
|
|
+ for (int n = nmax_ - 2; n >= 0; n--) {
|
|
|
+ auto denomZeta = m1[l]*Zetaz[l][n + 1]*(D1z[l][n + 1] - D3z[l][n + 1]);
|
|
|
+ auto denomPsi = m1[l]*Psiz[l][n + 1]*(D1z[l][n + 1] - D3z[l][n + 1]);
|
|
|
+
|
|
|
+ auto T1 = anl_[l + 1][n]*Zetaz1[l][n + 1] - dnl_[l + 1][n]*Psiz1[l][n + 1];
|
|
|
+ auto T2 = bnl_[l + 1][n]*Zetaz1[l][n + 1] - cnl_[l + 1][n]*Psiz1[l][n + 1];
|
|
|
+
|
|
|
+ auto T3 = -D1z1[l][n + 1]*dnl_[l + 1][n]*Psiz1[l][n + 1] + D3z1[l][n + 1]*anl_[l + 1][n]*Zetaz1[l][n + 1];
|
|
|
+ auto T4 = -D1z1[l][n + 1]*cnl_[l + 1][n]*Psiz1[l][n + 1] + D3z1[l][n + 1]*bnl_[l + 1][n]*Zetaz1[l][n + 1];
|
|
|
+
|
|
|
+ // anl
|
|
|
+ anl_[l][n] = (D1z[l][n + 1]*m1[l]*T1 - m[l]*T3)/denomZeta;
|
|
|
+ // bnl
|
|
|
+ bnl_[l][n] = (D1z[l][n + 1]*m[l]*T2 - m1[l]*T4)/denomZeta;
|
|
|
+ // cnl
|
|
|
+ cnl_[l][n] = (D3z[l][n + 1]*m[l]*T2 - m1[l]*T4)/denomPsi;
|
|
|
+ // dnl
|
|
|
+ dnl_[l][n] = (D3z[l][n + 1]*m1[l]*T1 - m[l]*T3)/denomPsi;
|
|
|
+ } // end of all n
|
|
|
+ } // end of all l
|
|
|
+
|
|
|
+ // Check the result and change an__0 and bn__0 for exact zero
|
|
|
+ for (int n = 0; n < nmax_; ++n) {
|
|
|
+ if (std::abs(anl_[0][n]) < 1e-10) anl_[0][n] = 0.0;
|
|
|
+ else throw std::invalid_argument("Unstable calculation of a__0_n!");
|
|
|
+ if (std::abs(bnl_[0][n]) < 1e-10) bnl_[0][n] = 0.0;
|
|
|
+ else throw std::invalid_argument("Unstable calculation of b__0_n!");
|
|
|
}
|
|
|
- }
|
|
|
|
|
|
- return nmax;
|
|
|
-}
|
|
|
+ // for (int l = 0; l < L; ++l) {
|
|
|
+ // printf("l=%d --> ", l);
|
|
|
+ // for (int n = 0; n < nmax_ + 1; ++n) {
|
|
|
+ // if (n < 20) continue;
|
|
|
+ // printf("n=%d --> D1zn=%g, D3zn=%g, D1zn=%g, D3zn=%g || ",
|
|
|
+ // n,
|
|
|
+ // D1z[l][n].real(), D3z[l][n].real(),
|
|
|
+ // D1z1[l][n].real(), D3z1[l][n].real());
|
|
|
+ // }
|
|
|
+ // printf("\n\n");
|
|
|
+ // }
|
|
|
+ // for (int l = 0; l < L; ++l) {
|
|
|
+ // printf("l=%d --> ", l);
|
|
|
+ // for (int n = 0; n < nmax_ + 1; ++n) {
|
|
|
+ // printf("n=%d --> D1zn=%g, D3zn=%g, D1zn=%g, D3zn=%g || ",
|
|
|
+ // n,
|
|
|
+ // D1z[l][n].real(), D3z[l][n].real(),
|
|
|
+ // D1z1[l][n].real(), D3z1[l][n].real());
|
|
|
+ // }
|
|
|
+ // printf("\n\n");
|
|
|
+ // }
|
|
|
+ //for (int i = 0; i < L + 1; ++i) {
|
|
|
+ // printf("Layer =%d ---> \n", i);
|
|
|
+ // for (int n = 0; n < nmax_; ++n) {
|
|
|
+ // if (n < 20) continue;
|
|
|
+ // printf(" || n=%d --> a=%g,%g b=%g,%g c=%g,%g d=%g,%g\n",
|
|
|
+ // n,
|
|
|
+ // anl_[i][n].real(), anl_[i][n].imag(),
|
|
|
+ // bnl_[i][n].real(), bnl_[i][n].imag(),
|
|
|
+ // cnl_[i][n].real(), cnl_[i][n].imag(),
|
|
|
+ // dnl_[i][n].real(), dnl_[i][n].imag());
|
|
|
+ // }
|
|
|
+ // printf("\n\n");
|
|
|
+ //}
|
|
|
+ areIntCoeffsCalc_ = true;
|
|
|
+ }
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
|
|
|
-//**********************************************************************************//
|
|
|
-// This function calculates the actual scattering parameters and amplitudes //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// L: Number of layers //
|
|
|
-// pl: Index of PEC layer. If there is none just send -1 //
|
|
|
-// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
-// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// nTheta: Number of scattering angles //
|
|
|
-// Theta: Array containing all the scattering angles where the scattering //
|
|
|
-// amplitudes will be calculated //
|
|
|
-// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
-// calculations. Only use it if you know what you are doing, otherwise //
|
|
|
-// set this parameter to -1 and the function will calculate it //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// Qext: Efficiency factor for extinction //
|
|
|
-// Qsca: Efficiency factor for scattering //
|
|
|
-// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
-// Qbk: Efficiency factor for backscattering //
|
|
|
-// Qpr: Efficiency factor for the radiation pressure //
|
|
|
-// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
-// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
-// S1, S2: Complex scattering amplitudes //
|
|
|
-// //
|
|
|
-// Return value: //
|
|
|
-// Number of multipolar expansion terms used for the calculations //
|
|
|
-//**********************************************************************************//
|
|
|
|
|
|
-int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
- int nTheta, std::vector<double> Theta, int nmax,
|
|
|
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
- std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
-
|
|
|
- int i, n, t;
|
|
|
- std::vector<std::complex<double> > an, bn;
|
|
|
- std::complex<double> Qbktmp;
|
|
|
-
|
|
|
- // Calculate scattering coefficients
|
|
|
- nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn);
|
|
|
-
|
|
|
- std::vector<double> Pi, Tau;
|
|
|
- Pi.resize(nmax);
|
|
|
- Tau.resize(nmax);
|
|
|
-
|
|
|
- double x2 = x[L - 1]*x[L - 1];
|
|
|
-
|
|
|
- // Initialize the scattering parameters
|
|
|
- *Qext = 0;
|
|
|
- *Qsca = 0;
|
|
|
- *Qabs = 0;
|
|
|
- *Qbk = 0;
|
|
|
- Qbktmp = std::complex<double>(0.0, 0.0);
|
|
|
- *Qpr = 0;
|
|
|
- *g = 0;
|
|
|
- *Albedo = 0;
|
|
|
-
|
|
|
- // Initialize the scattering amplitudes
|
|
|
- for (t = 0; t < nTheta; t++) {
|
|
|
- S1[t] = std::complex<double>(0.0, 0.0);
|
|
|
- S2[t] = std::complex<double>(0.0, 0.0);
|
|
|
- }
|
|
|
-
|
|
|
- // By using downward recurrence we avoid loss of precision due to float rounding errors
|
|
|
- // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
|
|
|
- // http://en.wikipedia.org/wiki/Loss_of_significance
|
|
|
- for (i = nmax - 2; i >= 0; i--) {
|
|
|
- n = i + 1;
|
|
|
- // Equation (27)
|
|
|
- *Qext += (n + n + 1)*(an[i].real() + bn[i].real());
|
|
|
- // Equation (28)
|
|
|
- *Qsca += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
|
|
|
- // Equation (29) TODO We must check carefully this equation. If we
|
|
|
- // remove the typecast to double then the result changes. Which is
|
|
|
- // the correct one??? Ovidio (2014/12/10) With cast ratio will
|
|
|
- // give double, without cast (n + n + 1)/(n*(n + 1)) will be
|
|
|
- // rounded to integer. Tig (2015/02/24)
|
|
|
- *Qpr += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
|
|
|
- // Equation (33)
|
|
|
- Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
|
|
|
+ // ********************************************************************** //
|
|
|
+ // external scattering field = incident + scattered //
|
|
|
+ // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
|
|
|
+ // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
|
|
|
+ // ********************************************************************** //
|
|
|
|
|
|
- //****************************************************//
|
|
|
- // Calculate the scattering amplitudes (S1 and S2) //
|
|
|
- // Equations (25a) - (25b) //
|
|
|
- //****************************************************//
|
|
|
- for (t = 0; t < nTheta; t++) {
|
|
|
- calcPiTau(nmax, Theta[t], Pi, Tau);
|
|
|
+ void MultiLayerMie::fieldExt(const double Rho, const double Phi, const double Theta,
|
|
|
+ std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
|
|
|
|
|
|
- S1[t] += calc_S1(n, an[i], bn[i], Pi[i], Tau[i]);
|
|
|
- S2[t] += calc_S2(n, an[i], bn[i], Pi[i], Tau[i]);
|
|
|
- }
|
|
|
- }
|
|
|
+ std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
|
|
|
+ std::vector<std::complex<double> > ipow = {c_one, c_i, -c_one, -c_i}; // Vector containing precomputed integer powers of i to avoid computation
|
|
|
+ std::vector<std::complex<double> > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3);
|
|
|
+ std::vector<std::complex<double> > Ei(3, c_zero), Hi(3, c_zero), Es(3, c_zero), Hs(3, c_zero);
|
|
|
+ std::vector<std::complex<double> > jn(nmax_ + 1), jnp(nmax_ + 1), h1n(nmax_ + 1), h1np(nmax_ + 1);
|
|
|
+ std::vector<double> Pi(nmax_), Tau(nmax_);
|
|
|
|
|
|
- *Qext = 2*(*Qext)/x2; // Equation (27)
|
|
|
- *Qsca = 2*(*Qsca)/x2; // Equation (28)
|
|
|
- *Qpr = *Qext - 4*(*Qpr)/x2; // Equation (29)
|
|
|
+ // Calculate spherical Bessel and Hankel functions
|
|
|
+ sbesjh(Rho, jn, jnp, h1n, h1np);
|
|
|
|
|
|
- *Qabs = *Qext - *Qsca; // Equation (30)
|
|
|
- *Albedo = *Qsca / *Qext; // Equation (31)
|
|
|
- *g = (*Qext - *Qpr) / *Qsca; // Equation (32)
|
|
|
+ // Calculate angular functions Pi and Tau
|
|
|
+ calcPiTau(std::cos(Theta), Pi, Tau);
|
|
|
|
|
|
- *Qbk = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
|
|
|
+ for (int n = 0; n < nmax_; n++) {
|
|
|
+ int n1 = n + 1;
|
|
|
+ double rn = static_cast<double>(n1);
|
|
|
|
|
|
- return nmax;
|
|
|
-}
|
|
|
+ // using BH 4.12 and 4.50
|
|
|
+ calcSpherHarm(Rho, Phi, Theta, h1n[n1], h1np[n1], Pi[n], Tau[n], rn, M3o1n, M3e1n, N3o1n, N3e1n);
|
|
|
|
|
|
-//**********************************************************************************//
|
|
|
-// This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
-// parameters, it is here mainly for compatibility with older versions of the //
|
|
|
-// program. Also, you can use it if you neither have a PEC layer nor want to define //
|
|
|
-// any limit for the maximum number of terms. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// L: Number of layers //
|
|
|
-// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
-// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// nTheta: Number of scattering angles //
|
|
|
-// Theta: Array containing all the scattering angles where the scattering //
|
|
|
-// amplitudes will be calculated //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// Qext: Efficiency factor for extinction //
|
|
|
-// Qsca: Efficiency factor for scattering //
|
|
|
-// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
-// Qbk: Efficiency factor for backscattering //
|
|
|
-// Qpr: Efficiency factor for the radiation pressure //
|
|
|
-// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
-// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
-// S1, S2: Complex scattering amplitudes //
|
|
|
-// //
|
|
|
-// Return value: //
|
|
|
-// Number of multipolar expansion terms used for the calculations //
|
|
|
-//**********************************************************************************//
|
|
|
+ // scattered field: BH p.94 (4.45)
|
|
|
+ std::complex<double> En = ipow[n1 % 4]*(rn + rn + 1.0)/(rn*rn + rn);
|
|
|
+ for (int i = 0; i < 3; i++) {
|
|
|
+ Es[i] = Es[i] + En*(c_i*an_[n]*N3e1n[i] - bn_[n]*M3o1n[i]);
|
|
|
+ Hs[i] = Hs[i] + En*(c_i*bn_[n]*N3o1n[i] + an_[n]*M3e1n[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
-int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
- int nTheta, std::vector<double> Theta,
|
|
|
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
- std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
+ // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
|
|
|
+ // basis unit vectors = er, etheta, ephi
|
|
|
+ std::complex<double> eifac = std::exp(std::complex<double>(0.0, Rho*std::cos(Theta)));
|
|
|
+ {
|
|
|
+ using std::sin;
|
|
|
+ using std::cos;
|
|
|
+ Ei[0] = eifac*sin(Theta)*cos(Phi);
|
|
|
+ Ei[1] = eifac*cos(Theta)*cos(Phi);
|
|
|
+ Ei[2] = -eifac*sin(Phi);
|
|
|
+ }
|
|
|
|
|
|
- return nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
-}
|
|
|
+ // magnetic field
|
|
|
+ double hffact = 1.0/(cc_*mu_);
|
|
|
+ for (int i = 0; i < 3; i++) {
|
|
|
+ Hs[i] = hffact*Hs[i];
|
|
|
+ }
|
|
|
|
|
|
+ // incident H field: BH p.26 (2.43), p.89 (4.21)
|
|
|
+ std::complex<double> hffacta = hffact;
|
|
|
+ std::complex<double> hifac = eifac*hffacta;
|
|
|
+ {
|
|
|
+ using std::sin;
|
|
|
+ using std::cos;
|
|
|
+ Hi[0] = hifac*sin(Theta)*sin(Phi);
|
|
|
+ Hi[1] = hifac*cos(Theta)*sin(Phi);
|
|
|
+ Hi[2] = hifac*cos(Phi);
|
|
|
+ }
|
|
|
|
|
|
-//**********************************************************************************//
|
|
|
-// This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
-// parameters, it is useful if you want to include a PEC layer but not a limit //
|
|
|
-// for the maximum number of terms. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// L: Number of layers //
|
|
|
-// pl: Index of PEC layer. If there is none just send -1 //
|
|
|
-// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
-// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// nTheta: Number of scattering angles //
|
|
|
-// Theta: Array containing all the scattering angles where the scattering //
|
|
|
-// amplitudes will be calculated //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// Qext: Efficiency factor for extinction //
|
|
|
-// Qsca: Efficiency factor for scattering //
|
|
|
-// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
-// Qbk: Efficiency factor for backscattering //
|
|
|
-// Qpr: Efficiency factor for the radiation pressure //
|
|
|
-// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
-// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
-// S1, S2: Complex scattering amplitudes //
|
|
|
-// //
|
|
|
-// Return value: //
|
|
|
-// Number of multipolar expansion terms used for the calculations //
|
|
|
-//**********************************************************************************//
|
|
|
+ for (int i = 0; i < 3; i++) {
|
|
|
+ // electric field E [V m - 1] = EF*E0
|
|
|
+ E[i] = Ei[i] + Es[i];
|
|
|
+ H[i] = Hi[i] + Hs[i];
|
|
|
+ // printf("ext E[%d]=%g",i,std::abs(E[i]));
|
|
|
+ }
|
|
|
+ } // end of MultiLayerMie::fieldExt(...)
|
|
|
|
|
|
-int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
- int nTheta, std::vector<double> Theta,
|
|
|
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
- std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
|
|
|
- return nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
-}
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ void MultiLayerMie::fieldInt(const double Rho, const double Phi, const double Theta,
|
|
|
+ std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
|
|
|
|
|
|
-//**********************************************************************************//
|
|
|
-// This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
-// parameters, it is useful if you want to include a limit for the maximum number //
|
|
|
-// of terms but not a PEC layer. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// L: Number of layers //
|
|
|
-// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
-// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// nTheta: Number of scattering angles //
|
|
|
-// Theta: Array containing all the scattering angles where the scattering //
|
|
|
-// amplitudes will be calculated //
|
|
|
-// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
-// calculations. Only use it if you know what you are doing, otherwise //
|
|
|
-// set this parameter to -1 and the function will calculate it //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// Qext: Efficiency factor for extinction //
|
|
|
-// Qsca: Efficiency factor for scattering //
|
|
|
-// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
-// Qbk: Efficiency factor for backscattering //
|
|
|
-// Qpr: Efficiency factor for the radiation pressure //
|
|
|
-// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
-// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
-// S1, S2: Complex scattering amplitudes //
|
|
|
-// //
|
|
|
-// Return value: //
|
|
|
-// Number of multipolar expansion terms used for the calculations //
|
|
|
-//**********************************************************************************//
|
|
|
+ std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
|
|
|
+ std::vector<std::complex<double> > ipow = {c_one, c_i, -c_one, -c_i}; // Vector containing precomputed integer powers of i to avoid computation
|
|
|
+ std::vector<std::complex<double> > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3);
|
|
|
+ std::vector<std::complex<double> > M1o1n(3), M1e1n(3), N1o1n(3), N1e1n(3);
|
|
|
+ std::vector<std::complex<double> > El(3, c_zero), Ei(3, c_zero), Eic(3, c_zero), Hl(3, c_zero);
|
|
|
+ std::vector<std::complex<double> > jn(nmax_ + 1), jnp(nmax_ + 1), h1n(nmax_ + 1), h1np(nmax_ + 1);
|
|
|
+ std::vector<double> Pi(nmax_), Tau(nmax_);
|
|
|
|
|
|
-int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
- int nTheta, std::vector<double> Theta, int nmax,
|
|
|
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
- std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
+ int l = 0; // Layer number
|
|
|
+ std::complex<double> ml;
|
|
|
|
|
|
- return nMie(L, -1, x, m, nTheta, Theta, nmax, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
-}
|
|
|
+ if (Rho > size_param_.back()) {
|
|
|
+ l = size_param_.size();
|
|
|
+ ml = c_one;
|
|
|
+ } else {
|
|
|
+ for (int i = 0; i < size_param_.size() - 1; ++i) {
|
|
|
+ if (size_param_[i] < Rho && Rho <= size_param_[i + 1]) {
|
|
|
+ l = i;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ ml = refr_index_[l];
|
|
|
+ }
|
|
|
|
|
|
+// for (int i = 0; i < size_param_.size(); i++) {
|
|
|
+// printf("x[%i] = %g; m[%i] = %g, %g; ", i, size_param_[i], i, refr_index_[i].real(), refr_index_[i].imag());
|
|
|
+// }
|
|
|
+// printf("\nRho = %g; Phi = %g; Theta = %g; x[%i] = %g; m[%i] = %g, %g\n", Rho, Phi, Theta, l, size_param_[l], l, ml.real(), ml.imag());
|
|
|
|
|
|
-//**********************************************************************************//
|
|
|
-// This function calculates complex electric and magnetic field in the surroundings //
|
|
|
-// and inside (TODO) the particle. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// L: Number of layers //
|
|
|
-// pl: Index of PEC layer. If there is none just send 0 (zero) //
|
|
|
-// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
-// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
-// calculations. Only use it if you know what you are doing, otherwise //
|
|
|
-// set this parameter to 0 (zero) and the function will calculate it. //
|
|
|
-// ncoord: Number of coordinate points //
|
|
|
-// Coords: Array containing all coordinates where the complex electric and //
|
|
|
-// magnetic fields will be calculated //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// E, H: Complex electric and magnetic field at the provided coordinates //
|
|
|
-// //
|
|
|
-// Return value: //
|
|
|
-// Number of multipolar expansion terms used for the calculations //
|
|
|
-//**********************************************************************************//
|
|
|
+ // Calculate spherical Bessel and Hankel functions
|
|
|
+ sbesjh(Rho*ml, jn, jnp, h1n, h1np);
|
|
|
|
|
|
-int nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax, int ncoord, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp, std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
|
|
|
+ // Calculate angular functions Pi and Tau
|
|
|
+ calcPiTau(std::cos(Theta), Pi, Tau);
|
|
|
|
|
|
- int i, c;
|
|
|
- double Rho, Phi, Theta;
|
|
|
- std::vector<std::complex<double> > an, bn;
|
|
|
+ for (int n = nmax_ - 1; n >= 0; n--) {
|
|
|
+ int n1 = n + 1;
|
|
|
+ double rn = static_cast<double>(n1);
|
|
|
|
|
|
- // This array contains the fields in spherical coordinates
|
|
|
- std::vector<std::complex<double> > Es, Hs;
|
|
|
- Es.resize(3);
|
|
|
- Hs.resize(3);
|
|
|
+ // using BH 4.12 and 4.50
|
|
|
+ calcSpherHarm(Rho, Phi, Theta, jn[n1], jnp[n1], Pi[n], Tau[n], rn, M1o1n, M1e1n, N1o1n, N1e1n);
|
|
|
|
|
|
+ calcSpherHarm(Rho, Phi, Theta, h1n[n1], h1np[n], Pi[n], Tau[n], rn, M3o1n, M3e1n, N3o1n, N3e1n);
|
|
|
|
|
|
- // Calculate scattering coefficients
|
|
|
- nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn);
|
|
|
+ // Total field in the lth layer: eqs. (1) and (2) in Yang, Appl. Opt., 42 (2003) 1710-1720
|
|
|
+ std::complex<double> En = ipow[n1 % 4]*(rn + rn + 1.0)/(rn*rn + rn);
|
|
|
+ for (int i = 0; i < 3; i++) {
|
|
|
+ Ei[i] = Ei[i] + En*(M1o1n[i] - c_i*N1e1n[i]);
|
|
|
|
|
|
- std::vector<double> Pi, Tau;
|
|
|
- Pi.resize(nmax);
|
|
|
- Tau.resize(nmax);
|
|
|
+ El[i] = El[i] + En*(cnl_[l][n]*M1o1n[i] - c_i*dnl_[l][n]*N1e1n[i]
|
|
|
+ + c_i*anl_[l][n]*N3e1n[i] - bnl_[l][n]*M3o1n[i]);
|
|
|
|
|
|
- for (c = 0; c < ncoord; c++) {
|
|
|
- // Convert to spherical coordinates
|
|
|
- Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
|
|
|
+ Hl[i] = Hl[i] + En*(-dnl_[l][n]*M1e1n[i] - c_i*cnl_[l][n]*N1o1n[i]
|
|
|
+ + c_i*bnl_[l][n]*N3o1n[i] + anl_[l][n]*M3e1n[i]);
|
|
|
+ }
|
|
|
+ } // end of for all n
|
|
|
+
|
|
|
+
|
|
|
+ // Debug field calculation outside the particle
|
|
|
+ if (l == size_param_.size()) {
|
|
|
+ // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
|
|
|
+ // basis unit vectors = er, etheta, ephi
|
|
|
+ std::complex<double> eifac = std::exp(std::complex<double>(0.0, Rho*std::cos(Theta)));
|
|
|
+ {
|
|
|
+ using std::sin;
|
|
|
+ using std::cos;
|
|
|
+ Eic[0] = eifac*sin(Theta)*cos(Phi);
|
|
|
+ Eic[1] = eifac*cos(Theta)*cos(Phi);
|
|
|
+ Eic[2] = -eifac*sin(Phi);
|
|
|
+ }
|
|
|
|
|
|
- // Avoid convergence problems due to Rho too small
|
|
|
- if (Rho < 1e-5) {
|
|
|
- Rho = 1e-5;
|
|
|
+ printf("Rho = %g; Phi = %g; Theta = %g\n", Rho, Phi, Theta);
|
|
|
+ for (int i = 0; i < 3; i++) {
|
|
|
+ printf("Ei[%i] = %g, %g; Eic[%i] = %g, %g\n", i, Ei[i].real(), Ei[i].imag(), i, Eic[i].real(), Eic[i].imag());
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- //If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
|
|
|
- if (Rho == 0.0) {
|
|
|
- Theta = 0.0;
|
|
|
- } else {
|
|
|
- Theta = acos(Zp[c]/Rho);
|
|
|
- }
|
|
|
|
|
|
- //If Xp=Yp=0 then Phi is undefined. Just set it to zero to zero to avoid problems
|
|
|
- if ((Xp[c] == 0.0) and (Yp[c] == 0.0)) {
|
|
|
- Phi = 0.0;
|
|
|
- } else {
|
|
|
- Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
|
|
|
+ // magnetic field
|
|
|
+ double hffact = 1.0/(cc_*mu_);
|
|
|
+ for (int i = 0; i < 3; i++) {
|
|
|
+ Hl[i] = hffact*Hl[i];
|
|
|
}
|
|
|
|
|
|
- calcPiTau(nmax, Theta, Pi, Tau);
|
|
|
-
|
|
|
- //*******************************************************//
|
|
|
- // external scattering field = incident + scattered //
|
|
|
- // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
|
|
|
- // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
|
|
|
- //*******************************************************//
|
|
|
-
|
|
|
- // Firstly the easiest case: the field outside the particle
|
|
|
- if (Rho >= x[L - 1]) {
|
|
|
- fieldExt(nmax, Rho, Phi, Theta, Pi, Tau, an, bn, Es, Hs);
|
|
|
- } else {
|
|
|
- // TODO, for now just set all the fields to zero
|
|
|
- for (i = 0; i < 3; i++) {
|
|
|
- Es[i] = std::complex<double>(0.0, 0.0);
|
|
|
- Hs[i] = std::complex<double>(0.0, 0.0);
|
|
|
- }
|
|
|
+ for (int i = 0; i < 3; i++) {
|
|
|
+ // electric field E [V m - 1] = EF*E0
|
|
|
+ E[i] = El[i];
|
|
|
+ H[i] = Hl[i];
|
|
|
}
|
|
|
+ } // end of MultiLayerMie::fieldInt(...)
|
|
|
+
|
|
|
+
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function calculates complex electric and magnetic field in the surroundings //
|
|
|
+ // and inside (TODO) the particle. //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // L: Number of layers //
|
|
|
+ // pl: Index of PEC layer. If there is none just send 0 (zero) //
|
|
|
+ // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+ // nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+ // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
+ // set this parameter to 0 (zero) and the function will calculate it. //
|
|
|
+ // ncoord: Number of coordinate points //
|
|
|
+ // Coords: Array containing all coordinates where the complex electric and //
|
|
|
+ // magnetic fields will be calculated //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // E, H: Complex electric and magnetic field at the provided coordinates //
|
|
|
+ // //
|
|
|
+ // Return value: //
|
|
|
+ // Number of multipolar expansion terms used for the calculations //
|
|
|
+ //**********************************************************************************//
|
|
|
+ void MultiLayerMie::RunFieldCalculation() {
|
|
|
+ // Calculate external scattering coefficients an_ and bn_
|
|
|
+ ExtScattCoeffs();
|
|
|
+ // Calculate internal scattering coefficients anl_ and bnl_
|
|
|
+ IntScattCoeffs();
|
|
|
+
|
|
|
+// for (int i = 0; i < nmax_; i++) {
|
|
|
+// printf("a[%i] = %g, %g; b[%i] = %g, %g\n", i, an_[i].real(), an_[i].imag(), i, bn_[i].real(), bn_[i].imag());
|
|
|
+// }
|
|
|
+
|
|
|
+ long total_points = coords_[0].size();
|
|
|
+ E_.resize(total_points);
|
|
|
+ H_.resize(total_points);
|
|
|
+ for (auto& f : E_) f.resize(3);
|
|
|
+ for (auto& f : H_) f.resize(3);
|
|
|
+
|
|
|
+ for (int point = 0; point < total_points; point++) {
|
|
|
+ const double& Xp = coords_[0][point];
|
|
|
+ const double& Yp = coords_[1][point];
|
|
|
+ const double& Zp = coords_[2][point];
|
|
|
+
|
|
|
+ // Convert to spherical coordinates
|
|
|
+ double Rho = std::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
|
|
|
+
|
|
|
+ // If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
|
|
|
+ double Theta = (Rho > 0.0) ? std::acos(Zp/Rho) : 0.0;
|
|
|
+
|
|
|
+ // If Xp=Yp=0 then Phi is undefined. Just set it to zero to avoid problems
|
|
|
+ double Phi = (Xp != 0.0 || Yp != 0.0) ? std::acos(Xp/std::sqrt(pow2(Xp) + pow2(Yp))) : 0.0;
|
|
|
+
|
|
|
+ // Avoid convergence problems due to Rho too small
|
|
|
+ if (Rho < 1e-5) Rho = 1e-5;
|
|
|
+
|
|
|
+ //*******************************************************//
|
|
|
+ // external scattering field = incident + scattered //
|
|
|
+ // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
|
|
|
+ // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
|
|
|
+ //*******************************************************//
|
|
|
+
|
|
|
+ // This array contains the fields in spherical coordinates
|
|
|
+ std::vector<std::complex<double> > Es(3), Hs(3);
|
|
|
+
|
|
|
+ // Firstly the easiest case: the field outside the particle
|
|
|
+ if (Rho >= GetSizeParameter()) {
|
|
|
+ fieldInt(Rho, Phi, Theta, Es, Hs);
|
|
|
+// fieldExt(Rho, Phi, Theta, Es, Hs);
|
|
|
+ //printf("\nFin E ext: %g,%g,%g Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
|
|
|
+ } else {
|
|
|
+ fieldInt(Rho, Phi, Theta, Es, Hs);
|
|
|
+// printf("\nFin E int: %g,%g,%g Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
|
|
|
+ }
|
|
|
|
|
|
- //Now, convert the fields back to cartesian coordinates
|
|
|
- E[c][0] = std::sin(Theta)*std::cos(Phi)*Es[0] + std::cos(Theta)*std::cos(Phi)*Es[1] - std::sin(Phi)*Es[2];
|
|
|
- E[c][1] = std::sin(Theta)*std::sin(Phi)*Es[0] + std::cos(Theta)*std::sin(Phi)*Es[1] + std::cos(Phi)*Es[2];
|
|
|
- E[c][2] = std::cos(Theta)*Es[0] - std::sin(Theta)*Es[1];
|
|
|
+ //Now, convert the fields back to cartesian coordinates
|
|
|
+ {
|
|
|
+ using std::sin;
|
|
|
+ using std::cos;
|
|
|
+ E_[point][0] = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];
|
|
|
+ E_[point][1] = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];
|
|
|
+ E_[point][2] = cos(Theta)*Es[0] - sin(Theta)*Es[1];
|
|
|
+
|
|
|
+ H_[point][0] = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];
|
|
|
+ H_[point][1] = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
|
|
|
+ H_[point][2] = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
|
|
|
+ }
|
|
|
+ //printf("Cart E: %g,%g,%g Rho=%g\n", std::abs(Ex), std::abs(Ey),std::abs(Ez), Rho);
|
|
|
+ } // end of for all field coordinates
|
|
|
|
|
|
- H[c][0] = std::sin(Theta)*std::cos(Phi)*Hs[0] + std::cos(Theta)*std::cos(Phi)*Hs[1] - std::sin(Phi)*Hs[2];
|
|
|
- H[c][1] = std::sin(Theta)*std::sin(Phi)*Hs[0] + std::cos(Theta)*std::sin(Phi)*Hs[1] + std::cos(Phi)*Hs[2];
|
|
|
- H[c][2] = std::cos(Theta)*Hs[0] - std::sin(Theta)*Hs[1];
|
|
|
- }
|
|
|
+ } // end of MultiLayerMie::RunFieldCalculation()
|
|
|
|
|
|
- return nmax;
|
|
|
-}
|
|
|
+} // end of namespace nmie
|