|  | @@ -1,5 +1,6 @@
 | 
	
		
			
				|  |  |  //**********************************************************************************//
 | 
	
		
			
				|  |  |  //    Copyright (C) 2009-2015  Ovidio Pena <ovidio@bytesfall.com>                   //
 | 
	
		
			
				|  |  | +//    Copyright (C) 2013-2015  Konstantin Ladutenko <kostyfisik@gmail.com>          //
 | 
	
		
			
				|  |  |  //                                                                                  //
 | 
	
		
			
				|  |  |  //    This file is part of scattnlay                                                //
 | 
	
		
			
				|  |  |  //                                                                                  //
 | 
	
	
		
			
				|  | @@ -25,9 +26,9 @@
 | 
	
		
			
				|  |  |  //**********************************************************************************//
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  //**********************************************************************************//
 | 
	
		
			
				|  |  | -// This library implements the algorithm for a multilayered sphere described by:    //
 | 
	
		
			
				|  |  | +// This class implements the algorithm for a multilayered sphere described by:      //
 | 
	
		
			
				|  |  |  //    [1] W. Yang, "Improved recursive algorithm for light scattering by a          //
 | 
	
		
			
				|  |  | -//        multilayered sphere,” Applied Optics,  vol. 42, Mar. 2003, pp. 1710-1720. //
 | 
	
		
			
				|  |  | +//        multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720.  //
 | 
	
		
			
				|  |  |  //                                                                                  //
 | 
	
		
			
				|  |  |  // You can find the description of all the used equations in:                       //
 | 
	
		
			
				|  |  |  //    [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by           //
 | 
	
	
		
			
				|  | @@ -36,970 +37,1500 @@
 | 
	
		
			
				|  |  |  //                                                                                  //
 | 
	
		
			
				|  |  |  // Hereinafter all equations numbers refer to [2]                                   //
 | 
	
		
			
				|  |  |  //**********************************************************************************//
 | 
	
		
			
				|  |  | -#include <math.h>
 | 
	
		
			
				|  |  | -#include <stdlib.h>
 | 
	
		
			
				|  |  | -#include <stdio.h>
 | 
	
		
			
				|  |  |  #include "nmie.h"
 | 
	
		
			
				|  |  | +#include <array>
 | 
	
		
			
				|  |  | +#include <algorithm>
 | 
	
		
			
				|  |  | +#include <cstdio>
 | 
	
		
			
				|  |  | +#include <cstdlib>
 | 
	
		
			
				|  |  | +#include <stdexcept>
 | 
	
		
			
				|  |  | +#include <vector>
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +namespace nmie {
 | 
	
		
			
				|  |  | +  //helpers
 | 
	
		
			
				|  |  | +  template<class T> inline T pow2(const T value) {return value*value;}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  int round(double x) {
 | 
	
		
			
				|  |  | +    return x >= 0 ? (int)(x + 0.5):(int)(x - 0.5);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -#define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -const double PI=3.14159265358979323846;
 | 
	
		
			
				|  |  | -// light speed [m s-1]
 | 
	
		
			
				|  |  | -double const cc = 2.99792458e8;
 | 
	
		
			
				|  |  | -// assume non-magnetic (MU=MU0=const) [N A-2]
 | 
	
		
			
				|  |  | -double const mu = 4.0*PI*1.0e-7;
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function emulates a C call to calculate the actual scattering parameters    //
 | 
	
		
			
				|  |  | +  // and amplitudes.                                                                  //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +  //   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | +  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +  //   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | +  //   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | +  //          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | +  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | +  //         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | +  //         set this parameter to -1 and the function will calculate it              //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   Qext: Efficiency factor for extinction                                         //
 | 
	
		
			
				|  |  | +  //   Qsca: Efficiency factor for scattering                                         //
 | 
	
		
			
				|  |  | +  //   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
 | 
	
		
			
				|  |  | +  //   Qbk: Efficiency factor for backscattering                                      //
 | 
	
		
			
				|  |  | +  //   Qpr: Efficiency factor for the radiation pressure                              //
 | 
	
		
			
				|  |  | +  //   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
 | 
	
		
			
				|  |  | +  //   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
 | 
	
		
			
				|  |  | +  //   S1, S2: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Return value:                                                                    //
 | 
	
		
			
				|  |  | +  //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  int nMie(const int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    if (x.size() != L || m.size() != L)
 | 
	
		
			
				|  |  | +        throw std::invalid_argument("Declared number of layers do not fit x and m!");
 | 
	
		
			
				|  |  | +    if (Theta.size() != nTheta)
 | 
	
		
			
				|  |  | +        throw std::invalid_argument("Declared number of sample for Theta is not correct!");
 | 
	
		
			
				|  |  | +    try {
 | 
	
		
			
				|  |  | +      MultiLayerMie multi_layer_mie;
 | 
	
		
			
				|  |  | +      multi_layer_mie.SetLayersSize(x);
 | 
	
		
			
				|  |  | +      multi_layer_mie.SetLayersIndex(m);
 | 
	
		
			
				|  |  | +      multi_layer_mie.SetAngles(Theta);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      multi_layer_mie.RunMieCalculation();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      *Qext = multi_layer_mie.GetQext();
 | 
	
		
			
				|  |  | +      *Qsca = multi_layer_mie.GetQsca();
 | 
	
		
			
				|  |  | +      *Qabs = multi_layer_mie.GetQabs();
 | 
	
		
			
				|  |  | +      *Qbk = multi_layer_mie.GetQbk();
 | 
	
		
			
				|  |  | +      *Qpr = multi_layer_mie.GetQpr();
 | 
	
		
			
				|  |  | +      *g = multi_layer_mie.GetAsymmetryFactor();
 | 
	
		
			
				|  |  | +      *Albedo = multi_layer_mie.GetAlbedo();
 | 
	
		
			
				|  |  | +      S1 = multi_layer_mie.GetS1();
 | 
	
		
			
				|  |  | +      S2 = multi_layer_mie.GetS2();
 | 
	
		
			
				|  |  | +    } catch(const std::invalid_argument& ia) {
 | 
	
		
			
				|  |  | +      // Will catch if  multi_layer_mie fails or other errors.
 | 
	
		
			
				|  |  | +      std::cerr << "Invalid argument: " << ia.what() << std::endl;
 | 
	
		
			
				|  |  | +      throw std::invalid_argument(ia);
 | 
	
		
			
				|  |  | +      return -1;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -// Calculate Nstop - equation (17)
 | 
	
		
			
				|  |  | -int Nstop(double xL) {
 | 
	
		
			
				|  |  | -  int result;
 | 
	
		
			
				|  |  | +    return 0;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  if (xL <= 8) {
 | 
	
		
			
				|  |  | -    result = round(xL + 4*pow(xL, 1.0/3.0) + 1);
 | 
	
		
			
				|  |  | -  } else if (xL <= 4200) {
 | 
	
		
			
				|  |  | -    result = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
 | 
	
		
			
				|  |  | -  } else {
 | 
	
		
			
				|  |  | -    result = round(xL + 4*pow(xL, 1.0/3.0) + 2);
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function is just a wrapper to call the full 'nMie' function with fewer      //
 | 
	
		
			
				|  |  | +  // parameters, it is here mainly for compatibility with older versions of the       //
 | 
	
		
			
				|  |  | +  // program. Also, you can use it if you neither have a PEC layer nor want to define //
 | 
	
		
			
				|  |  | +  // any limit for the maximum number of terms.                                       //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +  //   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | +  //   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | +  //          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   Qext: Efficiency factor for extinction                                         //
 | 
	
		
			
				|  |  | +  //   Qsca: Efficiency factor for scattering                                         //
 | 
	
		
			
				|  |  | +  //   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
 | 
	
		
			
				|  |  | +  //   Qbk: Efficiency factor for backscattering                                      //
 | 
	
		
			
				|  |  | +  //   Qpr: Efficiency factor for the radiation pressure                              //
 | 
	
		
			
				|  |  | +  //   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
 | 
	
		
			
				|  |  | +  //   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
 | 
	
		
			
				|  |  | +  //   S1, S2: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Return value:                                                                    //
 | 
	
		
			
				|  |  | +  //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  int nMie(const int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
 | 
	
		
			
				|  |  | +    return nmie::nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  return result;
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -int Nmax(int L, int fl, int pl,
 | 
	
		
			
				|  |  | -         std::vector<double> x,
 | 
	
		
			
				|  |  | -         std::vector<std::complex<double> > m) {
 | 
	
		
			
				|  |  | -  int i, result, ri, riM1;
 | 
	
		
			
				|  |  | -  result = Nstop(x[L - 1]);
 | 
	
		
			
				|  |  | -  for (i = fl; i < L; i++) {
 | 
	
		
			
				|  |  | -    if (i > pl) {
 | 
	
		
			
				|  |  | -      ri = round(std::abs(x[i]*m[i]));
 | 
	
		
			
				|  |  | -    } else {
 | 
	
		
			
				|  |  | -      ri = 0;
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -    if (result < ri) {
 | 
	
		
			
				|  |  | -      result = ri;
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function is just a wrapper to call the full 'nMie' function with fewer      //
 | 
	
		
			
				|  |  | +  // parameters, it is useful if you want to include a PEC layer but not a limit      //
 | 
	
		
			
				|  |  | +  // for the maximum number of terms.                                                 //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +  //   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | +  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +  //   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | +  //   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | +  //          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   Qext: Efficiency factor for extinction                                         //
 | 
	
		
			
				|  |  | +  //   Qsca: Efficiency factor for scattering                                         //
 | 
	
		
			
				|  |  | +  //   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
 | 
	
		
			
				|  |  | +  //   Qbk: Efficiency factor for backscattering                                      //
 | 
	
		
			
				|  |  | +  //   Qpr: Efficiency factor for the radiation pressure                              //
 | 
	
		
			
				|  |  | +  //   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
 | 
	
		
			
				|  |  | +  //   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
 | 
	
		
			
				|  |  | +  //   S1, S2: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Return value:                                                                    //
 | 
	
		
			
				|  |  | +  //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  int nMie(const int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
 | 
	
		
			
				|  |  | +    return nmie::nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    if ((i > fl) && ((i - 1) > pl)) {
 | 
	
		
			
				|  |  | -      riM1 = round(std::abs(x[i - 1]* m[i]));
 | 
	
		
			
				|  |  | -    } else {
 | 
	
		
			
				|  |  | -      riM1 = 0;
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -    if (result < riM1) {
 | 
	
		
			
				|  |  | -      result = riM1;
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function is just a wrapper to call the full 'nMie' function with fewer      //
 | 
	
		
			
				|  |  | +  // parameters, it is useful if you want to include a limit for the maximum number   //
 | 
	
		
			
				|  |  | +  // of terms but not a PEC layer.                                                    //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +  //   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | +  //   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | +  //          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | +  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | +  //         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | +  //         set this parameter to -1 and the function will calculate it              //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   Qext: Efficiency factor for extinction                                         //
 | 
	
		
			
				|  |  | +  //   Qsca: Efficiency factor for scattering                                         //
 | 
	
		
			
				|  |  | +  //   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
 | 
	
		
			
				|  |  | +  //   Qbk: Efficiency factor for backscattering                                      //
 | 
	
		
			
				|  |  | +  //   Qpr: Efficiency factor for the radiation pressure                              //
 | 
	
		
			
				|  |  | +  //   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
 | 
	
		
			
				|  |  | +  //   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
 | 
	
		
			
				|  |  | +  //   S1, S2: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Return value:                                                                    //
 | 
	
		
			
				|  |  | +  //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  int nMie(const int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
 | 
	
		
			
				|  |  | +    return nmie::nMie(L, -1, x, m, nTheta, Theta, nmax, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function emulates a C call to calculate complex electric and magnetic field //
 | 
	
		
			
				|  |  | +  // in the surroundings and inside (TODO) the particle.                              //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +  //   pl: Index of PEC layer. If there is none just send 0 (zero)                    //
 | 
	
		
			
				|  |  | +  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | +  //         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | +  //         set this parameter to 0 (zero) and the function will calculate it.       //
 | 
	
		
			
				|  |  | +  //   ncoord: Number of coordinate points                                            //
 | 
	
		
			
				|  |  | +  //   Coords: Array containing all coordinates where the complex electric and        //
 | 
	
		
			
				|  |  | +  //           magnetic fields will be calculated                                     //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   E, H: Complex electric and magnetic field at the provided coordinates          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Return value:                                                                    //
 | 
	
		
			
				|  |  | +  //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  int nField(const int L, const int pl, const std::vector<double>& x, const std::vector<std::complex<double> >& m, const int nmax, const int ncoord, const std::vector<double>& Xp_vec, const std::vector<double>& Yp_vec, const std::vector<double>& Zp_vec, std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
 | 
	
		
			
				|  |  | +    if (x.size() != L || m.size() != L)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("Declared number of layers do not fit x and m!");
 | 
	
		
			
				|  |  | +    if (Xp_vec.size() != ncoord || Yp_vec.size() != ncoord || Zp_vec.size() != ncoord
 | 
	
		
			
				|  |  | +        || E.size() != ncoord || H.size() != ncoord)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("Declared number of coords do not fit Xp, Yp, Zp, E, or H!");
 | 
	
		
			
				|  |  | +    for (auto f:E)
 | 
	
		
			
				|  |  | +      if (f.size() != 3)
 | 
	
		
			
				|  |  | +        throw std::invalid_argument("Field E is not 3D!");
 | 
	
		
			
				|  |  | +    for (auto f:H)
 | 
	
		
			
				|  |  | +      if (f.size() != 3)
 | 
	
		
			
				|  |  | +        throw std::invalid_argument("Field H is not 3D!");
 | 
	
		
			
				|  |  | +    try {
 | 
	
		
			
				|  |  | +      MultiLayerMie multi_layer_mie;
 | 
	
		
			
				|  |  | +      //multi_layer_mie.SetPECLayer(pl);
 | 
	
		
			
				|  |  | +      multi_layer_mie.SetLayersSize(x);
 | 
	
		
			
				|  |  | +      multi_layer_mie.SetLayersIndex(m);
 | 
	
		
			
				|  |  | +      multi_layer_mie.SetFieldCoords({Xp_vec, Yp_vec, Zp_vec});
 | 
	
		
			
				|  |  | +      multi_layer_mie.RunFieldCalculation();
 | 
	
		
			
				|  |  | +      E = multi_layer_mie.GetFieldE();
 | 
	
		
			
				|  |  | +      H = multi_layer_mie.GetFieldH();
 | 
	
		
			
				|  |  | +      //multi_layer_mie.GetFailed();
 | 
	
		
			
				|  |  | +    } catch(const std::invalid_argument& ia) {
 | 
	
		
			
				|  |  | +      // Will catch if  multi_layer_mie fails or other errors.
 | 
	
		
			
				|  |  | +      std::cerr << "Invalid argument: " << ia.what() << std::endl;
 | 
	
		
			
				|  |  | +      throw std::invalid_argument(ia);
 | 
	
		
			
				|  |  | +      return - 1;
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    return 0;
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | -  return result + 15;
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -// This function calculates the spherical Bessel (jn) and Hankel (h1n) functions    //
 | 
	
		
			
				|  |  | -// and their derivatives for a given complex value z. See pag. 87 B&H.              //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Input parameters:                                                                //
 | 
	
		
			
				|  |  | -//   z: Real argument to evaluate jn and h1n                                        //
 | 
	
		
			
				|  |  | -//   nmax: Maximum number of terms to calculate jn and h1n                          //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Output parameters:                                                               //
 | 
	
		
			
				|  |  | -//   jn, h1n: Spherical Bessel and Hankel functions                                 //
 | 
	
		
			
				|  |  | -//   jnp, h1np: Derivatives of the spherical Bessel and Hankel functions            //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// The implementation follows the algorithm by I.J. Thompson and A.R. Barnett,      //
 | 
	
		
			
				|  |  | -// Comp. Phys. Comm. 47 (1987) 245-257.                                             //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Complex spherical Bessel functions from n=0..nmax-1 for z in the upper half      //
 | 
	
		
			
				|  |  | -// plane (Im(z) > -3).                                                              //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -//     j[n]   = j/n(z)                Regular solution: j[0]=sin(z)/z               //
 | 
	
		
			
				|  |  | -//     j'[n]  = d[j/n(z)]/dz                                                        //
 | 
	
		
			
				|  |  | -//     h1[n]  = h[0]/n(z)             Irregular Hankel function:                    //
 | 
	
		
			
				|  |  | -//     h1'[n] = d[h[0]/n(z)]/dz                h1[0] = j0(z) + i*y0(z)              //
 | 
	
		
			
				|  |  | -//                                                   = (sin(z)-i*cos(z))/z          //
 | 
	
		
			
				|  |  | -//                                                   = -i*exp(i*z)/z                //
 | 
	
		
			
				|  |  | -// Using complex CF1, and trigonometric forms for n=0 solutions.                    //
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -int sbesjh(std::complex<double> z, int nmax, std::vector<std::complex<double> >& jn, std::vector<std::complex<double> >& jnp, std::vector<std::complex<double> >& h1n, std::vector<std::complex<double> >& h1np) {
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  const int limit = 20000;
 | 
	
		
			
				|  |  | -  double const accur = 1.0e-12;
 | 
	
		
			
				|  |  | -  double const tm30 = 1e-30;
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated Qext                                     //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  double MultiLayerMie::GetQext() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return Qext_;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  int n;
 | 
	
		
			
				|  |  | -  double absc;
 | 
	
		
			
				|  |  | -  std::complex<double> zi, w;
 | 
	
		
			
				|  |  | -  std::complex<double> pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  absc = std::abs(std::real(z)) + std::abs(std::imag(z));
 | 
	
		
			
				|  |  | -  if ((absc < accur) || (std::imag(z) < -3.0)) {
 | 
	
		
			
				|  |  | -    return -1;
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated Qabs                                     //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  double MultiLayerMie::GetQabs() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return Qabs_;
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  zi = 1.0/z;
 | 
	
		
			
				|  |  | -  w = zi + zi;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  pl = double(nmax)*zi;
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated Qsca                                     //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  double MultiLayerMie::GetQsca() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return Qsca_;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  f = pl + zi;
 | 
	
		
			
				|  |  | -  b = f + f + zi;
 | 
	
		
			
				|  |  | -  d = 0.0;
 | 
	
		
			
				|  |  | -  c = f;
 | 
	
		
			
				|  |  | -  for (n = 0; n < limit; n++) {
 | 
	
		
			
				|  |  | -    d = b - d;
 | 
	
		
			
				|  |  | -    c = b - 1.0/c;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    absc = std::abs(std::real(d)) + std::abs(std::imag(d));
 | 
	
		
			
				|  |  | -    if (absc < tm30) {
 | 
	
		
			
				|  |  | -      d = tm30;
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated Qbk                                      //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  double MultiLayerMie::GetQbk() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return Qbk_;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    absc = std::abs(std::real(c)) + std::abs(std::imag(c));
 | 
	
		
			
				|  |  | -    if (absc < tm30) {
 | 
	
		
			
				|  |  | -      c = tm30;
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    d = 1.0/d;
 | 
	
		
			
				|  |  | -    del = d*c;
 | 
	
		
			
				|  |  | -    f = f*del;
 | 
	
		
			
				|  |  | -    b += w;
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated Qpr                                      //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  double MultiLayerMie::GetQpr() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return Qpr_;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    if (absc < accur) {
 | 
	
		
			
				|  |  | -      // We have obtained the desired accuracy
 | 
	
		
			
				|  |  | -      break;
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated assymetry factor                         //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  double MultiLayerMie::GetAsymmetryFactor() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return asymmetry_factor_;
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  if (absc > accur) {
 | 
	
		
			
				|  |  | -    // We were not able to obtain the desired accuracy
 | 
	
		
			
				|  |  | -    return -2;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated Albedo                                   //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  double MultiLayerMie::GetAlbedo() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return albedo_;
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  jn[nmax - 1] = tm30;
 | 
	
		
			
				|  |  | -  jnp[nmax - 1] = f*jn[nmax - 1];
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // Downward recursion to n=0 (N.B.  Coulomb Functions)
 | 
	
		
			
				|  |  | -  for (n = nmax - 2; n >= 0; n--) {
 | 
	
		
			
				|  |  | -    jn[n] = pl*jn[n + 1] + jnp[n + 1];
 | 
	
		
			
				|  |  | -    jnp[n] = pl*jn[n] - jn[n + 1];
 | 
	
		
			
				|  |  | -    pl = pl - zi;
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated S1                                       //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  std::vector<std::complex<double> > MultiLayerMie::GetS1() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return S1_;
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // Calculate the n=0 Bessel Functions
 | 
	
		
			
				|  |  | -  jn0 = zi*std::sin(z);
 | 
	
		
			
				|  |  | -  h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
 | 
	
		
			
				|  |  | -  h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // Rescale j[n], j'[n], converting to spherical Bessel functions.
 | 
	
		
			
				|  |  | -  // Recur   h1[n], h1'[n] as spherical Bessel functions.
 | 
	
		
			
				|  |  | -  w = 1.0/jn[0];
 | 
	
		
			
				|  |  | -  pl = zi;
 | 
	
		
			
				|  |  | -  for (n = 0; n < nmax; n++) {
 | 
	
		
			
				|  |  | -    jn[n] = jn0*(w*jn[n]);
 | 
	
		
			
				|  |  | -    jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
 | 
	
		
			
				|  |  | -    if (n != 0) {
 | 
	
		
			
				|  |  | -      h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Returns previously calculated S2                                       //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  std::vector<std::complex<double> > MultiLayerMie::GetS2() {
 | 
	
		
			
				|  |  | +    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | +    return S2_;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      // check if hankel is increasing (upward stable)
 | 
	
		
			
				|  |  | -      if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
 | 
	
		
			
				|  |  | -        jndb = z;
 | 
	
		
			
				|  |  | -        h1nldb = h1n[n];
 | 
	
		
			
				|  |  | -        h1nbdb = h1n[n - 1];
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      pl += zi;
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Modify scattering (theta) angles                                       //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  void MultiLayerMie::SetAngles(const std::vector<double>& angles) {
 | 
	
		
			
				|  |  | +    areIntCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +    areExtCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +    isMieCalculated_ = false;
 | 
	
		
			
				|  |  | +    theta_ = angles;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Modify size of all layers                                             //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  void MultiLayerMie::SetLayersSize(const std::vector<double>& layer_size) {
 | 
	
		
			
				|  |  | +    areIntCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +    areExtCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +    isMieCalculated_ = false;
 | 
	
		
			
				|  |  | +    size_param_.clear();
 | 
	
		
			
				|  |  | +    double prev_layer_size = 0.0;
 | 
	
		
			
				|  |  | +    for (auto curr_layer_size : layer_size) {
 | 
	
		
			
				|  |  | +      if (curr_layer_size <= 0.0)
 | 
	
		
			
				|  |  | +        throw std::invalid_argument("Size parameter should be positive!");
 | 
	
		
			
				|  |  | +      if (prev_layer_size > curr_layer_size)
 | 
	
		
			
				|  |  | +        throw std::invalid_argument
 | 
	
		
			
				|  |  | +          ("Size parameter for next layer should be larger than the previous one!");
 | 
	
		
			
				|  |  | +      prev_layer_size = curr_layer_size;
 | 
	
		
			
				|  |  | +      size_param_.push_back(curr_layer_size);
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // success
 | 
	
		
			
				|  |  | -  return 0;
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -// This function calculates the spherical Bessel functions (bj and by) and the      //
 | 
	
		
			
				|  |  | -// logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H.        //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Input parameters:                                                                //
 | 
	
		
			
				|  |  | -//   z: Complex argument to evaluate bj, by and bd                                  //
 | 
	
		
			
				|  |  | -//   nmax: Maximum number of terms to calculate bj, by and bd                       //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Output parameters:                                                               //
 | 
	
		
			
				|  |  | -//   bj, by: Spherical Bessel functions                                             //
 | 
	
		
			
				|  |  | -//   bd: Logarithmic derivative                                                     //
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -void sphericalBessel(std::complex<double> z, int nmax, std::vector<std::complex<double> >& bj, std::vector<std::complex<double> >& by, std::vector<std::complex<double> >& bd) {
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    std::vector<std::complex<double> > jn, jnp, h1n, h1np;
 | 
	
		
			
				|  |  | -    jn.resize(nmax);
 | 
	
		
			
				|  |  | -    jnp.resize(nmax);
 | 
	
		
			
				|  |  | -    h1n.resize(nmax);
 | 
	
		
			
				|  |  | -    h1np.resize(nmax);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    // TODO verify that the function succeeds
 | 
	
		
			
				|  |  | -    int ifail = sbesjh(z, nmax, jn, jnp, h1n, h1np);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    for (int n = 0; n < nmax; n++) {
 | 
	
		
			
				|  |  | -      bj[n] = jn[n];
 | 
	
		
			
				|  |  | -      by[n] = (h1n[n] - jn[n])/std::complex<double>(0.0, 1.0);
 | 
	
		
			
				|  |  | -      bd[n] = jnp[n]/jn[n] + 1.0/z;
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -// external scattering field = incident + scattered
 | 
	
		
			
				|  |  | -// BH p.92 (4.37), 94 (4.45), 95 (4.50)
 | 
	
		
			
				|  |  | -// assume: medium is non-absorbing; refim = 0; Uabs = 0
 | 
	
		
			
				|  |  | -void fieldExt(int nmax, double Rho, double Phi, double Theta, std::vector<double> Pi, std::vector<double> Tau,
 | 
	
		
			
				|  |  | -              std::vector<std::complex<double> > an, std::vector<std::complex<double> > bn,
 | 
	
		
			
				|  |  | -              std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H)  {
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  int i, n, n1;
 | 
	
		
			
				|  |  | -  double rn;
 | 
	
		
			
				|  |  | -  std::complex<double> ci, zn, xxip, encap;
 | 
	
		
			
				|  |  | -  std::vector<std::complex<double> > vm3o1n, vm3e1n, vn3o1n, vn3e1n;
 | 
	
		
			
				|  |  | -  vm3o1n.resize(3);
 | 
	
		
			
				|  |  | -  vm3e1n.resize(3);
 | 
	
		
			
				|  |  | -  vn3o1n.resize(3);
 | 
	
		
			
				|  |  | -  vn3e1n.resize(3);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  std::vector<std::complex<double> > Ei, Hi, Es, Hs;
 | 
	
		
			
				|  |  | -  Ei.resize(3);
 | 
	
		
			
				|  |  | -  Hi.resize(3);
 | 
	
		
			
				|  |  | -  Es.resize(3);
 | 
	
		
			
				|  |  | -  Hs.resize(3);
 | 
	
		
			
				|  |  | -  for (i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | -    Ei[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -    Hi[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -    Es[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -    Hs[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  std::vector<std::complex<double> > bj, by, bd;
 | 
	
		
			
				|  |  | -  bj.resize(nmax+1);
 | 
	
		
			
				|  |  | -  by.resize(nmax+1);
 | 
	
		
			
				|  |  | -  bd.resize(nmax+1);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // Calculate spherical Bessel and Hankel functions
 | 
	
		
			
				|  |  | -  sphericalBessel(Rho, nmax, bj, by, bd);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  ci = std::complex<double>(0.0, 1.0);
 | 
	
		
			
				|  |  | -  for (n = 0; n < nmax; n++) {
 | 
	
		
			
				|  |  | -    n1 = n + 1;
 | 
	
		
			
				|  |  | -    rn = double(n + 1);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    zn = bj[n1] + ci*by[n1];
 | 
	
		
			
				|  |  | -    xxip = Rho*(bj[n] + ci*by[n]) - rn*zn;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    vm3o1n[0] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -    vm3o1n[1] = std::cos(Phi)*Pi[n]*zn;
 | 
	
		
			
				|  |  | -    vm3o1n[2] = -std::sin(Phi)*Tau[n]*zn;
 | 
	
		
			
				|  |  | -    vm3e1n[0] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -    vm3e1n[1] = -std::sin(Phi)*Pi[n]*zn;
 | 
	
		
			
				|  |  | -    vm3e1n[2] = -std::cos(Phi)*Tau[n]*zn;
 | 
	
		
			
				|  |  | -    vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
 | 
	
		
			
				|  |  | -    vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho;
 | 
	
		
			
				|  |  | -    vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho;
 | 
	
		
			
				|  |  | -    vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
 | 
	
		
			
				|  |  | -    vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho;
 | 
	
		
			
				|  |  | -    vn3e1n[2] = -std::sin(Phi)*Pi[n]*xxip/Rho;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    // scattered field: BH p.94 (4.45)
 | 
	
		
			
				|  |  | -    encap = std::pow(ci, rn)*(2.0*rn + 1.0)/(rn*rn + rn);
 | 
	
		
			
				|  |  | -    for (i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | -      Es[i] = Es[i] + encap*(ci*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]);
 | 
	
		
			
				|  |  | -      Hs[i] = Hs[i] + encap*(ci*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]);
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
 | 
	
		
			
				|  |  | -  // basis unit vectors = er, etheta, ephi
 | 
	
		
			
				|  |  | -  std::complex<double> eifac = std::exp(std::complex<double>(0.0, Rho*std::cos(Theta)));
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  Ei[0] = eifac*std::sin(Theta)*std::cos(Phi);
 | 
	
		
			
				|  |  | -  Ei[1] = eifac*std::cos(Theta)*std::cos(Phi);
 | 
	
		
			
				|  |  | -  Ei[2] = -eifac*std::sin(Phi);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // magnetic field
 | 
	
		
			
				|  |  | -  double hffact = 1.0/(cc*mu);
 | 
	
		
			
				|  |  | -  for (i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | -    Hs[i] = hffact*Hs[i];
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // incident H field: BH p.26 (2.43), p.89 (4.21)
 | 
	
		
			
				|  |  | -  std::complex<double> hffacta = hffact;
 | 
	
		
			
				|  |  | -  std::complex<double> hifac = eifac*hffacta;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  Hi[0] = hifac*std::sin(Theta)*std::sin(Phi);
 | 
	
		
			
				|  |  | -  Hi[1] = hifac*std::cos(Theta)*std::sin(Phi);
 | 
	
		
			
				|  |  | -  Hi[2] = hifac*std::cos(Phi);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  for (i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | -    // electric field E [V m-1] = EF*E0
 | 
	
		
			
				|  |  | -    E[i] = Ei[i] + Es[i];
 | 
	
		
			
				|  |  | -    H[i] = Hi[i] + Hs[i];
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -// Calculate an - equation (5)
 | 
	
		
			
				|  |  | -std::complex<double> calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
 | 
	
		
			
				|  |  | -                             std::complex<double> PsiXL, std::complex<double> ZetaXL,
 | 
	
		
			
				|  |  | -                             std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
 | 
	
		
			
				|  |  | -  std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  return Num/Denom;
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -// Calculate bn - equation (6)
 | 
	
		
			
				|  |  | -std::complex<double> calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
 | 
	
		
			
				|  |  | -                             std::complex<double> PsiXL, std::complex<double> ZetaXL,
 | 
	
		
			
				|  |  | -                             std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Modify refractive index of all layers                                  //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  void MultiLayerMie::SetLayersIndex(const std::vector< std::complex<double> >& index) {
 | 
	
		
			
				|  |  | +    areIntCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +    areExtCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +    isMieCalculated_ = false;
 | 
	
		
			
				|  |  | +    refr_index_ = index;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
 | 
	
		
			
				|  |  | -  std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  return Num/Denom;
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Modify coordinates for field calculation                               //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  void MultiLayerMie::SetFieldCoords(const std::vector< std::vector<double> >& coords) {
 | 
	
		
			
				|  |  | +    if (coords.size() != 3)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("Error! Wrong dimension of field monitor points!");
 | 
	
		
			
				|  |  | +    if (coords[0].size() != coords[1].size() || coords[0].size() != coords[2].size())
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("Error! Missing coordinates for field monitor points!");
 | 
	
		
			
				|  |  | +    coords_ = coords;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -// Calculates S1 - equation (25a)
 | 
	
		
			
				|  |  | -std::complex<double> calc_S1(int n, std::complex<double> an, std::complex<double> bn,
 | 
	
		
			
				|  |  | -                             double Pi, double Tau) {
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  void MultiLayerMie::SetPECLayer(int layer_position) {
 | 
	
		
			
				|  |  | +    areIntCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +    areExtCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +    isMieCalculated_ = false;
 | 
	
		
			
				|  |  | +    if (layer_position < 0)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("Error! Layers are numbered from 0!");
 | 
	
		
			
				|  |  | +    PEC_layer_position_ = layer_position;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -// Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
 | 
	
		
			
				|  |  | -std::complex<double> calc_S2(int n, std::complex<double> an, std::complex<double> bn,
 | 
	
		
			
				|  |  | -                             double Pi, double Tau) {
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  return calc_S1(n, an, bn, Tau, Pi);
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Set maximun number of terms to be used                                 //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  void MultiLayerMie::SetMaxTerms(int nmax) {
 | 
	
		
			
				|  |  | +    areIntCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +    areExtCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +    isMieCalculated_ = false;
 | 
	
		
			
				|  |  | +    nmax_preset_ = nmax;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -// This function calculates the Riccati-Bessel functions (Psi and Zeta) for a       //
 | 
	
		
			
				|  |  | -// real argument (x).                                                               //
 | 
	
		
			
				|  |  | -// Equations (20a) - (21b)                                                          //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Input parameters:                                                                //
 | 
	
		
			
				|  |  | -//   x: Real argument to evaluate Psi and Zeta                                      //
 | 
	
		
			
				|  |  | -//   nmax: Maximum number of terms to calculate Psi and Zeta                        //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Output parameters:                                                               //
 | 
	
		
			
				|  |  | -//   Psi, Zeta: Riccati-Bessel functions                                            //
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -void calcPsiZeta(double x, int nmax,
 | 
	
		
			
				|  |  | -                 std::vector<std::complex<double> > D1,
 | 
	
		
			
				|  |  | -                 std::vector<std::complex<double> > D3,
 | 
	
		
			
				|  |  | -                 std::vector<std::complex<double> >& Psi,
 | 
	
		
			
				|  |  | -                 std::vector<std::complex<double> >& Zeta) {
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  double MultiLayerMie::GetSizeParameter() {
 | 
	
		
			
				|  |  | +    if (size_param_.size() > 0)
 | 
	
		
			
				|  |  | +      return size_param_.back();
 | 
	
		
			
				|  |  | +    else
 | 
	
		
			
				|  |  | +      return 0;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  int n;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
 | 
	
		
			
				|  |  | -  Psi[0] = std::complex<double>(sin(x), 0);
 | 
	
		
			
				|  |  | -  Zeta[0] = std::complex<double>(sin(x), -cos(x));
 | 
	
		
			
				|  |  | -  for (n = 1; n <= nmax; n++) {
 | 
	
		
			
				|  |  | -    Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
 | 
	
		
			
				|  |  | -    Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Clear layer information                                                //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  void MultiLayerMie::ClearLayers() {
 | 
	
		
			
				|  |  | +    areIntCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +    areExtCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +    isMieCalculated_ = false;
 | 
	
		
			
				|  |  | +    size_param_.clear();
 | 
	
		
			
				|  |  | +    refr_index_.clear();
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -// This function calculates the logarithmic derivatives of the Riccati-Bessel       //
 | 
	
		
			
				|  |  | -// functions (D1 and D3) for a complex argument (z).                                //
 | 
	
		
			
				|  |  | -// Equations (16a), (16b) and (18a) - (18d)                                         //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Input parameters:                                                                //
 | 
	
		
			
				|  |  | -//   z: Complex argument to evaluate D1 and D3                                      //
 | 
	
		
			
				|  |  | -//   nmax: Maximum number of terms to calculate D1 and D3                           //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Output parameters:                                                               //
 | 
	
		
			
				|  |  | -//   D1, D3: Logarithmic derivatives of the Riccati-Bessel functions                //
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -void calcD1D3(std::complex<double> z, int nmax,
 | 
	
		
			
				|  |  | -              std::vector<std::complex<double> >& D1,
 | 
	
		
			
				|  |  | -              std::vector<std::complex<double> >& D3) {
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  int n;
 | 
	
		
			
				|  |  | -  std::complex<double> nz, PsiZeta;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // Downward recurrence for D1 - equations (16a) and (16b)
 | 
	
		
			
				|  |  | -  D1[nmax] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -  for (n = nmax; n > 0; n--) {
 | 
	
		
			
				|  |  | -    nz = double(n)/z;
 | 
	
		
			
				|  |  | -    D1[n - 1] = nz - 1.0/(D1[n] + nz);
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  //                         Computational core
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Calculate calcNstop - equation (17)                                        //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  void MultiLayerMie::calcNstop() {
 | 
	
		
			
				|  |  | +    const double& xL = size_param_.back();
 | 
	
		
			
				|  |  | +    if (xL <= 8) {
 | 
	
		
			
				|  |  | +      nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 1);
 | 
	
		
			
				|  |  | +    } else if (xL <= 4200) {
 | 
	
		
			
				|  |  | +      nmax_ = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
 | 
	
		
			
				|  |  | +    } else {
 | 
	
		
			
				|  |  | +      nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 2);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
 | 
	
		
			
				|  |  | -  PsiZeta = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
 | 
	
		
			
				|  |  | -  D3[0] = std::complex<double>(0.0, 1.0);
 | 
	
		
			
				|  |  | -  for (n = 1; n <= nmax; n++) {
 | 
	
		
			
				|  |  | -    nz = double(n)/z;
 | 
	
		
			
				|  |  | -    PsiZeta = PsiZeta*(nz - D1[n - 1])*(nz - D3[n - 1]);
 | 
	
		
			
				|  |  | -    D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -// This function calculates Pi and Tau for all values of Theta.                     //
 | 
	
		
			
				|  |  | -// Equations (26a) - (26c)                                                          //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Input parameters:                                                                //
 | 
	
		
			
				|  |  | -//   nmax: Maximum number of terms to calculate Pi and Tau                          //
 | 
	
		
			
				|  |  | -//   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | -//   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | -//          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Output parameters:                                                               //
 | 
	
		
			
				|  |  | -//   Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c)   //
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -void calcPiTau(int nmax, double Theta, std::vector<double>& Pi, std::vector<double>& Tau) {
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  int n;
 | 
	
		
			
				|  |  | -  //****************************************************//
 | 
	
		
			
				|  |  | -  // Equations (26a) - (26c)                            //
 | 
	
		
			
				|  |  | -  //****************************************************//
 | 
	
		
			
				|  |  | -  // Initialize Pi and Tau
 | 
	
		
			
				|  |  | -  Pi[0] = 1.0;
 | 
	
		
			
				|  |  | -  Tau[0] = cos(Theta);
 | 
	
		
			
				|  |  | -  // Calculate the actual values
 | 
	
		
			
				|  |  | -  if (nmax > 1) {
 | 
	
		
			
				|  |  | -    Pi[1] = 3*Tau[0]*Pi[0];
 | 
	
		
			
				|  |  | -    Tau[1] = 2*Tau[0]*Pi[1] - 3*Pi[0];
 | 
	
		
			
				|  |  | -    for (n = 2; n < nmax; n++) {
 | 
	
		
			
				|  |  | -      Pi[n] = ((n + n + 1)*Tau[0]*Pi[n - 1] - (n + 1)*Pi[n - 2])/n;
 | 
	
		
			
				|  |  | -      Tau[n] = (n + 1)*Tau[0]*Pi[n] - (n + 2)*Pi[n - 1];
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Maximum number of terms required for the calculation                   //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  void MultiLayerMie::calcNmax(int first_layer) {
 | 
	
		
			
				|  |  | +    int ri, riM1;
 | 
	
		
			
				|  |  | +    const std::vector<double>& x = size_param_;
 | 
	
		
			
				|  |  | +    const std::vector<std::complex<double> >& m = refr_index_;
 | 
	
		
			
				|  |  | +    calcNstop();  // Set initial nmax_ value
 | 
	
		
			
				|  |  | +    for (int i = first_layer; i < x.size(); i++) {
 | 
	
		
			
				|  |  | +      if (i > PEC_layer_position_)
 | 
	
		
			
				|  |  | +        ri = round(std::abs(x[i]*m[i]));
 | 
	
		
			
				|  |  | +      else
 | 
	
		
			
				|  |  | +        ri = 0;
 | 
	
		
			
				|  |  | +      nmax_ = std::max(nmax_, ri);
 | 
	
		
			
				|  |  | +      // first layer is pec, if pec is present
 | 
	
		
			
				|  |  | +      if ((i > first_layer) && ((i - 1) > PEC_layer_position_))
 | 
	
		
			
				|  |  | +        riM1 = round(std::abs(x[i - 1]* m[i]));
 | 
	
		
			
				|  |  | +      else
 | 
	
		
			
				|  |  | +        riM1 = 0;
 | 
	
		
			
				|  |  | +      nmax_ = std::max(nmax_, riM1);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    nmax_ += 15;  // Final nmax_ value
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -// This function calculates the scattering coefficients required to calculate       //
 | 
	
		
			
				|  |  | -// both the near- and far-field parameters.                                         //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Input parameters:                                                                //
 | 
	
		
			
				|  |  | -//   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | -//   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | -//   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | -//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | -//   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | -//         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | -//         set this parameter to -1 and the function will calculate it.             //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Output parameters:                                                               //
 | 
	
		
			
				|  |  | -//   an, bn: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Return value:                                                                    //
 | 
	
		
			
				|  |  | -//   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
 | 
	
		
			
				|  |  | -                std::vector<std::complex<double> >& an, std::vector<std::complex<double> >& bn) {
 | 
	
		
			
				|  |  | -  //************************************************************************//
 | 
	
		
			
				|  |  | -  // Calculate the index of the first layer. It can be either 0 (default)   //
 | 
	
		
			
				|  |  | -  // or the index of the outermost PEC layer. In the latter case all layers //
 | 
	
		
			
				|  |  | -  // below the PEC are discarded.                                           //
 | 
	
		
			
				|  |  | -  //************************************************************************//
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  int fl = (pl > 0) ? pl : 0;
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function calculates the spherical Bessel (jn) and Hankel (h1n) functions    //
 | 
	
		
			
				|  |  | +  // and their derivatives for a given complex value z. See pag. 87 B&H.              //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   z: Complex argument to evaluate jn and h1n                                     //
 | 
	
		
			
				|  |  | +  //   nmax_: Maximum number of terms to calculate jn and h1n                         //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   jn, h1n: Spherical Bessel and Hankel functions                                 //
 | 
	
		
			
				|  |  | +  //   jnp, h1np: Derivatives of the spherical Bessel and Hankel functions            //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // The implementation follows the algorithm by I.J. Thompson and A.R. Barnett,      //
 | 
	
		
			
				|  |  | +  // Comp. Phys. Comm. 47 (1987) 245-257.                                             //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Complex spherical Bessel functions from n=0..nmax_-1 for z in the upper half     //
 | 
	
		
			
				|  |  | +  // plane (Im(z) > -3).                                                              //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  //     j[n]   = j/n(z)                Regular solution: j[0]=sin(z)/z               //
 | 
	
		
			
				|  |  | +  //     j'[n]  = d[j/n(z)]/dz                                                        //
 | 
	
		
			
				|  |  | +  //     h1[n]  = h[0]/n(z)             Irregular Hankel function:                    //
 | 
	
		
			
				|  |  | +  //     h1'[n] = d[h[0]/n(z)]/dz                h1[0] = j0(z) + i*y0(z)              //
 | 
	
		
			
				|  |  | +  //                                                   = (sin(z)-i*cos(z))/z          //
 | 
	
		
			
				|  |  | +  //                                                   = -i*exp(i*z)/z                //
 | 
	
		
			
				|  |  | +  // Using complex CF1, and trigonometric forms for n=0 solutions.                    //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  void MultiLayerMie::sbesjh(std::complex<double> z,
 | 
	
		
			
				|  |  | +                             std::vector<std::complex<double> >& jn, std::vector<std::complex<double> >& jnp,
 | 
	
		
			
				|  |  | +                             std::vector<std::complex<double> >& h1n, std::vector<std::complex<double> >& h1np) {
 | 
	
		
			
				|  |  | +    const int limit = 20000;
 | 
	
		
			
				|  |  | +    const double accur = 1.0e-12;
 | 
	
		
			
				|  |  | +    const double tm30 = 1e-30;
 | 
	
		
			
				|  |  | +    const std::complex<double> c_i(0.0, 1.0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    double absc;
 | 
	
		
			
				|  |  | +    std::complex<double> zi, w;
 | 
	
		
			
				|  |  | +    std::complex<double> pl, f, b, d, c, del, jn0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    absc = std::abs(std::real(z)) + std::abs(std::imag(z));
 | 
	
		
			
				|  |  | +    if ((absc < accur) || (std::imag(z) < -3.0)) {
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("TODO add error description for condition if ((absc < accur) || (std::imag(z) < -3.0))");
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  if (nmax <= 0) {
 | 
	
		
			
				|  |  | -    nmax = Nmax(L, fl, pl, x, m);
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | +    zi = 1.0/z;
 | 
	
		
			
				|  |  | +    w = zi + zi;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  std::complex<double> z1, z2;
 | 
	
		
			
				|  |  | -  std::complex<double> Num, Denom;
 | 
	
		
			
				|  |  | -  std::complex<double> G1, G2;
 | 
	
		
			
				|  |  | -  std::complex<double> Temp;
 | 
	
		
			
				|  |  | +    pl = double(nmax_)*zi;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  int n, l;
 | 
	
		
			
				|  |  | +    f = pl + zi;
 | 
	
		
			
				|  |  | +    b = f + f + zi;
 | 
	
		
			
				|  |  | +    d = 0.0;
 | 
	
		
			
				|  |  | +    c = f;
 | 
	
		
			
				|  |  | +    for (int l = 0; l < limit; l++) {
 | 
	
		
			
				|  |  | +      d = b - d;
 | 
	
		
			
				|  |  | +      c = b - 1.0/c;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  //**************************************************************************//
 | 
	
		
			
				|  |  | -  // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which  //
 | 
	
		
			
				|  |  | -  // means that index = layer number - 1 or index = n - 1. The only exception //
 | 
	
		
			
				|  |  | -  // are the arrays for representing D1, D3 and Q because they need a value   //
 | 
	
		
			
				|  |  | -  // for the index 0 (zero), hence it is important to consider this shift     //
 | 
	
		
			
				|  |  | -  // between different arrays. The change was done to optimize memory usage.  //
 | 
	
		
			
				|  |  | -  //**************************************************************************//
 | 
	
		
			
				|  |  | +      absc = std::abs(std::real(d)) + std::abs(std::imag(d));
 | 
	
		
			
				|  |  | +      if (absc < tm30) {
 | 
	
		
			
				|  |  | +        d = tm30;
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // Allocate memory to the arrays
 | 
	
		
			
				|  |  | -  std::vector<std::vector<std::complex<double> > > D1_mlxl, D1_mlxlM1;
 | 
	
		
			
				|  |  | -  D1_mlxl.resize(L);
 | 
	
		
			
				|  |  | -  D1_mlxlM1.resize(L);
 | 
	
		
			
				|  |  | +      absc = std::abs(std::real(c)) + std::abs(std::imag(c));
 | 
	
		
			
				|  |  | +      if (absc < tm30) {
 | 
	
		
			
				|  |  | +        c = tm30;
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  std::vector<std::vector<std::complex<double> > > D3_mlxl, D3_mlxlM1;
 | 
	
		
			
				|  |  | -  D3_mlxl.resize(L);
 | 
	
		
			
				|  |  | -  D3_mlxlM1.resize(L);
 | 
	
		
			
				|  |  | +      d = 1.0/d;
 | 
	
		
			
				|  |  | +      del = d*c;
 | 
	
		
			
				|  |  | +      f = f*del;
 | 
	
		
			
				|  |  | +      b += w;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  std::vector<std::vector<std::complex<double> > > Q;
 | 
	
		
			
				|  |  | -  Q.resize(L);
 | 
	
		
			
				|  |  | +      absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  std::vector<std::vector<std::complex<double> > > Ha, Hb;
 | 
	
		
			
				|  |  | -  Ha.resize(L);
 | 
	
		
			
				|  |  | -  Hb.resize(L);
 | 
	
		
			
				|  |  | +      // We have obtained the desired accuracy
 | 
	
		
			
				|  |  | +      if (absc < accur) break;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  for (l = 0; l < L; l++) {
 | 
	
		
			
				|  |  | -    D1_mlxl[l].resize(nmax + 1);
 | 
	
		
			
				|  |  | -    D1_mlxlM1[l].resize(nmax + 1);
 | 
	
		
			
				|  |  | +    if (absc > accur) {
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("We were not able to obtain the desired accuracy (MultiLayerMie::sbesjh)");
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    D3_mlxl[l].resize(nmax + 1);
 | 
	
		
			
				|  |  | -    D3_mlxlM1[l].resize(nmax + 1);
 | 
	
		
			
				|  |  | +    jn[nmax_ - 1] = tm30;
 | 
	
		
			
				|  |  | +    jnp[nmax_ - 1] = f*jn[nmax_ - 1];
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    Q[l].resize(nmax + 1);
 | 
	
		
			
				|  |  | +    // Downward recursion to n=0 (N.B.  Coulomb Functions)
 | 
	
		
			
				|  |  | +    for (int n = nmax_ - 2; n >= 0; n--) {
 | 
	
		
			
				|  |  | +      jn[n] = pl*jn[n + 1] + jnp[n + 1];
 | 
	
		
			
				|  |  | +      jnp[n] = pl*jn[n] - jn[n + 1];
 | 
	
		
			
				|  |  | +      pl = pl - zi;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    Ha[l].resize(nmax);
 | 
	
		
			
				|  |  | -    Hb[l].resize(nmax);
 | 
	
		
			
				|  |  | +    // Calculate the n=0 Bessel Functions
 | 
	
		
			
				|  |  | +    jn0 = zi*std::sin(z);
 | 
	
		
			
				|  |  | +    h1n[0] = -c_i*zi*std::exp(c_i*z);
 | 
	
		
			
				|  |  | +    h1np[0] = h1n[0]*(c_i - zi);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Rescale j[n], j'[n], converting to spherical Bessel functions.
 | 
	
		
			
				|  |  | +    // Recur   h1[n], h1'[n] as spherical Bessel functions.
 | 
	
		
			
				|  |  | +    w = 1.0/jn[0];
 | 
	
		
			
				|  |  | +    pl = zi;
 | 
	
		
			
				|  |  | +    for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | +      jn[n] = jn0*w*jn[n];
 | 
	
		
			
				|  |  | +      jnp[n] = jn0*w*jnp[n] - zi*jn[n];
 | 
	
		
			
				|  |  | +      if (n > 0) {
 | 
	
		
			
				|  |  | +        h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        // check if hankel is increasing (upward stable)
 | 
	
		
			
				|  |  | +        if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
 | 
	
		
			
				|  |  | +          throw std::invalid_argument("Error: Hankel not increasing! (MultiLayerMie::sbesjh)");
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        pl += zi;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        h1np[n] = -pl*h1n[n] + h1n[n - 1];
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  an.resize(nmax);
 | 
	
		
			
				|  |  | -  bn.resize(nmax);
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Calculate an - equation (5)                                            //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
 | 
	
		
			
				|  |  | +                                              std::complex<double> PsiXL, std::complex<double> ZetaXL,
 | 
	
		
			
				|  |  | +                                              std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  std::vector<std::complex<double> > D1XL, D3XL;
 | 
	
		
			
				|  |  | -  D1XL.resize(nmax + 1);
 | 
	
		
			
				|  |  | -  D3XL.resize(nmax + 1);
 | 
	
		
			
				|  |  | +    std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
 | 
	
		
			
				|  |  | +    std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +    return Num/Denom;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  std::vector<std::complex<double> > PsiXL, ZetaXL;
 | 
	
		
			
				|  |  | -  PsiXL.resize(nmax + 1);
 | 
	
		
			
				|  |  | -  ZetaXL.resize(nmax + 1);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  //*************************************************//
 | 
	
		
			
				|  |  | -  // Calculate D1 and D3 for z1 in the first layer   //
 | 
	
		
			
				|  |  | -  //*************************************************//
 | 
	
		
			
				|  |  | -  if (fl == pl) {  // PEC layer
 | 
	
		
			
				|  |  | -    for (n = 0; n <= nmax; n++) {
 | 
	
		
			
				|  |  | -      D1_mlxl[fl][n] = std::complex<double>(0.0, -1.0);
 | 
	
		
			
				|  |  | -      D3_mlxl[fl][n] = std::complex<double>(0.0, 1.0);
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -  } else { // Regular layer
 | 
	
		
			
				|  |  | -    z1 = x[fl]* m[fl];
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Calculate bn - equation (6)                                            //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
 | 
	
		
			
				|  |  | +                                              std::complex<double> PsiXL, std::complex<double> ZetaXL,
 | 
	
		
			
				|  |  | +                                              std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
 | 
	
		
			
				|  |  | +    std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    // Calculate D1 and D3
 | 
	
		
			
				|  |  | -    calcD1D3(z1, nmax, D1_mlxl[fl], D3_mlxl[fl]);
 | 
	
		
			
				|  |  | +    return Num/Denom;
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  //******************************************************************//
 | 
	
		
			
				|  |  | -  // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
 | 
	
		
			
				|  |  | -  //******************************************************************//
 | 
	
		
			
				|  |  | -  for (n = 0; n < nmax; n++) {
 | 
	
		
			
				|  |  | -    Ha[fl][n] = D1_mlxl[fl][n + 1];
 | 
	
		
			
				|  |  | -    Hb[fl][n] = D1_mlxl[fl][n + 1];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Calculates S1 - equation (25a)                                         //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
 | 
	
		
			
				|  |  | +                                              double Pi, double Tau) {
 | 
	
		
			
				|  |  | +    return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  //*****************************************************//
 | 
	
		
			
				|  |  | -  // Iteration from the second layer to the last one (L) //
 | 
	
		
			
				|  |  | -  //*****************************************************//
 | 
	
		
			
				|  |  | -  for (l = fl + 1; l < L; l++) {
 | 
	
		
			
				|  |  | -    //************************************************************//
 | 
	
		
			
				|  |  | -    //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L     //
 | 
	
		
			
				|  |  | -    //************************************************************//
 | 
	
		
			
				|  |  | -    z1 = x[l]*m[l];
 | 
	
		
			
				|  |  | -    z2 = x[l - 1]*m[l];
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    //Calculate D1 and D3 for z1
 | 
	
		
			
				|  |  | -    calcD1D3(z1, nmax, D1_mlxl[l], D3_mlxl[l]);
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // Calculates S2 - equation (25b) (it's the same as (25a), just switches  //
 | 
	
		
			
				|  |  | +  // Pi and Tau)                                                            //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
 | 
	
		
			
				|  |  | +                                              double Pi, double Tau) {
 | 
	
		
			
				|  |  | +    return calc_S1(n, an, bn, Tau, Pi);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    //Calculate D1 and D3 for z2
 | 
	
		
			
				|  |  | -    calcD1D3(z2, nmax, D1_mlxlM1[l], D3_mlxlM1[l]);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    //*********************************************//
 | 
	
		
			
				|  |  | -    //Calculate Q, Ha and Hb in the layers fl+1..L //
 | 
	
		
			
				|  |  | -    //*********************************************//
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a       //
 | 
	
		
			
				|  |  | +  // real argument (x).                                                               //
 | 
	
		
			
				|  |  | +  // Equations (20a) - (21b)                                                          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   x: Real argument to evaluate Psi and Zeta                                      //
 | 
	
		
			
				|  |  | +  //   nmax: Maximum number of terms to calculate Psi and Zeta                        //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   Psi, Zeta: Riccati-Bessel functions                                            //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  void MultiLayerMie::calcPsiZeta(std::complex<double> z,
 | 
	
		
			
				|  |  | +                                  std::vector<std::complex<double> > D1,
 | 
	
		
			
				|  |  | +                                  std::vector<std::complex<double> > D3,
 | 
	
		
			
				|  |  | +                                  std::vector<std::complex<double> >& Psi,
 | 
	
		
			
				|  |  | +                                  std::vector<std::complex<double> >& Zeta) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
 | 
	
		
			
				|  |  | +    std::complex<double> c_i(0.0, 1.0);
 | 
	
		
			
				|  |  | +    Psi[0] = std::sin(z);
 | 
	
		
			
				|  |  | +    Zeta[0] = std::sin(z) - c_i*std::cos(z);
 | 
	
		
			
				|  |  | +    for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | +      Psi[n] = Psi[n - 1]*(static_cast<double>(n)/z - D1[n - 1]);
 | 
	
		
			
				|  |  | +      Zeta[n] = Zeta[n - 1]*(static_cast<double>(n)/z - D3[n - 1]);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    // Upward recurrence for Q - equations (19a) and (19b)
 | 
	
		
			
				|  |  | -    Num = exp(-2.0*(z1.imag() - z2.imag()))*std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
 | 
	
		
			
				|  |  | -    Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
 | 
	
		
			
				|  |  | -    Q[l][0] = Num/Denom;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    for (n = 1; n <= nmax; n++) {
 | 
	
		
			
				|  |  | -      Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]);
 | 
	
		
			
				|  |  | -      Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom;
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function calculates the logarithmic derivatives of the Riccati-Bessel       //
 | 
	
		
			
				|  |  | +  // functions (D1 and D3) for a complex argument (z).                                //
 | 
	
		
			
				|  |  | +  // Equations (16a), (16b) and (18a) - (18d)                                         //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   z: Complex argument to evaluate D1 and D3                                      //
 | 
	
		
			
				|  |  | +  //   nmax_: Maximum number of terms to calculate D1 and D3                          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   D1, D3: Logarithmic derivatives of the Riccati-Bessel functions                //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  void MultiLayerMie::calcD1D3(const std::complex<double> z,
 | 
	
		
			
				|  |  | +                               std::vector<std::complex<double> >& D1,
 | 
	
		
			
				|  |  | +                               std::vector<std::complex<double> >& D3) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Downward recurrence for D1 - equations (16a) and (16b)
 | 
	
		
			
				|  |  | +    D1[nmax_] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | +    const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    for (int n = nmax_; n > 0; n--) {
 | 
	
		
			
				|  |  | +      D1[n - 1] = double(n)*zinv - 1.0/(D1[n] + double(n)*zinv);
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
 | 
	
		
			
				|  |  | -    for (n = 1; n <= nmax; n++) {
 | 
	
		
			
				|  |  | -      //Ha
 | 
	
		
			
				|  |  | -      if ((l - 1) == pl) { // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | -        G1 = -D1_mlxlM1[l][n];
 | 
	
		
			
				|  |  | -        G2 = -D3_mlxlM1[l][n];
 | 
	
		
			
				|  |  | -      } else {
 | 
	
		
			
				|  |  | -        G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]);
 | 
	
		
			
				|  |  | -        G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]);
 | 
	
		
			
				|  |  | +    if (std::abs(D1[0]) > 100000.0)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("Unstable D1! Please, try to change input parameters!\n");
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
 | 
	
		
			
				|  |  | +    PsiZeta_[0] = 0.5*(1.0 - std::complex<double>(std::cos(2.0*z.real()), std::sin(2.0*z.real()))
 | 
	
		
			
				|  |  | +                       *std::exp(-2.0*z.imag()));
 | 
	
		
			
				|  |  | +    D3[0] = std::complex<double>(0.0, 1.0);
 | 
	
		
			
				|  |  | +    for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | +      PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<double>(n)*zinv - D1[n - 1])
 | 
	
		
			
				|  |  | +        *(static_cast<double>(n)*zinv- D3[n - 1]);
 | 
	
		
			
				|  |  | +      D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta_[n];
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function calculates Pi and Tau for a given value of cos(Theta).             //
 | 
	
		
			
				|  |  | +  // Equations (26a) - (26c)                                                          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   nmax_: Maximum number of terms to calculate Pi and Tau                         //
 | 
	
		
			
				|  |  | +  //   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | +  //   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | +  //          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c)   //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  void MultiLayerMie::calcPiTau(const double& costheta,
 | 
	
		
			
				|  |  | +                                std::vector<double>& Pi, std::vector<double>& Tau) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    int n;
 | 
	
		
			
				|  |  | +    //****************************************************//
 | 
	
		
			
				|  |  | +    // Equations (26a) - (26c)                            //
 | 
	
		
			
				|  |  | +    //****************************************************//
 | 
	
		
			
				|  |  | +    // Initialize Pi and Tau
 | 
	
		
			
				|  |  | +    Pi[0] = 1.0;
 | 
	
		
			
				|  |  | +    Tau[0] = costheta;
 | 
	
		
			
				|  |  | +    // Calculate the actual values
 | 
	
		
			
				|  |  | +    if (nmax_ > 1) {
 | 
	
		
			
				|  |  | +      Pi[1] = 3*costheta*Pi[0];
 | 
	
		
			
				|  |  | +      Tau[1] = 2*costheta*Pi[1] - 3*Pi[0];
 | 
	
		
			
				|  |  | +      for (n = 2; n < nmax_; n++) {
 | 
	
		
			
				|  |  | +        Pi[n] = ((n + n + 1)*costheta*Pi[n - 1] - (n + 1)*Pi[n - 2])/n;
 | 
	
		
			
				|  |  | +        Tau[n] = (n + 1)*costheta*Pi[n] - (n + 2)*Pi[n - 1];
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +  }  // end of MultiLayerMie::calcPiTau(...)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  void MultiLayerMie::calcSpherHarm(const double Rho, const double Phi, const double Theta,
 | 
	
		
			
				|  |  | +                                    const std::complex<double>& zn, const std::complex<double>& dzn,
 | 
	
		
			
				|  |  | +                                    const double& Pi, const double& Tau, const double& n,
 | 
	
		
			
				|  |  | +                                    std::vector<std::complex<double> >& Mo1n, std::vector<std::complex<double> >& Me1n, 
 | 
	
		
			
				|  |  | +                                    std::vector<std::complex<double> >& No1n, std::vector<std::complex<double> >& Ne1n) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // using eq 4.50 in BH
 | 
	
		
			
				|  |  | +    std::complex<double> c_zero(0.0, 0.0);
 | 
	
		
			
				|  |  | +    std::complex<double> deriv = Rho*dzn + zn;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    using std::sin;
 | 
	
		
			
				|  |  | +    using std::cos;
 | 
	
		
			
				|  |  | +    Mo1n[0] = c_zero;
 | 
	
		
			
				|  |  | +    Mo1n[1] = cos(Phi)*Pi*zn;
 | 
	
		
			
				|  |  | +    Mo1n[2] = -sin(Phi)*Tau*zn;
 | 
	
		
			
				|  |  | +    Me1n[0] = c_zero;
 | 
	
		
			
				|  |  | +    Me1n[1] = -sin(Phi)*Pi*zn;
 | 
	
		
			
				|  |  | +    Me1n[2] = -cos(Phi)*Tau*zn;
 | 
	
		
			
				|  |  | +    No1n[0] = sin(Phi)*(n*n + n)*sin(Theta)*Pi*zn/Rho;
 | 
	
		
			
				|  |  | +    No1n[1] = sin(Phi)*Tau*deriv/Rho;
 | 
	
		
			
				|  |  | +    No1n[2] = cos(Phi)*Pi*deriv/Rho;
 | 
	
		
			
				|  |  | +    Ne1n[0] = cos(Phi)*(n*n + n)*sin(Theta)*Pi*zn/Rho;
 | 
	
		
			
				|  |  | +    Ne1n[1] = cos(Phi)*Tau*deriv/Rho;
 | 
	
		
			
				|  |  | +    Ne1n[2] = -sin(Phi)*Pi*deriv/Rho;
 | 
	
		
			
				|  |  | +  }  // end of MultiLayerMie::calcSpherHarm(...)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function calculates the scattering coefficients required to calculate       //
 | 
	
		
			
				|  |  | +  // both the near- and far-field parameters.                                         //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +  //   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | +  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | +  //         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | +  //         set this parameter to -1 and the function will calculate it.             //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   an, bn: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Return value:                                                                    //
 | 
	
		
			
				|  |  | +  //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  void MultiLayerMie::ExtScattCoeffs() {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    areExtCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    const std::vector<double>& x = size_param_;
 | 
	
		
			
				|  |  | +    const std::vector<std::complex<double> >& m = refr_index_;
 | 
	
		
			
				|  |  | +    const int& pl = PEC_layer_position_;
 | 
	
		
			
				|  |  | +    const int L = refr_index_.size();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    //************************************************************************//
 | 
	
		
			
				|  |  | +    // Calculate the index of the first layer. It can be either 0 (default)   //
 | 
	
		
			
				|  |  | +    // or the index of the outermost PEC layer. In the latter case all layers //
 | 
	
		
			
				|  |  | +    // below the PEC are discarded.                                           //
 | 
	
		
			
				|  |  | +    // ***********************************************************************//
 | 
	
		
			
				|  |  | +    // TODO, is it possible for PEC to have a zero index? If yes than
 | 
	
		
			
				|  |  | +    // is should be:
 | 
	
		
			
				|  |  | +    // int fl = (pl > - 1) ? pl : 0;
 | 
	
		
			
				|  |  | +    // This will give the same result, however, it corresponds the
 | 
	
		
			
				|  |  | +    // logic - if there is PEC, than first layer is PEC.
 | 
	
		
			
				|  |  | +    // Well, I followed the logic: First layer is always zero unless it has
 | 
	
		
			
				|  |  | +    // an upper PEC layer.
 | 
	
		
			
				|  |  | +    int fl = (pl > 0) ? pl : 0;
 | 
	
		
			
				|  |  | +    if (nmax_preset_ <= 0) calcNmax(fl);
 | 
	
		
			
				|  |  | +    else nmax_ = nmax_preset_;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::complex<double> z1, z2;
 | 
	
		
			
				|  |  | +    //**************************************************************************//
 | 
	
		
			
				|  |  | +    // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which  //
 | 
	
		
			
				|  |  | +    // means that index = layer number - 1 or index = n - 1. The only exception //
 | 
	
		
			
				|  |  | +    // are the arrays for representing D1, D3 and Q because they need a value   //
 | 
	
		
			
				|  |  | +    // for the index 0 (zero), hence it is important to consider this shift     //
 | 
	
		
			
				|  |  | +    // between different arrays. The change was done to optimize memory usage.  //
 | 
	
		
			
				|  |  | +    //**************************************************************************//
 | 
	
		
			
				|  |  | +    // Allocate memory to the arrays
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
 | 
	
		
			
				|  |  | +                                       D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::vector<std::vector<std::complex<double> > > Q(L), Ha(L), Hb(L);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    for (int l = 0; l < L; l++) {
 | 
	
		
			
				|  |  | +      Q[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +      Ha[l].resize(nmax_);
 | 
	
		
			
				|  |  | +      Hb[l].resize(nmax_);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      Temp = Q[l][n]*G1;
 | 
	
		
			
				|  |  | +    an_.resize(nmax_);
 | 
	
		
			
				|  |  | +    bn_.resize(nmax_);
 | 
	
		
			
				|  |  | +    PsiZeta_.resize(nmax_ + 1);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]);
 | 
	
		
			
				|  |  | -      Denom = G2 - Temp;
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> > D1XL(nmax_ + 1), D3XL(nmax_ + 1),
 | 
	
		
			
				|  |  | +                                       PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      Ha[l][n - 1] = Num/Denom;
 | 
	
		
			
				|  |  | +    //*************************************************//
 | 
	
		
			
				|  |  | +    // Calculate D1 and D3 for z1 in the first layer   //
 | 
	
		
			
				|  |  | +    //*************************************************//
 | 
	
		
			
				|  |  | +    if (fl == pl) {  // PEC layer
 | 
	
		
			
				|  |  | +      for (int n = 0; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | +        D1_mlxl[n] = std::complex<double>(0.0, - 1.0);
 | 
	
		
			
				|  |  | +        D3_mlxl[n] = std::complex<double>(0.0, 1.0);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    } else { // Regular layer
 | 
	
		
			
				|  |  | +      z1 = x[fl]* m[fl];
 | 
	
		
			
				|  |  | +      // Calculate D1 and D3
 | 
	
		
			
				|  |  | +      calcD1D3(z1, D1_mlxl, D3_mlxl);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      //Hb
 | 
	
		
			
				|  |  | -      if ((l - 1) == pl) { // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | -        G1 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | -        G2 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | +    //******************************************************************//
 | 
	
		
			
				|  |  | +    // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
 | 
	
		
			
				|  |  | +    //******************************************************************//
 | 
	
		
			
				|  |  | +    for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | +      Ha[fl][n] = D1_mlxl[n + 1];
 | 
	
		
			
				|  |  | +      Hb[fl][n] = D1_mlxl[n + 1];
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    //*****************************************************//
 | 
	
		
			
				|  |  | +    // Iteration from the second layer to the last one (L) //
 | 
	
		
			
				|  |  | +    //*****************************************************//
 | 
	
		
			
				|  |  | +    std::complex<double> Temp, Num, Denom;
 | 
	
		
			
				|  |  | +    std::complex<double> G1, G2;
 | 
	
		
			
				|  |  | +    for (int l = fl + 1; l < L; l++) {
 | 
	
		
			
				|  |  | +      //************************************************************//
 | 
	
		
			
				|  |  | +      //Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L     //
 | 
	
		
			
				|  |  | +      //************************************************************//
 | 
	
		
			
				|  |  | +      z1 = x[l]*m[l];
 | 
	
		
			
				|  |  | +      z2 = x[l - 1]*m[l];
 | 
	
		
			
				|  |  | +      //Calculate D1 and D3 for z1
 | 
	
		
			
				|  |  | +      calcD1D3(z1, D1_mlxl, D3_mlxl);
 | 
	
		
			
				|  |  | +      //Calculate D1 and D3 for z2
 | 
	
		
			
				|  |  | +      calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      //*********************************************//
 | 
	
		
			
				|  |  | +      //Calculate Q, Ha and Hb in the layers fl + 1..L //
 | 
	
		
			
				|  |  | +      //*********************************************//
 | 
	
		
			
				|  |  | +      // Upward recurrence for Q - equations (19a) and (19b)
 | 
	
		
			
				|  |  | +      Num = std::exp(-2.0*(z1.imag() - z2.imag()))
 | 
	
		
			
				|  |  | +           *std::complex<double>(std::cos(-2.0*z2.real()) - std::exp(-2.0*z2.imag()), std::sin(-2.0*z2.real()));
 | 
	
		
			
				|  |  | +      Denom = std::complex<double>(std::cos(-2.0*z1.real()) - std::exp(-2.0*z1.imag()), std::sin(-2.0*z1.real()));
 | 
	
		
			
				|  |  | +      Q[l][0] = Num/Denom;
 | 
	
		
			
				|  |  | +      for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | +        Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]);
 | 
	
		
			
				|  |  | +        Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]);
 | 
	
		
			
				|  |  | +        Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
 | 
	
		
			
				|  |  | +      for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | +        //Ha
 | 
	
		
			
				|  |  | +        if ((l - 1) == pl) { // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | +          G1 = -D1_mlxlM1[n];
 | 
	
		
			
				|  |  | +          G2 = -D3_mlxlM1[n];
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +          G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
 | 
	
		
			
				|  |  | +          G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
 | 
	
		
			
				|  |  | +        }  // end of if PEC
 | 
	
		
			
				|  |  | +        Temp = Q[l][n]*G1;
 | 
	
		
			
				|  |  | +        Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
 | 
	
		
			
				|  |  | +        Denom = G2 - Temp;
 | 
	
		
			
				|  |  | +        Ha[l][n - 1] = Num/Denom;
 | 
	
		
			
				|  |  | +        //Hb
 | 
	
		
			
				|  |  | +        if ((l - 1) == pl) { // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | +          G1 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | +          G2 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +          G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
 | 
	
		
			
				|  |  | +          G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
 | 
	
		
			
				|  |  | +        }  // end of if PEC
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Temp = Q[l][n]*G1;
 | 
	
		
			
				|  |  | +        Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
 | 
	
		
			
				|  |  | +        Denom = (G2- Temp);
 | 
	
		
			
				|  |  | +        Hb[l][n - 1] = (Num/ Denom);
 | 
	
		
			
				|  |  | +      }  // end of for Ha and Hb terms
 | 
	
		
			
				|  |  | +    }  // end of for layers iteration
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    //**************************************//
 | 
	
		
			
				|  |  | +    //Calculate D1, D3, Psi and Zeta for XL //
 | 
	
		
			
				|  |  | +    //**************************************//
 | 
	
		
			
				|  |  | +    // Calculate D1XL and D3XL
 | 
	
		
			
				|  |  | +    calcD1D3(x[L - 1], D1XL, D3XL);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Calculate PsiXL and ZetaXL
 | 
	
		
			
				|  |  | +    calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL);
 | 
	
		
			
				|  |  | +    //*********************************************************************//
 | 
	
		
			
				|  |  | +    // Finally, we calculate the scattering coefficients (an and bn) and   //
 | 
	
		
			
				|  |  | +    // the angular functions (Pi and Tau). Note that for these arrays the  //
 | 
	
		
			
				|  |  | +    // first layer is 0 (zero), in future versions all arrays will follow  //
 | 
	
		
			
				|  |  | +    // this convention to save memory. (13 Nov, 2014)                      //
 | 
	
		
			
				|  |  | +    //*********************************************************************//
 | 
	
		
			
				|  |  | +    for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | +      //********************************************************************//
 | 
	
		
			
				|  |  | +      //Expressions for calculating an and bn coefficients are not valid if //
 | 
	
		
			
				|  |  | +      //there is only one PEC layer (ie, for a simple PEC sphere).          //
 | 
	
		
			
				|  |  | +      //********************************************************************//
 | 
	
		
			
				|  |  | +      if (pl < (L - 1)) {
 | 
	
		
			
				|  |  | +        an_[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | +        bn_[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  |        } else {
 | 
	
		
			
				|  |  | -        G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]);
 | 
	
		
			
				|  |  | -        G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]);
 | 
	
		
			
				|  |  | +        an_[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | +        bn_[n] = PsiXL[n + 1]/ZetaXL[n + 1];
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }  // end of for an and bn terms
 | 
	
		
			
				|  |  | +    areExtCoeffsCalc_ = true;
 | 
	
		
			
				|  |  | +  }  // end of void MultiLayerMie::ExtScattCoeffs(...)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function calculates the actual scattering parameters and amplitudes         //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +  //   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | +  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +  //   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | +  //   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | +  //          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | +  //   nmax_: Maximum number of multipolar expansion terms to be used for the         //
 | 
	
		
			
				|  |  | +  //         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | +  //         set this parameter to -1 and the function will calculate it              //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   Qext: Efficiency factor for extinction                                         //
 | 
	
		
			
				|  |  | +  //   Qsca: Efficiency factor for scattering                                         //
 | 
	
		
			
				|  |  | +  //   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
 | 
	
		
			
				|  |  | +  //   Qbk: Efficiency factor for backscattering                                      //
 | 
	
		
			
				|  |  | +  //   Qpr: Efficiency factor for the radiation pressure                              //
 | 
	
		
			
				|  |  | +  //   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
 | 
	
		
			
				|  |  | +  //   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
 | 
	
		
			
				|  |  | +  //   S1, S2: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Return value:                                                                    //
 | 
	
		
			
				|  |  | +  //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  void MultiLayerMie::RunMieCalculation() {
 | 
	
		
			
				|  |  | +    if (size_param_.size() != refr_index_.size())
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("Each size parameter should have only one index!");
 | 
	
		
			
				|  |  | +    if (size_param_.size() == 0)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("Initialize model first!");
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    const std::vector<double>& x = size_param_;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    areIntCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +    areExtCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +    isMieCalculated_ = false;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Calculate scattering coefficients
 | 
	
		
			
				|  |  | +    ExtScattCoeffs();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//    for (int i = 0; i < nmax_; i++) {
 | 
	
		
			
				|  |  | +//      printf("a[%i] = %g, %g; b[%i] = %g, %g\n", i, an_[i].real(), an_[i].imag(), i, bn_[i].real(), bn_[i].imag());
 | 
	
		
			
				|  |  | +//    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    if (!areExtCoeffsCalc_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("Calculation of scattering coefficients failed!");
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Initialize the scattering parameters
 | 
	
		
			
				|  |  | +    Qext_ = 0;
 | 
	
		
			
				|  |  | +    Qsca_ = 0;
 | 
	
		
			
				|  |  | +    Qabs_ = 0;
 | 
	
		
			
				|  |  | +    Qbk_ = 0;
 | 
	
		
			
				|  |  | +    Qpr_ = 0;
 | 
	
		
			
				|  |  | +    asymmetry_factor_ = 0;
 | 
	
		
			
				|  |  | +    albedo_ = 0;
 | 
	
		
			
				|  |  | +    Qsca_ch_.clear();
 | 
	
		
			
				|  |  | +    Qext_ch_.clear();
 | 
	
		
			
				|  |  | +    Qabs_ch_.clear();
 | 
	
		
			
				|  |  | +    Qbk_ch_.clear();
 | 
	
		
			
				|  |  | +    Qpr_ch_.clear();
 | 
	
		
			
				|  |  | +    Qsca_ch_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qext_ch_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qabs_ch_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qbk_ch_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qpr_ch_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qsca_ch_norm_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qext_ch_norm_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qabs_ch_norm_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qbk_ch_norm_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qpr_ch_norm_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Initialize the scattering amplitudes
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> > tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
 | 
	
		
			
				|  |  | +    S1_.swap(tmp1);
 | 
	
		
			
				|  |  | +    S2_ = S1_;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::vector<double> Pi(nmax_), Tau(nmax_);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::complex<double> Qbktmp(0.0, 0.0);
 | 
	
		
			
				|  |  | +    std::vector< std::complex<double> > Qbktmp_ch(nmax_ - 1, Qbktmp);
 | 
	
		
			
				|  |  | +    // By using downward recurrence we avoid loss of precision due to float rounding errors
 | 
	
		
			
				|  |  | +    // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
 | 
	
		
			
				|  |  | +    //      http://en.wikipedia.org/wiki/Loss_of_significance
 | 
	
		
			
				|  |  | +    for (int i = nmax_ - 2; i >= 0; i--) {
 | 
	
		
			
				|  |  | +      const int n = i + 1;
 | 
	
		
			
				|  |  | +      // Equation (27)
 | 
	
		
			
				|  |  | +      Qext_ch_norm_[i] = (an_[i].real() + bn_[i].real());
 | 
	
		
			
				|  |  | +      Qext_ch_[i] = (n + n + 1.0)*Qext_ch_norm_[i];
 | 
	
		
			
				|  |  | +      //Qext_ch_[i] = (n + n + 1)*(an_[i].real() + bn_[i].real());
 | 
	
		
			
				|  |  | +      Qext_ += Qext_ch_[i];
 | 
	
		
			
				|  |  | +      // Equation (28)
 | 
	
		
			
				|  |  | +      Qsca_ch_norm_[i] = (an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
 | 
	
		
			
				|  |  | +                          + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
 | 
	
		
			
				|  |  | +      Qsca_ch_[i] = (n + n + 1.0)*Qsca_ch_norm_[i];
 | 
	
		
			
				|  |  | +      Qsca_ += Qsca_ch_[i];
 | 
	
		
			
				|  |  | +      // Qsca_ch_[i] += (n + n + 1)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
 | 
	
		
			
				|  |  | +      //                             + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // Equation (29) TODO We must check carefully this equation. If we
 | 
	
		
			
				|  |  | +      // remove the typecast to double then the result changes. Which is
 | 
	
		
			
				|  |  | +      // the correct one??? Ovidio (2014/12/10) With cast ratio will
 | 
	
		
			
				|  |  | +      // give double, without cast (n + n + 1)/(n*(n + 1)) will be
 | 
	
		
			
				|  |  | +      // rounded to integer. Tig (2015/02/24)
 | 
	
		
			
				|  |  | +      Qpr_ch_[i]=((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real())
 | 
	
		
			
				|  |  | +               + ((double)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real());
 | 
	
		
			
				|  |  | +      Qpr_ += Qpr_ch_[i];
 | 
	
		
			
				|  |  | +      // Equation (33)
 | 
	
		
			
				|  |  | +      Qbktmp_ch[i] = (double)(n + n + 1)*(1 - 2*(n % 2))*(an_[i]- bn_[i]);
 | 
	
		
			
				|  |  | +      Qbktmp += Qbktmp_ch[i];
 | 
	
		
			
				|  |  | +      // Calculate the scattering amplitudes (S1 and S2)    //
 | 
	
		
			
				|  |  | +      // Equations (25a) - (25b)                            //
 | 
	
		
			
				|  |  | +      for (int t = 0; t < theta_.size(); t++) {
 | 
	
		
			
				|  |  | +        calcPiTau(std::cos(theta_[t]), Pi, Tau);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[i], Tau[i]);
 | 
	
		
			
				|  |  | +        S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[i], Tau[i]);
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    double x2 = pow2(x.back());
 | 
	
		
			
				|  |  | +    Qext_ = 2.0*(Qext_)/x2;                                 // Equation (27)
 | 
	
		
			
				|  |  | +    for (double& Q : Qext_ch_) Q = 2.0*Q/x2;
 | 
	
		
			
				|  |  | +    Qsca_ = 2.0*(Qsca_)/x2;                                 // Equation (28)
 | 
	
		
			
				|  |  | +    for (double& Q : Qsca_ch_) Q = 2.0*Q/x2;
 | 
	
		
			
				|  |  | +    //for (double& Q : Qsca_ch_norm_) Q = 2.0*Q/x2;
 | 
	
		
			
				|  |  | +    Qpr_ = Qext_ - 4.0*(Qpr_)/x2;                           // Equation (29)
 | 
	
		
			
				|  |  | +    for (int i = 0; i < nmax_ - 1; ++i) Qpr_ch_[i] = Qext_ch_[i] - 4.0*Qpr_ch_[i]/x2;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    Qabs_ = Qext_ - Qsca_;                                // Equation (30)
 | 
	
		
			
				|  |  | +    for (int i = 0; i < nmax_ - 1; ++i) {
 | 
	
		
			
				|  |  | +      Qabs_ch_[i] = Qext_ch_[i] - Qsca_ch_[i];
 | 
	
		
			
				|  |  | +      Qabs_ch_norm_[i] = Qext_ch_norm_[i] - Qsca_ch_norm_[i];
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      Temp = Q[l][n]*G1;
 | 
	
		
			
				|  |  | +    albedo_ = Qsca_/Qext_;                              // Equation (31)
 | 
	
		
			
				|  |  | +    asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_;                          // Equation (32)
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]);
 | 
	
		
			
				|  |  | -      Denom = (G2- Temp);
 | 
	
		
			
				|  |  | +    Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2;    // Equation (33)
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      Hb[l][n - 1] = (Num/ Denom);
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | +    isMieCalculated_ = true;
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  //**************************************//
 | 
	
		
			
				|  |  | -  //Calculate D1, D3, Psi and Zeta for XL //
 | 
	
		
			
				|  |  | -  //**************************************//
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // Calculate D1XL and D3XL
 | 
	
		
			
				|  |  | -  calcD1D3(x[L - 1], nmax, D1XL, D3XL);
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  void MultiLayerMie::IntScattCoeffs() {
 | 
	
		
			
				|  |  | +    if (!areExtCoeffsCalc_)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("(IntScattCoeffs) You should calculate external coefficients first!");
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    areIntCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::complex<double> c_one(1.0, 0.0);
 | 
	
		
			
				|  |  | +    std::complex<double> c_zero(0.0, 0.0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    const int L = refr_index_.size();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // we need to fill
 | 
	
		
			
				|  |  | +    // std::vector< std::vector<std::complex<double> > > anl_, bnl_, cnl_, dnl_;
 | 
	
		
			
				|  |  | +    //     for n = [0..nmax_) and for l=[L..0)
 | 
	
		
			
				|  |  | +    // TODO: to decrease cache miss outer loop is with n and inner with reversed l
 | 
	
		
			
				|  |  | +    // at the moment outer is forward l and inner in n
 | 
	
		
			
				|  |  | +    anl_.resize(L + 1);
 | 
	
		
			
				|  |  | +    bnl_.resize(L + 1);
 | 
	
		
			
				|  |  | +    cnl_.resize(L + 1);
 | 
	
		
			
				|  |  | +    dnl_.resize(L + 1);
 | 
	
		
			
				|  |  | +    for (auto& element:anl_) element.resize(nmax_);
 | 
	
		
			
				|  |  | +    for (auto& element:bnl_) element.resize(nmax_);
 | 
	
		
			
				|  |  | +    for (auto& element:cnl_) element.resize(nmax_);
 | 
	
		
			
				|  |  | +    for (auto& element:dnl_) element.resize(nmax_);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Yang, paragraph under eq. A3
 | 
	
		
			
				|  |  | +    // a^(L + 1)_n = a_n, d^(L + 1) = 1 ...
 | 
	
		
			
				|  |  | +    for (int i = 0; i < nmax_; ++i) {
 | 
	
		
			
				|  |  | +      anl_[L][i] = an_[i];
 | 
	
		
			
				|  |  | +      bnl_[L][i] = bn_[i];
 | 
	
		
			
				|  |  | +      cnl_[L][i] = c_one;
 | 
	
		
			
				|  |  | +      dnl_[L][i] = c_one;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // Calculate PsiXL and ZetaXL
 | 
	
		
			
				|  |  | -  calcPsiZeta(x[L - 1], nmax, D1XL, D3XL, PsiXL, ZetaXL);
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> > z(L), z1(L);
 | 
	
		
			
				|  |  | +    for (int i = 0; i < L - 1; ++i) {
 | 
	
		
			
				|  |  | +      z[i] = size_param_[i]*refr_index_[i];
 | 
	
		
			
				|  |  | +      z1[i] = size_param_[i]*refr_index_[i + 1];
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    z[L - 1] = size_param_[L - 1]*refr_index_[L - 1];
 | 
	
		
			
				|  |  | +    z1[L - 1] = size_param_[L - 1];
 | 
	
		
			
				|  |  | +    std::vector< std::vector<std::complex<double> > > D1z(L), D1z1(L), D3z(L), D3z1(L);
 | 
	
		
			
				|  |  | +    std::vector< std::vector<std::complex<double> > > Psiz(L), Psiz1(L), Zetaz(L), Zetaz1(L);
 | 
	
		
			
				|  |  | +    for (int l = 0; l < L; ++l) {
 | 
	
		
			
				|  |  | +      D1z[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +      D1z1[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +      D3z[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +      D3z1[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +      Psiz[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +      Psiz1[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +      Zetaz[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +      Zetaz1[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  //*********************************************************************//
 | 
	
		
			
				|  |  | -  // Finally, we calculate the scattering coefficients (an and bn) and   //
 | 
	
		
			
				|  |  | -  // the angular functions (Pi and Tau). Note that for these arrays the  //
 | 
	
		
			
				|  |  | -  // first layer is 0 (zero), in future versions all arrays will follow  //
 | 
	
		
			
				|  |  | -  // this convention to save memory. (13 Nov, 2014)                      //
 | 
	
		
			
				|  |  | -  //*********************************************************************//
 | 
	
		
			
				|  |  | -  for (n = 0; n < nmax; n++) {
 | 
	
		
			
				|  |  | -    //********************************************************************//
 | 
	
		
			
				|  |  | -    //Expressions for calculating an and bn coefficients are not valid if //
 | 
	
		
			
				|  |  | -    //there is only one PEC layer (ie, for a simple PEC sphere).          //
 | 
	
		
			
				|  |  | -    //********************************************************************//
 | 
	
		
			
				|  |  | -    if (pl < (L - 1)) {
 | 
	
		
			
				|  |  | -      an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | -      bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | -    } else {
 | 
	
		
			
				|  |  | -      an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | -      bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
 | 
	
		
			
				|  |  | +    for (int l = 0; l < L; ++l) {
 | 
	
		
			
				|  |  | +      calcD1D3(z[l], D1z[l], D3z[l]);
 | 
	
		
			
				|  |  | +      calcD1D3(z1[l], D1z1[l], D3z1[l]);
 | 
	
		
			
				|  |  | +      calcPsiZeta(z[l], D1z[l], D3z[l], Psiz[l], Zetaz[l]);
 | 
	
		
			
				|  |  | +      calcPsiZeta(z1[l], D1z1[l], D3z1[l], Psiz1[l], Zetaz1[l]);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    auto& m = refr_index_;
 | 
	
		
			
				|  |  | +    std::vector< std::complex<double> > m1(L);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    for (int l = 0; l < L - 1; ++l) m1[l] = m[l + 1];
 | 
	
		
			
				|  |  | +    m1[L - 1] = std::complex<double> (1.0, 0.0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // for (auto zz : m) printf ("m[i]=%g \n\n ", zz.real());
 | 
	
		
			
				|  |  | +    for (int l = L - 1; l >= 0; l--) {
 | 
	
		
			
				|  |  | +      for (int n = nmax_ - 2; n >= 0; n--) {
 | 
	
		
			
				|  |  | +        auto denomZeta = m1[l]*Zetaz[l][n + 1]*(D1z[l][n + 1] - D3z[l][n + 1]);
 | 
	
		
			
				|  |  | +        auto denomPsi = m1[l]*Psiz[l][n + 1]*(D1z[l][n + 1] - D3z[l][n + 1]);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        auto T1 = anl_[l + 1][n]*Zetaz1[l][n + 1] - dnl_[l + 1][n]*Psiz1[l][n + 1];
 | 
	
		
			
				|  |  | +        auto T2 = bnl_[l + 1][n]*Zetaz1[l][n + 1] - cnl_[l + 1][n]*Psiz1[l][n + 1];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        auto T3 = -D1z1[l][n + 1]*dnl_[l + 1][n]*Psiz1[l][n + 1] + D3z1[l][n + 1]*anl_[l + 1][n]*Zetaz1[l][n + 1];
 | 
	
		
			
				|  |  | +        auto T4 = -D1z1[l][n + 1]*cnl_[l + 1][n]*Psiz1[l][n + 1] + D3z1[l][n + 1]*bnl_[l + 1][n]*Zetaz1[l][n + 1];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        // anl
 | 
	
		
			
				|  |  | +        anl_[l][n] = (D1z[l][n + 1]*m1[l]*T1 - m[l]*T3)/denomZeta;
 | 
	
		
			
				|  |  | +        // bnl
 | 
	
		
			
				|  |  | +        bnl_[l][n] = (D1z[l][n + 1]*m[l]*T2 - m1[l]*T4)/denomZeta;
 | 
	
		
			
				|  |  | +        // cnl
 | 
	
		
			
				|  |  | +        cnl_[l][n] = (D3z[l][n + 1]*m[l]*T2 - m1[l]*T4)/denomPsi;
 | 
	
		
			
				|  |  | +        // dnl
 | 
	
		
			
				|  |  | +        dnl_[l][n] = (D3z[l][n + 1]*m1[l]*T1 - m[l]*T3)/denomPsi;
 | 
	
		
			
				|  |  | +      }  // end of all n
 | 
	
		
			
				|  |  | +    }  // end of all l
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Check the result and change  an__0 and bn__0 for exact zero
 | 
	
		
			
				|  |  | +    for (int n = 0; n < nmax_; ++n) {
 | 
	
		
			
				|  |  | +      if (std::abs(anl_[0][n]) < 1e-10) anl_[0][n] = 0.0;
 | 
	
		
			
				|  |  | +      else throw std::invalid_argument("Unstable calculation of a__0_n!");
 | 
	
		
			
				|  |  | +      if (std::abs(bnl_[0][n]) < 1e-10) bnl_[0][n] = 0.0;
 | 
	
		
			
				|  |  | +      else throw std::invalid_argument("Unstable calculation of b__0_n!");
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  return nmax;
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  | +    // for (int l = 0; l < L; ++l) {
 | 
	
		
			
				|  |  | +    //   printf("l=%d --> ", l);
 | 
	
		
			
				|  |  | +    //   for (int n = 0; n < nmax_ + 1; ++n) {
 | 
	
		
			
				|  |  | +    //         if (n < 20) continue;
 | 
	
		
			
				|  |  | +    //         printf("n=%d --> D1zn=%g, D3zn=%g, D1zn=%g, D3zn=%g || ",
 | 
	
		
			
				|  |  | +    //                n,
 | 
	
		
			
				|  |  | +    //                D1z[l][n].real(), D3z[l][n].real(),
 | 
	
		
			
				|  |  | +    //                D1z1[l][n].real(), D3z1[l][n].real());
 | 
	
		
			
				|  |  | +    //   }
 | 
	
		
			
				|  |  | +    //   printf("\n\n");
 | 
	
		
			
				|  |  | +    // }
 | 
	
		
			
				|  |  | +    // for (int l = 0; l < L; ++l) {
 | 
	
		
			
				|  |  | +    //   printf("l=%d --> ", l);
 | 
	
		
			
				|  |  | +    //   for (int n = 0; n < nmax_ + 1; ++n) {
 | 
	
		
			
				|  |  | +    //         printf("n=%d --> D1zn=%g, D3zn=%g, D1zn=%g, D3zn=%g || ",
 | 
	
		
			
				|  |  | +    //                n,
 | 
	
		
			
				|  |  | +    //                D1z[l][n].real(), D3z[l][n].real(),
 | 
	
		
			
				|  |  | +    //                D1z1[l][n].real(), D3z1[l][n].real());
 | 
	
		
			
				|  |  | +    //   }
 | 
	
		
			
				|  |  | +    //   printf("\n\n");
 | 
	
		
			
				|  |  | +    // }
 | 
	
		
			
				|  |  | +    //for (int i = 0; i < L + 1; ++i) {
 | 
	
		
			
				|  |  | +    //  printf("Layer =%d ---> \n", i);
 | 
	
		
			
				|  |  | +    //  for (int n = 0; n < nmax_; ++n) {
 | 
	
		
			
				|  |  | +    //                if (n < 20) continue;
 | 
	
		
			
				|  |  | +    //        printf(" || n=%d --> a=%g,%g b=%g,%g c=%g,%g d=%g,%g\n",
 | 
	
		
			
				|  |  | +    //               n,
 | 
	
		
			
				|  |  | +    //               anl_[i][n].real(), anl_[i][n].imag(),
 | 
	
		
			
				|  |  | +    //               bnl_[i][n].real(), bnl_[i][n].imag(),
 | 
	
		
			
				|  |  | +    //               cnl_[i][n].real(), cnl_[i][n].imag(),
 | 
	
		
			
				|  |  | +    //               dnl_[i][n].real(), dnl_[i][n].imag());
 | 
	
		
			
				|  |  | +    //  }
 | 
	
		
			
				|  |  | +    //  printf("\n\n");
 | 
	
		
			
				|  |  | +    //}
 | 
	
		
			
				|  |  | +    areIntCoeffsCalc_ = true;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -// This function calculates the actual scattering parameters and amplitudes         //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Input parameters:                                                                //
 | 
	
		
			
				|  |  | -//   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | -//   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | -//   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | -//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | -//   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | -//   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | -//          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | -//   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | -//         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | -//         set this parameter to -1 and the function will calculate it              //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Output parameters:                                                               //
 | 
	
		
			
				|  |  | -//   Qext: Efficiency factor for extinction                                         //
 | 
	
		
			
				|  |  | -//   Qsca: Efficiency factor for scattering                                         //
 | 
	
		
			
				|  |  | -//   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
 | 
	
		
			
				|  |  | -//   Qbk: Efficiency factor for backscattering                                      //
 | 
	
		
			
				|  |  | -//   Qpr: Efficiency factor for the radiation pressure                              //
 | 
	
		
			
				|  |  | -//   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
 | 
	
		
			
				|  |  | -//   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
 | 
	
		
			
				|  |  | -//   S1, S2: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Return value:                                                                    //
 | 
	
		
			
				|  |  | -//   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
 | 
	
		
			
				|  |  | -         int nTheta, std::vector<double> Theta, int nmax,
 | 
	
		
			
				|  |  | -         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
 | 
	
		
			
				|  |  | -         std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2)  {
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  int i, n, t;
 | 
	
		
			
				|  |  | -  std::vector<std::complex<double> > an, bn;
 | 
	
		
			
				|  |  | -  std::complex<double> Qbktmp;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // Calculate scattering coefficients
 | 
	
		
			
				|  |  | -  nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  std::vector<double> Pi, Tau;
 | 
	
		
			
				|  |  | -  Pi.resize(nmax);
 | 
	
		
			
				|  |  | -  Tau.resize(nmax);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  double x2 = x[L - 1]*x[L - 1];
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // Initialize the scattering parameters
 | 
	
		
			
				|  |  | -  *Qext = 0;
 | 
	
		
			
				|  |  | -  *Qsca = 0;
 | 
	
		
			
				|  |  | -  *Qabs = 0;
 | 
	
		
			
				|  |  | -  *Qbk = 0;
 | 
	
		
			
				|  |  | -  Qbktmp = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -  *Qpr = 0;
 | 
	
		
			
				|  |  | -  *g = 0;
 | 
	
		
			
				|  |  | -  *Albedo = 0;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // Initialize the scattering amplitudes
 | 
	
		
			
				|  |  | -  for (t = 0; t < nTheta; t++) {
 | 
	
		
			
				|  |  | -    S1[t] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -    S2[t] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // By using downward recurrence we avoid loss of precision due to float rounding errors
 | 
	
		
			
				|  |  | -  // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
 | 
	
		
			
				|  |  | -  //      http://en.wikipedia.org/wiki/Loss_of_significance
 | 
	
		
			
				|  |  | -  for (i = nmax - 2; i >= 0; i--) {
 | 
	
		
			
				|  |  | -    n = i + 1;
 | 
	
		
			
				|  |  | -    // Equation (27)
 | 
	
		
			
				|  |  | -    *Qext += (n + n + 1)*(an[i].real() + bn[i].real());
 | 
	
		
			
				|  |  | -    // Equation (28)
 | 
	
		
			
				|  |  | -    *Qsca += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
 | 
	
		
			
				|  |  | -    // Equation (29) TODO We must check carefully this equation. If we
 | 
	
		
			
				|  |  | -    // remove the typecast to double then the result changes. Which is
 | 
	
		
			
				|  |  | -    // the correct one??? Ovidio (2014/12/10) With cast ratio will
 | 
	
		
			
				|  |  | -    // give double, without cast (n + n + 1)/(n*(n + 1)) will be
 | 
	
		
			
				|  |  | -    // rounded to integer. Tig (2015/02/24)
 | 
	
		
			
				|  |  | -    *Qpr += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
 | 
	
		
			
				|  |  | -    // Equation (33)
 | 
	
		
			
				|  |  | -    Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // external scattering field = incident + scattered                       //
 | 
	
		
			
				|  |  | +  // BH p.92 (4.37), 94 (4.45), 95 (4.50)                                   //
 | 
	
		
			
				|  |  | +  // assume: medium is non-absorbing; refim = 0; Uabs = 0                   //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    //****************************************************//
 | 
	
		
			
				|  |  | -    // Calculate the scattering amplitudes (S1 and S2)    //
 | 
	
		
			
				|  |  | -    // Equations (25a) - (25b)                            //
 | 
	
		
			
				|  |  | -    //****************************************************//
 | 
	
		
			
				|  |  | -    for (t = 0; t < nTheta; t++) {
 | 
	
		
			
				|  |  | -      calcPiTau(nmax, Theta[t], Pi, Tau);
 | 
	
		
			
				|  |  | +  void MultiLayerMie::fieldExt(const double Rho, const double Phi, const double Theta,
 | 
	
		
			
				|  |  | +                               std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H)  {
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      S1[t] += calc_S1(n, an[i], bn[i], Pi[i], Tau[i]);
 | 
	
		
			
				|  |  | -      S2[t] += calc_S2(n, an[i], bn[i], Pi[i], Tau[i]);
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | +    std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> > ipow = {c_one, c_i, -c_one, -c_i}; // Vector containing precomputed integer powers of i to avoid computation
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3);
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> > Ei(3, c_zero), Hi(3, c_zero), Es(3, c_zero), Hs(3, c_zero);
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> > jn(nmax_ + 1), jnp(nmax_ + 1), h1n(nmax_ + 1), h1np(nmax_ + 1);
 | 
	
		
			
				|  |  | +    std::vector<double> Pi(nmax_), Tau(nmax_);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  *Qext = 2*(*Qext)/x2;                                 // Equation (27)
 | 
	
		
			
				|  |  | -  *Qsca = 2*(*Qsca)/x2;                                 // Equation (28)
 | 
	
		
			
				|  |  | -  *Qpr = *Qext - 4*(*Qpr)/x2;                           // Equation (29)
 | 
	
		
			
				|  |  | +    // Calculate spherical Bessel and Hankel functions
 | 
	
		
			
				|  |  | +    sbesjh(Rho, jn, jnp, h1n, h1np);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  *Qabs = *Qext - *Qsca;                                // Equation (30)
 | 
	
		
			
				|  |  | -  *Albedo = *Qsca / *Qext;                              // Equation (31)
 | 
	
		
			
				|  |  | -  *g = (*Qext - *Qpr) / *Qsca;                          // Equation (32)
 | 
	
		
			
				|  |  | +    // Calculate angular functions Pi and Tau
 | 
	
		
			
				|  |  | +    calcPiTau(std::cos(Theta), Pi, Tau);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  *Qbk = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2;    // Equation (33)
 | 
	
		
			
				|  |  | +    for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | +      int n1 = n + 1;
 | 
	
		
			
				|  |  | +      double rn = static_cast<double>(n1);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  return nmax;
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  | +      // using BH 4.12 and 4.50
 | 
	
		
			
				|  |  | +      calcSpherHarm(Rho, Phi, Theta, h1n[n1], h1np[n1], Pi[n], Tau[n], rn, M3o1n, M3e1n, N3o1n, N3e1n);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -// This function is just a wrapper to call the full 'nMie' function with fewer      //
 | 
	
		
			
				|  |  | -// parameters, it is here mainly for compatibility with older versions of the       //
 | 
	
		
			
				|  |  | -// program. Also, you can use it if you neither have a PEC layer nor want to define //
 | 
	
		
			
				|  |  | -// any limit for the maximum number of terms.                                       //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Input parameters:                                                                //
 | 
	
		
			
				|  |  | -//   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | -//   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | -//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | -//   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | -//   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | -//          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Output parameters:                                                               //
 | 
	
		
			
				|  |  | -//   Qext: Efficiency factor for extinction                                         //
 | 
	
		
			
				|  |  | -//   Qsca: Efficiency factor for scattering                                         //
 | 
	
		
			
				|  |  | -//   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
 | 
	
		
			
				|  |  | -//   Qbk: Efficiency factor for backscattering                                      //
 | 
	
		
			
				|  |  | -//   Qpr: Efficiency factor for the radiation pressure                              //
 | 
	
		
			
				|  |  | -//   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
 | 
	
		
			
				|  |  | -//   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
 | 
	
		
			
				|  |  | -//   S1, S2: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Return value:                                                                    //
 | 
	
		
			
				|  |  | -//   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | +      // scattered field: BH p.94 (4.45)
 | 
	
		
			
				|  |  | +      std::complex<double> En = ipow[n1 % 4]*(rn + rn + 1.0)/(rn*rn + rn);
 | 
	
		
			
				|  |  | +      for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | +        Es[i] = Es[i] + En*(c_i*an_[n]*N3e1n[i] - bn_[n]*M3o1n[i]);
 | 
	
		
			
				|  |  | +        Hs[i] = Hs[i] + En*(c_i*bn_[n]*N3o1n[i] + an_[n]*M3e1n[i]);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
 | 
	
		
			
				|  |  | -         int nTheta, std::vector<double> Theta,
 | 
	
		
			
				|  |  | -         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
 | 
	
		
			
				|  |  | -         std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
 | 
	
		
			
				|  |  | +    // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
 | 
	
		
			
				|  |  | +    // basis unit vectors = er, etheta, ephi
 | 
	
		
			
				|  |  | +    std::complex<double> eifac = std::exp(std::complex<double>(0.0, Rho*std::cos(Theta)));
 | 
	
		
			
				|  |  | +    {
 | 
	
		
			
				|  |  | +      using std::sin;
 | 
	
		
			
				|  |  | +      using std::cos;
 | 
	
		
			
				|  |  | +      Ei[0] = eifac*sin(Theta)*cos(Phi);
 | 
	
		
			
				|  |  | +      Ei[1] = eifac*cos(Theta)*cos(Phi);
 | 
	
		
			
				|  |  | +      Ei[2] = -eifac*sin(Phi);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  return nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  | +    // magnetic field
 | 
	
		
			
				|  |  | +    double hffact = 1.0/(cc_*mu_);
 | 
	
		
			
				|  |  | +    for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | +      Hs[i] = hffact*Hs[i];
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +    // incident H field: BH p.26 (2.43), p.89 (4.21)
 | 
	
		
			
				|  |  | +    std::complex<double> hffacta = hffact;
 | 
	
		
			
				|  |  | +    std::complex<double> hifac = eifac*hffacta;
 | 
	
		
			
				|  |  | +    {
 | 
	
		
			
				|  |  | +      using std::sin;
 | 
	
		
			
				|  |  | +      using std::cos;
 | 
	
		
			
				|  |  | +      Hi[0] = hifac*sin(Theta)*sin(Phi);
 | 
	
		
			
				|  |  | +      Hi[1] = hifac*cos(Theta)*sin(Phi);
 | 
	
		
			
				|  |  | +      Hi[2] = hifac*cos(Phi);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -// This function is just a wrapper to call the full 'nMie' function with fewer      //
 | 
	
		
			
				|  |  | -// parameters, it is useful if you want to include a PEC layer but not a limit      //
 | 
	
		
			
				|  |  | -// for the maximum number of terms.                                                 //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Input parameters:                                                                //
 | 
	
		
			
				|  |  | -//   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | -//   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | -//   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | -//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | -//   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | -//   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | -//          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Output parameters:                                                               //
 | 
	
		
			
				|  |  | -//   Qext: Efficiency factor for extinction                                         //
 | 
	
		
			
				|  |  | -//   Qsca: Efficiency factor for scattering                                         //
 | 
	
		
			
				|  |  | -//   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
 | 
	
		
			
				|  |  | -//   Qbk: Efficiency factor for backscattering                                      //
 | 
	
		
			
				|  |  | -//   Qpr: Efficiency factor for the radiation pressure                              //
 | 
	
		
			
				|  |  | -//   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
 | 
	
		
			
				|  |  | -//   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
 | 
	
		
			
				|  |  | -//   S1, S2: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Return value:                                                                    //
 | 
	
		
			
				|  |  | -//   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | +    for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | +      // electric field E [V m - 1] = EF*E0
 | 
	
		
			
				|  |  | +      E[i] = Ei[i] + Es[i];
 | 
	
		
			
				|  |  | +      H[i] = Hi[i] + Hs[i];
 | 
	
		
			
				|  |  | +      // printf("ext E[%d]=%g",i,std::abs(E[i]));
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +   }  // end of MultiLayerMie::fieldExt(...)
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
 | 
	
		
			
				|  |  | -         int nTheta, std::vector<double> Theta,
 | 
	
		
			
				|  |  | -         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
 | 
	
		
			
				|  |  | -         std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  return nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  // ********************************************************************** //
 | 
	
		
			
				|  |  | +  void MultiLayerMie::fieldInt(const double Rho, const double Phi, const double Theta,
 | 
	
		
			
				|  |  | +                               std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H)  {
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -// This function is just a wrapper to call the full 'nMie' function with fewer      //
 | 
	
		
			
				|  |  | -// parameters, it is useful if you want to include a limit for the maximum number   //
 | 
	
		
			
				|  |  | -// of terms but not a PEC layer.                                                    //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Input parameters:                                                                //
 | 
	
		
			
				|  |  | -//   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | -//   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | -//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | -//   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | -//   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | -//          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | -//   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | -//         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | -//         set this parameter to -1 and the function will calculate it              //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Output parameters:                                                               //
 | 
	
		
			
				|  |  | -//   Qext: Efficiency factor for extinction                                         //
 | 
	
		
			
				|  |  | -//   Qsca: Efficiency factor for scattering                                         //
 | 
	
		
			
				|  |  | -//   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
 | 
	
		
			
				|  |  | -//   Qbk: Efficiency factor for backscattering                                      //
 | 
	
		
			
				|  |  | -//   Qpr: Efficiency factor for the radiation pressure                              //
 | 
	
		
			
				|  |  | -//   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
 | 
	
		
			
				|  |  | -//   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
 | 
	
		
			
				|  |  | -//   S1, S2: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Return value:                                                                    //
 | 
	
		
			
				|  |  | -//   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | +    std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> > ipow = {c_one, c_i, -c_one, -c_i}; // Vector containing precomputed integer powers of i to avoid computation
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3);
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> > M1o1n(3), M1e1n(3), N1o1n(3), N1e1n(3);
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> > El(3, c_zero), Ei(3, c_zero), Eic(3, c_zero), Hl(3, c_zero);
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> > jn(nmax_ + 1), jnp(nmax_ + 1), h1n(nmax_ + 1), h1np(nmax_ + 1);
 | 
	
		
			
				|  |  | +    std::vector<double> Pi(nmax_), Tau(nmax_);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
 | 
	
		
			
				|  |  | -         int nTheta, std::vector<double> Theta, int nmax,
 | 
	
		
			
				|  |  | -         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
 | 
	
		
			
				|  |  | -         std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
 | 
	
		
			
				|  |  | +    int l = 0;  // Layer number
 | 
	
		
			
				|  |  | +    std::complex<double> ml;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  return nMie(L, -1, x, m, nTheta, Theta, nmax, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  | +    if (Rho > size_param_.back()) {
 | 
	
		
			
				|  |  | +      l = size_param_.size();
 | 
	
		
			
				|  |  | +      ml = c_one;
 | 
	
		
			
				|  |  | +    } else {
 | 
	
		
			
				|  |  | +      for (int i = 0; i < size_param_.size() - 1; ++i) {
 | 
	
		
			
				|  |  | +        if (size_param_[i] < Rho && Rho <= size_param_[i + 1]) {
 | 
	
		
			
				|  |  | +          l = i;
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      ml = refr_index_[l];
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +//    for (int i = 0; i < size_param_.size(); i++) {
 | 
	
		
			
				|  |  | +//      printf("x[%i] = %g; m[%i] = %g, %g; ", i, size_param_[i], i, refr_index_[i].real(), refr_index_[i].imag());
 | 
	
		
			
				|  |  | +//    }
 | 
	
		
			
				|  |  | +//    printf("\nRho = %g; Phi = %g; Theta = %g; x[%i] = %g; m[%i] = %g, %g\n", Rho, Phi, Theta, l, size_param_[l], l, ml.real(), ml.imag());
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -// This function calculates complex electric and magnetic field in the surroundings //
 | 
	
		
			
				|  |  | -// and inside (TODO) the particle.                                                  //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Input parameters:                                                                //
 | 
	
		
			
				|  |  | -//   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | -//   pl: Index of PEC layer. If there is none just send 0 (zero)                    //
 | 
	
		
			
				|  |  | -//   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | -//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | -//   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | -//         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | -//         set this parameter to 0 (zero) and the function will calculate it.       //
 | 
	
		
			
				|  |  | -//   ncoord: Number of coordinate points                                            //
 | 
	
		
			
				|  |  | -//   Coords: Array containing all coordinates where the complex electric and        //
 | 
	
		
			
				|  |  | -//           magnetic fields will be calculated                                     //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Output parameters:                                                               //
 | 
	
		
			
				|  |  | -//   E, H: Complex electric and magnetic field at the provided coordinates          //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Return value:                                                                    //
 | 
	
		
			
				|  |  | -//   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | +    // Calculate spherical Bessel and Hankel functions
 | 
	
		
			
				|  |  | +    sbesjh(Rho*ml, jn, jnp, h1n, h1np);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -int nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax, int ncoord, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp, std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
 | 
	
		
			
				|  |  | +    // Calculate angular functions Pi and Tau
 | 
	
		
			
				|  |  | +    calcPiTau(std::cos(Theta), Pi, Tau);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  int i, c;
 | 
	
		
			
				|  |  | -  double Rho, Phi, Theta;
 | 
	
		
			
				|  |  | -  std::vector<std::complex<double> > an, bn;
 | 
	
		
			
				|  |  | +    for (int n = nmax_ - 1; n >= 0; n--) {
 | 
	
		
			
				|  |  | +      int n1 = n + 1;
 | 
	
		
			
				|  |  | +      double rn = static_cast<double>(n1);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // This array contains the fields in spherical coordinates
 | 
	
		
			
				|  |  | -  std::vector<std::complex<double> > Es, Hs;
 | 
	
		
			
				|  |  | -  Es.resize(3);
 | 
	
		
			
				|  |  | -  Hs.resize(3);
 | 
	
		
			
				|  |  | +      // using BH 4.12 and 4.50
 | 
	
		
			
				|  |  | +      calcSpherHarm(Rho, Phi, Theta, jn[n1], jnp[n1], Pi[n], Tau[n], rn, M1o1n, M1e1n, N1o1n, N1e1n);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +      calcSpherHarm(Rho, Phi, Theta, h1n[n1], h1np[n], Pi[n], Tau[n], rn, M3o1n, M3e1n, N3o1n, N3e1n);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // Calculate scattering coefficients
 | 
	
		
			
				|  |  | -  nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn);
 | 
	
		
			
				|  |  | +      // Total field in the lth layer: eqs. (1) and (2) in Yang, Appl. Opt., 42 (2003) 1710-1720
 | 
	
		
			
				|  |  | +      std::complex<double> En = ipow[n1 % 4]*(rn + rn + 1.0)/(rn*rn + rn);
 | 
	
		
			
				|  |  | +      for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | +        Ei[i] = Ei[i] + En*(M1o1n[i] - c_i*N1e1n[i]);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  std::vector<double> Pi, Tau;
 | 
	
		
			
				|  |  | -  Pi.resize(nmax);
 | 
	
		
			
				|  |  | -  Tau.resize(nmax);
 | 
	
		
			
				|  |  | +        El[i] = El[i] + En*(cnl_[l][n]*M1o1n[i] - c_i*dnl_[l][n]*N1e1n[i]
 | 
	
		
			
				|  |  | +                      + c_i*anl_[l][n]*N3e1n[i] -     bnl_[l][n]*M3o1n[i]);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  for (c = 0; c < ncoord; c++) {
 | 
	
		
			
				|  |  | -    // Convert to spherical coordinates
 | 
	
		
			
				|  |  | -    Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
 | 
	
		
			
				|  |  | +        Hl[i] = Hl[i] + En*(-dnl_[l][n]*M1e1n[i] - c_i*cnl_[l][n]*N1o1n[i]
 | 
	
		
			
				|  |  | +                      +  c_i*bnl_[l][n]*N3o1n[i] +     anl_[l][n]*M3e1n[i]);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }  // end of for all n
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Debug field calculation outside the particle
 | 
	
		
			
				|  |  | +    if (l == size_param_.size()) {
 | 
	
		
			
				|  |  | +      // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
 | 
	
		
			
				|  |  | +      // basis unit vectors = er, etheta, ephi
 | 
	
		
			
				|  |  | +      std::complex<double> eifac = std::exp(std::complex<double>(0.0, Rho*std::cos(Theta)));
 | 
	
		
			
				|  |  | +      {
 | 
	
		
			
				|  |  | +        using std::sin;
 | 
	
		
			
				|  |  | +        using std::cos;
 | 
	
		
			
				|  |  | +        Eic[0] = eifac*sin(Theta)*cos(Phi);
 | 
	
		
			
				|  |  | +        Eic[1] = eifac*cos(Theta)*cos(Phi);
 | 
	
		
			
				|  |  | +        Eic[2] = -eifac*sin(Phi);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    // Avoid convergence problems due to Rho too small
 | 
	
		
			
				|  |  | -    if (Rho < 1e-5) {
 | 
	
		
			
				|  |  | -      Rho = 1e-5;
 | 
	
		
			
				|  |  | +      printf("Rho = %g; Phi = %g; Theta = %g\n", Rho, Phi, Theta);
 | 
	
		
			
				|  |  | +      for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | +        printf("Ei[%i] = %g, %g; Eic[%i] = %g, %g\n", i, Ei[i].real(), Ei[i].imag(), i, Eic[i].real(), Eic[i].imag());
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    //If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
 | 
	
		
			
				|  |  | -    if (Rho == 0.0) {
 | 
	
		
			
				|  |  | -      Theta = 0.0;
 | 
	
		
			
				|  |  | -    } else {
 | 
	
		
			
				|  |  | -      Theta = acos(Zp[c]/Rho);
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    //If Xp=Yp=0 then Phi is undefined. Just set it to zero to zero to avoid problems
 | 
	
		
			
				|  |  | -    if ((Xp[c] == 0.0) and (Yp[c] == 0.0)) {
 | 
	
		
			
				|  |  | -      Phi = 0.0;
 | 
	
		
			
				|  |  | -    } else {
 | 
	
		
			
				|  |  | -      Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
 | 
	
		
			
				|  |  | +    // magnetic field
 | 
	
		
			
				|  |  | +    double hffact = 1.0/(cc_*mu_);
 | 
	
		
			
				|  |  | +    for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | +      Hl[i] = hffact*Hl[i];
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    calcPiTau(nmax, Theta, Pi, Tau);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    //*******************************************************//
 | 
	
		
			
				|  |  | -    // external scattering field = incident + scattered      //
 | 
	
		
			
				|  |  | -    // BH p.92 (4.37), 94 (4.45), 95 (4.50)                  //
 | 
	
		
			
				|  |  | -    // assume: medium is non-absorbing; refim = 0; Uabs = 0  //
 | 
	
		
			
				|  |  | -    //*******************************************************//
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    // Firstly the easiest case: the field outside the particle
 | 
	
		
			
				|  |  | -    if (Rho >= x[L - 1]) {
 | 
	
		
			
				|  |  | -      fieldExt(nmax, Rho, Phi, Theta, Pi, Tau, an, bn, Es, Hs);
 | 
	
		
			
				|  |  | -    } else {
 | 
	
		
			
				|  |  | -      // TODO, for now just set all the fields to zero
 | 
	
		
			
				|  |  | -      for (i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | -        Es[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -        Hs[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | +    for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | +      // electric field E [V m - 1] = EF*E0
 | 
	
		
			
				|  |  | +      E[i] = El[i];
 | 
	
		
			
				|  |  | +      H[i] = Hl[i];
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | +   }  // end of MultiLayerMie::fieldInt(...)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  // This function calculates complex electric and magnetic field in the surroundings //
 | 
	
		
			
				|  |  | +  // and inside (TODO) the particle.                                                  //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | +  //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +  //   pl: Index of PEC layer. If there is none just send 0 (zero)                    //
 | 
	
		
			
				|  |  | +  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | +  //         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | +  //         set this parameter to 0 (zero) and the function will calculate it.       //
 | 
	
		
			
				|  |  | +  //   ncoord: Number of coordinate points                                            //
 | 
	
		
			
				|  |  | +  //   Coords: Array containing all coordinates where the complex electric and        //
 | 
	
		
			
				|  |  | +  //           magnetic fields will be calculated                                     //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | +  //   E, H: Complex electric and magnetic field at the provided coordinates          //
 | 
	
		
			
				|  |  | +  //                                                                                  //
 | 
	
		
			
				|  |  | +  // Return value:                                                                    //
 | 
	
		
			
				|  |  | +  //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +  //**********************************************************************************//
 | 
	
		
			
				|  |  | +  void MultiLayerMie::RunFieldCalculation() {
 | 
	
		
			
				|  |  | +    // Calculate external scattering coefficients an_ and bn_
 | 
	
		
			
				|  |  | +    ExtScattCoeffs();
 | 
	
		
			
				|  |  | +    // Calculate internal scattering coefficients anl_ and bnl_
 | 
	
		
			
				|  |  | +    IntScattCoeffs();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//    for (int i = 0; i < nmax_; i++) {
 | 
	
		
			
				|  |  | +//      printf("a[%i] = %g, %g; b[%i] = %g, %g\n", i, an_[i].real(), an_[i].imag(), i, bn_[i].real(), bn_[i].imag());
 | 
	
		
			
				|  |  | +//    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    long total_points = coords_[0].size();
 | 
	
		
			
				|  |  | +    E_.resize(total_points);
 | 
	
		
			
				|  |  | +    H_.resize(total_points);
 | 
	
		
			
				|  |  | +    for (auto& f : E_) f.resize(3);
 | 
	
		
			
				|  |  | +    for (auto& f : H_) f.resize(3);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    for (int point = 0; point < total_points; point++) {
 | 
	
		
			
				|  |  | +      const double& Xp = coords_[0][point];
 | 
	
		
			
				|  |  | +      const double& Yp = coords_[1][point];
 | 
	
		
			
				|  |  | +      const double& Zp = coords_[2][point];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // Convert to spherical coordinates
 | 
	
		
			
				|  |  | +      double Rho = std::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
 | 
	
		
			
				|  |  | +      double Theta = (Rho > 0.0) ? std::acos(Zp/Rho) : 0.0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // If Xp=Yp=0 then Phi is undefined. Just set it to zero to avoid problems
 | 
	
		
			
				|  |  | +      double Phi = (Xp != 0.0 || Yp != 0.0) ? std::acos(Xp/std::sqrt(pow2(Xp) + pow2(Yp))) : 0.0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // Avoid convergence problems due to Rho too small
 | 
	
		
			
				|  |  | +      if (Rho < 1e-5) Rho = 1e-5;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      //*******************************************************//
 | 
	
		
			
				|  |  | +      // external scattering field = incident + scattered      //
 | 
	
		
			
				|  |  | +      // BH p.92 (4.37), 94 (4.45), 95 (4.50)                  //
 | 
	
		
			
				|  |  | +      // assume: medium is non-absorbing; refim = 0; Uabs = 0  //
 | 
	
		
			
				|  |  | +      //*******************************************************//
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // This array contains the fields in spherical coordinates
 | 
	
		
			
				|  |  | +      std::vector<std::complex<double> > Es(3), Hs(3);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // Firstly the easiest case: the field outside the particle
 | 
	
		
			
				|  |  | +      if (Rho >= GetSizeParameter()) {
 | 
	
		
			
				|  |  | +        fieldInt(Rho, Phi, Theta, Es, Hs);
 | 
	
		
			
				|  |  | +//        fieldExt(Rho, Phi, Theta, Es, Hs);
 | 
	
		
			
				|  |  | +        //printf("\nFin E ext: %g,%g,%g   Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
 | 
	
		
			
				|  |  | +      } else {
 | 
	
		
			
				|  |  | +        fieldInt(Rho, Phi, Theta, Es, Hs);
 | 
	
		
			
				|  |  | +//        printf("\nFin E int: %g,%g,%g   Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    //Now, convert the fields back to cartesian coordinates
 | 
	
		
			
				|  |  | -    E[c][0] = std::sin(Theta)*std::cos(Phi)*Es[0] + std::cos(Theta)*std::cos(Phi)*Es[1] - std::sin(Phi)*Es[2];
 | 
	
		
			
				|  |  | -    E[c][1] = std::sin(Theta)*std::sin(Phi)*Es[0] + std::cos(Theta)*std::sin(Phi)*Es[1] + std::cos(Phi)*Es[2];
 | 
	
		
			
				|  |  | -    E[c][2] = std::cos(Theta)*Es[0] - std::sin(Theta)*Es[1];
 | 
	
		
			
				|  |  | +      //Now, convert the fields back to cartesian coordinates
 | 
	
		
			
				|  |  | +      {
 | 
	
		
			
				|  |  | +        using std::sin;
 | 
	
		
			
				|  |  | +        using std::cos;
 | 
	
		
			
				|  |  | +        E_[point][0] = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];
 | 
	
		
			
				|  |  | +        E_[point][1] = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];
 | 
	
		
			
				|  |  | +        E_[point][2] = cos(Theta)*Es[0] - sin(Theta)*Es[1];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        H_[point][0] = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];
 | 
	
		
			
				|  |  | +        H_[point][1] = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
 | 
	
		
			
				|  |  | +        H_[point][2] = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      //printf("Cart E: %g,%g,%g   Rho=%g\n", std::abs(Ex), std::abs(Ey),std::abs(Ez), Rho);
 | 
	
		
			
				|  |  | +    }  // end of for all field coordinates
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    H[c][0] = std::sin(Theta)*std::cos(Phi)*Hs[0] + std::cos(Theta)*std::cos(Phi)*Hs[1] - std::sin(Phi)*Hs[2];
 | 
	
		
			
				|  |  | -    H[c][1] = std::sin(Theta)*std::sin(Phi)*Hs[0] + std::cos(Theta)*std::sin(Phi)*Hs[1] + std::cos(Phi)*Hs[2];
 | 
	
		
			
				|  |  | -    H[c][2] = std::cos(Theta)*Hs[0] - std::sin(Theta)*Hs[1];
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | +  }  //  end of MultiLayerMie::RunFieldCalculation()
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  return nmax;
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  | +}  // end of namespace nmie
 |