|  | @@ -1,897 +1,954 @@
 | 
	
		
			
				|  |  |  #ifndef SRC_NMIE_BASIC_HPP_
 | 
	
		
			
				|  |  |  #define SRC_NMIE_BASIC_HPP_
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -//    Copyright (C) 2009-2018  Ovidio Pena <ovidio@bytesfall.com>                   //
 | 
	
		
			
				|  |  | -//    Copyright (C) 2013-2018  Konstantin Ladutenko <kostyfisik@gmail.com>          //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -//    This file is part of scattnlay                                                //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -//    This program is free software: you can redistribute it and/or modify          //
 | 
	
		
			
				|  |  | -//    it under the terms of the GNU General Public License as published by          //
 | 
	
		
			
				|  |  | -//    the Free Software Foundation, either version 3 of the License, or             //
 | 
	
		
			
				|  |  | -//    (at your option) any later version.                                           //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -//    This program is distributed in the hope that it will be useful,               //
 | 
	
		
			
				|  |  | -//    but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | 
	
		
			
				|  |  | -//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                 //
 | 
	
		
			
				|  |  | -//    GNU General Public License for more details.                                  //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -//    The only additional remark is that we expect that all publications            //
 | 
	
		
			
				|  |  | -//    describing work using this software, or all commercial products               //
 | 
	
		
			
				|  |  | -//    using it, cite at least one of the following references:                      //
 | 
	
		
			
				|  |  | -//    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by           //
 | 
	
		
			
				|  |  | -//        a multilayered sphere," Computer Physics Communications,                  //
 | 
	
		
			
				|  |  | -//        vol. 180, Nov. 2009, pp. 2348-2354.                                       //
 | 
	
		
			
				|  |  | -//    [2] K. Ladutenko, U. Pal, A. Rivera, and O. Pena-Rodriguez, "Mie              //
 | 
	
		
			
				|  |  | -//        calculation of electromagnetic near-field for a multilayered              //
 | 
	
		
			
				|  |  | -//        sphere," Computer Physics Communications, vol. 214, May 2017,             //
 | 
	
		
			
				|  |  | -//        pp. 225-230.                                                              //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -//    You should have received a copy of the GNU General Public License             //
 | 
	
		
			
				|  |  | -//    along with this program.  If not, see <http://www.gnu.org/licenses/>.         //
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -// This class implements the algorithm for a multilayered sphere described by:      //
 | 
	
		
			
				|  |  | -//    [1] W. Yang, "Improved recursive algorithm for light scattering by a          //
 | 
	
		
			
				|  |  | -//        multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720.  //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// You can find the description of all the used equations in:                       //
 | 
	
		
			
				|  |  | -//    [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by           //
 | 
	
		
			
				|  |  | -//        a multilayered sphere," Computer Physics Communications,                  //
 | 
	
		
			
				|  |  | -//        vol. 180, Nov. 2009, pp. 2348-2354.                                       //
 | 
	
		
			
				|  |  | -//    [3] K. Ladutenko, U. Pal, A. Rivera, and O. Pena-Rodriguez, "Mie              //
 | 
	
		
			
				|  |  | -//        calculation of electromagnetic near-field for a multilayered              //
 | 
	
		
			
				|  |  | -//        sphere," Computer Physics Communications, vol. 214, May 2017,             //
 | 
	
		
			
				|  |  | -//        pp. 225-230.                                                              //
 | 
	
		
			
				|  |  | -//                                                                                  //
 | 
	
		
			
				|  |  | -// Hereinafter all equations numbers refer to [2]                                   //
 | 
	
		
			
				|  |  | -//**********************************************************************************//
 | 
	
		
			
				|  |  | -#include <iostream>
 | 
	
		
			
				|  |  | +//***************************************************************************//
 | 
	
		
			
				|  |  | +//    Copyright (C) 2009-2022  Ovidio Pena <ovidio@bytesfall.com>            //
 | 
	
		
			
				|  |  | +//    Copyright (C) 2013-202  Konstantin Ladutenko <kostyfisik@gmail.com>    //
 | 
	
		
			
				|  |  | +//                                                                           //
 | 
	
		
			
				|  |  | +//    This file is part of scattnlay                                         //
 | 
	
		
			
				|  |  | +//                                                                           //
 | 
	
		
			
				|  |  | +//    This program is free software: you can redistribute it and/or modify   //
 | 
	
		
			
				|  |  | +//    it under the terms of the GNU General Public License as published by   //
 | 
	
		
			
				|  |  | +//    the Free Software Foundation, either version 3 of the License, or      //
 | 
	
		
			
				|  |  | +//    (at your option) any later version.                                    //
 | 
	
		
			
				|  |  | +//                                                                           //
 | 
	
		
			
				|  |  | +//    This program is distributed in the hope that it will be useful,        //
 | 
	
		
			
				|  |  | +//    but WITHOUT ANY WARRANTY; without even the implied warranty of         //
 | 
	
		
			
				|  |  | +//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the          //
 | 
	
		
			
				|  |  | +//    GNU General Public License for more details.                           //
 | 
	
		
			
				|  |  | +//                                                                           //
 | 
	
		
			
				|  |  | +//    The only additional remark is that we expect that all publications     //
 | 
	
		
			
				|  |  | +//    describing work using this software, or all commercial products        //
 | 
	
		
			
				|  |  | +//    using it, cite at least one of the following references:               //
 | 
	
		
			
				|  |  | +//    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by    //
 | 
	
		
			
				|  |  | +//        a multilayered sphere," Computer Physics Communications,           //
 | 
	
		
			
				|  |  | +//        vol. 180, Nov. 2009, pp. 2348-2354.                                //
 | 
	
		
			
				|  |  | +//    [2] K. Ladutenko, U. Pal, A. Rivera, and O. Pena-Rodriguez, "Mie       //
 | 
	
		
			
				|  |  | +//        calculation of electromagnetic near-field for a multilayered       //
 | 
	
		
			
				|  |  | +//        sphere," Computer Physics Communications, vol. 214, May 2017,      //
 | 
	
		
			
				|  |  | +//        pp. 225-230.                                                       //
 | 
	
		
			
				|  |  | +//                                                                           //
 | 
	
		
			
				|  |  | +//    You should have received a copy of the GNU General Public License      //
 | 
	
		
			
				|  |  | +//    along with this program.  If not, see <http://www.gnu.org/licenses/>.  //
 | 
	
		
			
				|  |  | +//***************************************************************************//
 | 
	
		
			
				|  |  | +//***************************************************************************//
 | 
	
		
			
				|  |  | +// This class implements the algorithm for a multilayered sphere described
 | 
	
		
			
				|  |  | +//    by:
 | 
	
		
			
				|  |  | +//    [1] W. Yang, "Improved recursive algorithm for light scattering by a
 | 
	
		
			
				|  |  | +//        multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp.
 | 
	
		
			
				|  |  | +//        1710-1720.
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// You can find the description of all the used equations in:
 | 
	
		
			
				|  |  | +//    [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
 | 
	
		
			
				|  |  | +//        a multilayered sphere," Computer Physics Communications,
 | 
	
		
			
				|  |  | +//        vol. 180, Nov. 2009, pp. 2348-2354.
 | 
	
		
			
				|  |  | +//    [3] K. Ladutenko, U. Pal, A. Rivera, and O. Pena-Rodriguez, "Mie
 | 
	
		
			
				|  |  | +//        calculation of electromagnetic near-field for a multilayered
 | 
	
		
			
				|  |  | +//        sphere," Computer Physics Communications, vol. 214, May 2017,
 | 
	
		
			
				|  |  | +//        pp. 225-230.
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Hereinafter all equations numbers refer to [2]
 | 
	
		
			
				|  |  | +//*****************************************************************************//
 | 
	
		
			
				|  |  |  #include <iomanip>
 | 
	
		
			
				|  |  | +#include <iostream>
 | 
	
		
			
				|  |  |  #include <stdexcept>
 | 
	
		
			
				|  |  |  #include <vector>
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -#include "special-functions-impl.hpp"
 | 
	
		
			
				|  |  |  #include "nmie.hpp"
 | 
	
		
			
				|  |  | +#include "special-functions-impl.hpp"
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  namespace nmie {
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +// class implementation
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  //class implementation
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Returns previously calculated Qext                                     //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  template <typename outputType>
 | 
	
		
			
				|  |  | -  outputType MultiLayerMie<FloatType>::GetQext() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | -    return static_cast<outputType>(Qext_);
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Returns previously calculated Qabs                                     //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  template <typename outputType>
 | 
	
		
			
				|  |  | -  outputType MultiLayerMie<FloatType>::GetQabs() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | -    return static_cast<outputType>(Qabs_);
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Returns previously calculated Qsca                                     //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  template <typename outputType>
 | 
	
		
			
				|  |  | -  outputType MultiLayerMie<FloatType>::GetQsca() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | -    return static_cast<outputType>(Qsca_);
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Returns previously calculated Qbk                                      //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  template <typename outputType>
 | 
	
		
			
				|  |  | -  outputType MultiLayerMie<FloatType>::GetQbk() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | -    return static_cast<outputType>(Qbk_);
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Returns previously calculated Qpr                                      //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  template <typename outputType>
 | 
	
		
			
				|  |  | -  outputType MultiLayerMie<FloatType>::GetQpr() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | -    return static_cast<outputType>(Qpr_);
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Returns previously calculated Qext                                     //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +template <typename outputType>
 | 
	
		
			
				|  |  | +outputType MultiLayerMie<FloatType>::GetQext() {
 | 
	
		
			
				|  |  | +  if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +    throw std::invalid_argument(
 | 
	
		
			
				|  |  | +        "You should run calculations before result request!");
 | 
	
		
			
				|  |  | +  return static_cast<outputType>(Qext_);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Returns previously calculated assymetry factor                         //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  template <typename outputType>
 | 
	
		
			
				|  |  | -  outputType MultiLayerMie<FloatType>::GetAsymmetryFactor() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | -    return static_cast<outputType>(asymmetry_factor_);
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Returns previously calculated Qabs                                     //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +template <typename outputType>
 | 
	
		
			
				|  |  | +outputType MultiLayerMie<FloatType>::GetQabs() {
 | 
	
		
			
				|  |  | +  if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +    throw std::invalid_argument(
 | 
	
		
			
				|  |  | +        "You should run calculations before result request!");
 | 
	
		
			
				|  |  | +  return static_cast<outputType>(Qabs_);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Returns previously calculated Qsca                                     //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +template <typename outputType>
 | 
	
		
			
				|  |  | +outputType MultiLayerMie<FloatType>::GetQsca() {
 | 
	
		
			
				|  |  | +  if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +    throw std::invalid_argument(
 | 
	
		
			
				|  |  | +        "You should run calculations before result request!");
 | 
	
		
			
				|  |  | +  return static_cast<outputType>(Qsca_);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Returns previously calculated Albedo                                   //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  template <typename outputType>
 | 
	
		
			
				|  |  | -  outputType MultiLayerMie<FloatType>::GetAlbedo() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | -    return static_cast<outputType>(albedo_);
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Returns previously calculated Qbk                                      //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +template <typename outputType>
 | 
	
		
			
				|  |  | +outputType MultiLayerMie<FloatType>::GetQbk() {
 | 
	
		
			
				|  |  | +  if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +    throw std::invalid_argument(
 | 
	
		
			
				|  |  | +        "You should run calculations before result request!");
 | 
	
		
			
				|  |  | +  return static_cast<outputType>(Qbk_);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Returns previously calculated Qpr                                      //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +template <typename outputType>
 | 
	
		
			
				|  |  | +outputType MultiLayerMie<FloatType>::GetQpr() {
 | 
	
		
			
				|  |  | +  if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +    throw std::invalid_argument(
 | 
	
		
			
				|  |  | +        "You should run calculations before result request!");
 | 
	
		
			
				|  |  | +  return static_cast<outputType>(Qpr_);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Returns previously calculated S1                                       //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  std::vector<std::complex<FloatType> > MultiLayerMie<FloatType>::GetS1() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | -    return S1_;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Returns previously calculated asymmetry factor                         //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +template <typename outputType>
 | 
	
		
			
				|  |  | +outputType MultiLayerMie<FloatType>::GetAsymmetryFactor() {
 | 
	
		
			
				|  |  | +  if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +    throw std::invalid_argument(
 | 
	
		
			
				|  |  | +        "You should run calculations before result request!");
 | 
	
		
			
				|  |  | +  return static_cast<outputType>(asymmetry_factor_);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Returns previously calculated Albedo                                   //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +template <typename outputType>
 | 
	
		
			
				|  |  | +outputType MultiLayerMie<FloatType>::GetAlbedo() {
 | 
	
		
			
				|  |  | +  if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +    throw std::invalid_argument(
 | 
	
		
			
				|  |  | +        "You should run calculations before result request!");
 | 
	
		
			
				|  |  | +  return static_cast<outputType>(albedo_);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Returns previously calculated S2                                       //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  std::vector<std::complex<FloatType> > MultiLayerMie<FloatType>::GetS2() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | -    return S2_;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Returns previously calculated S1                                       //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +std::vector<std::complex<FloatType>> MultiLayerMie<FloatType>::GetS1() {
 | 
	
		
			
				|  |  | +  if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +    throw std::invalid_argument(
 | 
	
		
			
				|  |  | +        "You should run calculations before result request!");
 | 
	
		
			
				|  |  | +  return S1_;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Returns previously calculated S2                                       //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +std::vector<std::complex<FloatType>> MultiLayerMie<FloatType>::GetS2() {
 | 
	
		
			
				|  |  | +  if (!isMieCalculated_)
 | 
	
		
			
				|  |  | +    throw std::invalid_argument(
 | 
	
		
			
				|  |  | +        "You should run calculations before result request!");
 | 
	
		
			
				|  |  | +  return S2_;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Modify scattering (theta) angles                                       //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +void MultiLayerMie<FloatType>::SetAngles(const std::vector<FloatType>& angles) {
 | 
	
		
			
				|  |  | +  MarkUncalculated();
 | 
	
		
			
				|  |  | +  theta_ = angles;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Modify scattering (theta) angles                                       //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  void MultiLayerMie<FloatType>::SetAngles(const std::vector<FloatType> &angles) {
 | 
	
		
			
				|  |  | -    MarkUncalculated();
 | 
	
		
			
				|  |  | -    theta_ = angles;
 | 
	
		
			
				|  |  | +// Modify size of all layers                                             //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +void MultiLayerMie<FloatType>::SetLayersSize(
 | 
	
		
			
				|  |  | +    const std::vector<FloatType>& layer_size) {
 | 
	
		
			
				|  |  | +  MarkUncalculated();
 | 
	
		
			
				|  |  | +  size_param_.clear();
 | 
	
		
			
				|  |  | +  FloatType prev_layer_size = 0.0;
 | 
	
		
			
				|  |  | +  for (auto curr_layer_size : layer_size) {
 | 
	
		
			
				|  |  | +    if (curr_layer_size <= 0.0)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("Size parameter should be positive!");
 | 
	
		
			
				|  |  | +    if (prev_layer_size > curr_layer_size)
 | 
	
		
			
				|  |  | +      throw std::invalid_argument(
 | 
	
		
			
				|  |  | +          "Size parameter for next layer should be larger than the previous "
 | 
	
		
			
				|  |  | +          "one!");
 | 
	
		
			
				|  |  | +    prev_layer_size = curr_layer_size;
 | 
	
		
			
				|  |  | +    size_param_.push_back(curr_layer_size);
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Modify refractive index of all layers                                  //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +void MultiLayerMie<FloatType>::SetLayersIndex(
 | 
	
		
			
				|  |  | +    const std::vector<std::complex<FloatType>>& index) {
 | 
	
		
			
				|  |  | +  MarkUncalculated();
 | 
	
		
			
				|  |  | +  refractive_index_ = index;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Modify size of all layers                                             //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  void MultiLayerMie<FloatType>::SetLayersSize(const std::vector<FloatType> &layer_size) {
 | 
	
		
			
				|  |  | -    MarkUncalculated();
 | 
	
		
			
				|  |  | -    size_param_.clear();
 | 
	
		
			
				|  |  | -    FloatType prev_layer_size = 0.0;
 | 
	
		
			
				|  |  | -    for (auto curr_layer_size : layer_size) {
 | 
	
		
			
				|  |  | -      if (curr_layer_size <= 0.0)
 | 
	
		
			
				|  |  | -        throw std::invalid_argument("Size parameter should be positive!");
 | 
	
		
			
				|  |  | -      if (prev_layer_size > curr_layer_size)
 | 
	
		
			
				|  |  | -        throw std::invalid_argument
 | 
	
		
			
				|  |  | -          ("Size parameter for next layer should be larger than the previous one!");
 | 
	
		
			
				|  |  | -      prev_layer_size = curr_layer_size;
 | 
	
		
			
				|  |  | -      size_param_.push_back(curr_layer_size);
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Modify coordinates for field calculation                               //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +void MultiLayerMie<FloatType>::SetFieldCoords(
 | 
	
		
			
				|  |  | +    const std::vector<std::vector<FloatType>>& coords) {
 | 
	
		
			
				|  |  | +  if (coords.size() != 3)
 | 
	
		
			
				|  |  | +    throw std::invalid_argument(
 | 
	
		
			
				|  |  | +        "Error! Wrong dimension of field monitor points!");
 | 
	
		
			
				|  |  | +  if (coords[0].size() != coords[1].size() ||
 | 
	
		
			
				|  |  | +      coords[0].size() != coords[2].size())
 | 
	
		
			
				|  |  | +    throw std::invalid_argument(
 | 
	
		
			
				|  |  | +        "Error! Missing coordinates for field monitor points!");
 | 
	
		
			
				|  |  | +  coords_ = coords;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Modify index of PEC layer                                              //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +void MultiLayerMie<FloatType>::SetPECLayer(int layer_position) {
 | 
	
		
			
				|  |  | +  MarkUncalculated();
 | 
	
		
			
				|  |  | +  if (layer_position < 0 && layer_position != -1)
 | 
	
		
			
				|  |  | +    throw std::invalid_argument("Error! Layers are numbered from 0!");
 | 
	
		
			
				|  |  | +  PEC_layer_position_ = layer_position;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Set maximun number of terms to be used                                 //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +void MultiLayerMie<FloatType>::SetMaxTerms(int nmax) {
 | 
	
		
			
				|  |  | +  MarkUncalculated();
 | 
	
		
			
				|  |  | +  nmax_preset_ = nmax;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Modify refractive index of all layers                                  //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  void MultiLayerMie<FloatType>::SetLayersIndex(const std::vector< std::complex<FloatType> > &index) {
 | 
	
		
			
				|  |  | -    MarkUncalculated();
 | 
	
		
			
				|  |  | -    refractive_index_ = index;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | +// Get total size parameter of particle                                   //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +FloatType MultiLayerMie<FloatType>::GetSizeParameter() {
 | 
	
		
			
				|  |  | +  if (size_param_.size() > 0)
 | 
	
		
			
				|  |  | +    return size_param_.back();
 | 
	
		
			
				|  |  | +  else
 | 
	
		
			
				|  |  | +    return 0;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Modify coordinates for field calculation                               //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  void MultiLayerMie<FloatType>::SetFieldCoords(const std::vector< std::vector<FloatType> > &coords) {
 | 
	
		
			
				|  |  | -    if (coords.size() != 3)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("Error! Wrong dimension of field monitor points!");
 | 
	
		
			
				|  |  | -    if (coords[0].size() != coords[1].size() || coords[0].size() != coords[2].size())
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("Error! Missing coordinates for field monitor points!");
 | 
	
		
			
				|  |  | -    coords_ = coords;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Mark uncalculated                                                      //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +void MultiLayerMie<FloatType>::MarkUncalculated() {
 | 
	
		
			
				|  |  | +  isExpCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +  isScaCoeffsCalc_ = false;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +  isMieCalculated_ = false;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Clear layer information                                                //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +void MultiLayerMie<FloatType>::ClearLayers() {
 | 
	
		
			
				|  |  | +  MarkUncalculated();
 | 
	
		
			
				|  |  | +  size_param_.clear();
 | 
	
		
			
				|  |  | +  refractive_index_.clear();
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Modify index of PEC layer                                              //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  void MultiLayerMie<FloatType>::SetPECLayer(int layer_position) {
 | 
	
		
			
				|  |  | -    MarkUncalculated();
 | 
	
		
			
				|  |  | -    if (layer_position < 0 && layer_position != -1)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("Error! Layers are numbered from 0!");
 | 
	
		
			
				|  |  | -    PEC_layer_position_ = layer_position;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +//                         Computational core
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +unsigned int LeRu_near_field_cutoff(const std::complex<FloatType> zz) {
 | 
	
		
			
				|  |  | +  std::complex<double> z = ConvertComplex<double>(zz);
 | 
	
		
			
				|  |  | +  auto x = std::abs(z);
 | 
	
		
			
				|  |  | +  return std::round(x + 11 * std::pow(x, (1.0 / 3.0)) + 1);
 | 
	
		
			
				|  |  | +  //    return 10000;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Set maximun number of terms to be used                                 //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  void MultiLayerMie<FloatType>::SetMaxTerms(int nmax) {
 | 
	
		
			
				|  |  | -    MarkUncalculated();
 | 
	
		
			
				|  |  | -    nmax_preset_ = nmax;
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Calculate calcNstop - equation (17)                                    //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +unsigned int MultiLayerMie<FloatType>::calcNstop(FloatType xL) {
 | 
	
		
			
				|  |  | +  unsigned int nmax = 0;
 | 
	
		
			
				|  |  | +  // Wiscombe
 | 
	
		
			
				|  |  | +  if (xL < size_param_.back())
 | 
	
		
			
				|  |  | +    xL = size_param_.back();
 | 
	
		
			
				|  |  | +  if (xL <= 8) {
 | 
	
		
			
				|  |  | +    nmax = newround(xL + 4.0 * pow(xL, 1.0 / 3.0) + 1);
 | 
	
		
			
				|  |  | +  } else if (xL <= 4200) {
 | 
	
		
			
				|  |  | +    nmax = newround(xL + 4.05 * pow(xL, 1.0 / 3.0) + 2);
 | 
	
		
			
				|  |  | +  } else {
 | 
	
		
			
				|  |  | +    nmax = newround(xL + 4.0 * pow(xL, 1.0 / 3.0) + 2);
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | +  // Use Le Ru cutoff for near field, as a universal one.
 | 
	
		
			
				|  |  | +  auto Nstop = nmie::LeRu_near_field_cutoff(std::complex<FloatType>(xL, 0)) + 1;
 | 
	
		
			
				|  |  | +  if (Nstop > nmax)
 | 
	
		
			
				|  |  | +    nmax = Nstop;
 | 
	
		
			
				|  |  | +  return nmax;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Get total size parameter of particle                                   //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  FloatType MultiLayerMie<FloatType>::GetSizeParameter() {
 | 
	
		
			
				|  |  | -    if (size_param_.size() > 0)
 | 
	
		
			
				|  |  | -      return size_param_.back();
 | 
	
		
			
				|  |  | +// Maximum number of terms required for the calculation                   //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +unsigned int MultiLayerMie<FloatType>::calcNmax(FloatType xL) {
 | 
	
		
			
				|  |  | +  const int pl = PEC_layer_position_;
 | 
	
		
			
				|  |  | +  const unsigned int first_layer = (pl > 0) ? pl : 0;
 | 
	
		
			
				|  |  | +  unsigned int ri, riM1, nmax = 0;
 | 
	
		
			
				|  |  | +  const std::vector<FloatType>& x = size_param_;
 | 
	
		
			
				|  |  | +  const std::vector<std::complex<FloatType>>& m = refractive_index_;
 | 
	
		
			
				|  |  | +  nmax = calcNstop(xL);
 | 
	
		
			
				|  |  | +  for (unsigned int i = first_layer; i < x.size(); i++) {
 | 
	
		
			
				|  |  | +    if (static_cast<int>(i) >
 | 
	
		
			
				|  |  | +        PEC_layer_position_)  // static_cast used to avoid warning
 | 
	
		
			
				|  |  | +      ri = newround(cabs(x[i] * m[i]));
 | 
	
		
			
				|  |  |      else
 | 
	
		
			
				|  |  | -      return 0;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Mark uncalculated                                                      //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  void MultiLayerMie<FloatType>::MarkUncalculated() {
 | 
	
		
			
				|  |  | -    isExpCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | -    isScaCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    isMieCalculated_ = false;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Clear layer information                                                //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  void MultiLayerMie<FloatType>::ClearLayers() {
 | 
	
		
			
				|  |  | -    MarkUncalculated();
 | 
	
		
			
				|  |  | -    size_param_.clear();
 | 
	
		
			
				|  |  | -    refractive_index_.clear();
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  //                         Computational core
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  unsigned int LeRu_near_field_cutoff(const std::complex<FloatType> zz) {
 | 
	
		
			
				|  |  | -    std::complex<double> z = ConvertComplex<double>(zz);
 | 
	
		
			
				|  |  | -    auto x = std::abs(z);
 | 
	
		
			
				|  |  | -    return std::round(x + 11 * std::pow(x, (1.0 / 3.0)) + 1);
 | 
	
		
			
				|  |  | -//    return 10000;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Calculate calcNstop - equation (17)                                    //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  unsigned int MultiLayerMie<FloatType>::calcNstop(FloatType xL) {
 | 
	
		
			
				|  |  | -    unsigned int nmax = 0;
 | 
	
		
			
				|  |  | -    //Wiscombe
 | 
	
		
			
				|  |  | -    if (xL < size_param_.back()) xL = size_param_.back();
 | 
	
		
			
				|  |  | -    if (xL <= 8) {
 | 
	
		
			
				|  |  | -      nmax = newround(xL + 4.0*pow(xL, 1.0/3.0) + 1);
 | 
	
		
			
				|  |  | -    } else if (xL <= 4200) {
 | 
	
		
			
				|  |  | -      nmax = newround(xL + 4.05*pow(xL, 1.0/3.0) + 2);
 | 
	
		
			
				|  |  | -    } else {
 | 
	
		
			
				|  |  | -      nmax = newround(xL + 4.0*pow(xL, 1.0/3.0) + 2);
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -    //Use Le Ru cutoff for near field, as a universal one.
 | 
	
		
			
				|  |  | -    auto Nstop = nmie::LeRu_near_field_cutoff(std::complex<FloatType>(xL, 0))+1;
 | 
	
		
			
				|  |  | -    if (Nstop > nmax) nmax = Nstop;
 | 
	
		
			
				|  |  | -    return nmax;
 | 
	
		
			
				|  |  | +      ri = 0;
 | 
	
		
			
				|  |  | +    nmax = std::max(nmax, ri);
 | 
	
		
			
				|  |  | +    // first layer is pec, if pec is present
 | 
	
		
			
				|  |  | +    if ((i > first_layer) && (static_cast<int>(i - 1) > PEC_layer_position_))
 | 
	
		
			
				|  |  | +      riM1 = newround(cabs(x[i - 1] * m[i]));
 | 
	
		
			
				|  |  | +    else
 | 
	
		
			
				|  |  | +      riM1 = 0;
 | 
	
		
			
				|  |  | +    nmax = std::max(nmax, riM1);
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Maximum number of terms required for the calculation                   //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  unsigned int MultiLayerMie<FloatType>::calcNmax(FloatType xL) {
 | 
	
		
			
				|  |  | -    const int pl = PEC_layer_position_;
 | 
	
		
			
				|  |  | -    const unsigned int first_layer = (pl > 0) ? pl : 0;
 | 
	
		
			
				|  |  | -    unsigned int ri, riM1, nmax = 0;
 | 
	
		
			
				|  |  | -    const std::vector<FloatType> &x = size_param_;
 | 
	
		
			
				|  |  | -    const std::vector<std::complex<FloatType> > &m = refractive_index_;
 | 
	
		
			
				|  |  | -    nmax = calcNstop(xL);
 | 
	
		
			
				|  |  | -    for (unsigned int i = first_layer; i < x.size(); i++) {
 | 
	
		
			
				|  |  | -      if (static_cast<int>(i) > PEC_layer_position_)  // static_cast used to avoid warning
 | 
	
		
			
				|  |  | -        ri = newround(cabs(x[i]*m[i]));
 | 
	
		
			
				|  |  | -      else
 | 
	
		
			
				|  |  | -        ri = 0;
 | 
	
		
			
				|  |  | -      nmax = std::max(nmax, ri);
 | 
	
		
			
				|  |  | -      // first layer is pec, if pec is present
 | 
	
		
			
				|  |  | -      if ((i > first_layer) && (static_cast<int>(i - 1) > PEC_layer_position_))
 | 
	
		
			
				|  |  | -        riM1 = newround(cabs(x[i - 1]* m[i]));
 | 
	
		
			
				|  |  | -      else
 | 
	
		
			
				|  |  | -        riM1 = 0;
 | 
	
		
			
				|  |  | -      nmax = std::max(nmax, riM1);
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -    nmax += 15;  // Final nmax value
 | 
	
		
			
				|  |  | +  nmax += 15;  // Final nmax value
 | 
	
		
			
				|  |  |  #ifdef MULTI_PRECISION
 | 
	
		
			
				|  |  | -    nmax += MULTI_PRECISION; //TODO we may need to use more terms that this for MP computations.
 | 
	
		
			
				|  |  | +  nmax += MULTI_PRECISION;  // TODO we may need to use more terms that this for
 | 
	
		
			
				|  |  | +                            // MP computations.
 | 
	
		
			
				|  |  |  #endif
 | 
	
		
			
				|  |  | -    // nmax *= nmax;
 | 
	
		
			
				|  |  | -    // printf("using nmax %i\n", nmax);
 | 
	
		
			
				|  |  | -    return nmax;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | +  // nmax *= nmax;
 | 
	
		
			
				|  |  | +  // printf("using nmax %i\n", nmax);
 | 
	
		
			
				|  |  | +  return nmax;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Calculate an - equation (5)                                            //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  std::complex<FloatType> MultiLayerMie<FloatType>::
 | 
	
		
			
				|  |  | -      calc_an(int n, FloatType XL, std::complex<FloatType> Ha, std::complex<FloatType> mL,
 | 
	
		
			
				|  |  | -                                              std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL,
 | 
	
		
			
				|  |  | -                                              std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1) {
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Calculate an - equation (5)                                            //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +std::complex<FloatType> MultiLayerMie<FloatType>::calc_an(
 | 
	
		
			
				|  |  | +    int n,
 | 
	
		
			
				|  |  | +    FloatType XL,
 | 
	
		
			
				|  |  | +    std::complex<FloatType> Ha,
 | 
	
		
			
				|  |  | +    std::complex<FloatType> mL,
 | 
	
		
			
				|  |  | +    std::complex<FloatType> PsiXL,
 | 
	
		
			
				|  |  | +    std::complex<FloatType> ZetaXL,
 | 
	
		
			
				|  |  | +    std::complex<FloatType> PsiXLM1,
 | 
	
		
			
				|  |  | +    std::complex<FloatType> ZetaXLM1) {
 | 
	
		
			
				|  |  | +  std::complex<FloatType> Num = (Ha / mL + n / XL) * PsiXL - PsiXLM1;
 | 
	
		
			
				|  |  | +  std::complex<FloatType> Denom = (Ha / mL + n / XL) * ZetaXL - ZetaXLM1;
 | 
	
		
			
				|  |  | +  // std::cout<< std::setprecision(100)
 | 
	
		
			
				|  |  | +  //          << "Ql "        << PsiXL
 | 
	
		
			
				|  |  | +  //          << std::endl;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  return Num / Denom;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    std::complex<FloatType> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
 | 
	
		
			
				|  |  | -    std::complex<FloatType> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
 | 
	
		
			
				|  |  | -    // std::cout<< std::setprecision(100)
 | 
	
		
			
				|  |  | -    //          << "Ql "        << PsiXL
 | 
	
		
			
				|  |  | -    //          << std::endl;
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Calculate bn - equation (6)                                            //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +std::complex<FloatType> MultiLayerMie<FloatType>::calc_bn(
 | 
	
		
			
				|  |  | +    int n,
 | 
	
		
			
				|  |  | +    FloatType XL,
 | 
	
		
			
				|  |  | +    std::complex<FloatType> Hb,
 | 
	
		
			
				|  |  | +    std::complex<FloatType> mL,
 | 
	
		
			
				|  |  | +    std::complex<FloatType> PsiXL,
 | 
	
		
			
				|  |  | +    std::complex<FloatType> ZetaXL,
 | 
	
		
			
				|  |  | +    std::complex<FloatType> PsiXLM1,
 | 
	
		
			
				|  |  | +    std::complex<FloatType> ZetaXLM1) {
 | 
	
		
			
				|  |  | +  std::complex<FloatType> Num = (mL * Hb + n / XL) * PsiXL - PsiXLM1;
 | 
	
		
			
				|  |  | +  std::complex<FloatType> Denom = (mL * Hb + n / XL) * ZetaXL - ZetaXLM1;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  return Num / Denom;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Calculates S1 - equation (25a)                                         //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +std::complex<FloatType> MultiLayerMie<FloatType>::calc_S1(
 | 
	
		
			
				|  |  | +    int n,
 | 
	
		
			
				|  |  | +    std::complex<FloatType> an,
 | 
	
		
			
				|  |  | +    std::complex<FloatType> bn,
 | 
	
		
			
				|  |  | +    FloatType Pi,
 | 
	
		
			
				|  |  | +    FloatType Tau) {
 | 
	
		
			
				|  |  | +  return FloatType(n + n + 1) * (Pi * an + Tau * bn) / FloatType(n * n + n);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    return Num/Denom;
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +// Calculates S2 - equation (25b) (it's the same as (25a), just switches  //
 | 
	
		
			
				|  |  | +// Pi and Tau)                                                            //
 | 
	
		
			
				|  |  | +// ********************************************************************** //
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +std::complex<FloatType> MultiLayerMie<FloatType>::calc_S2(
 | 
	
		
			
				|  |  | +    int n,
 | 
	
		
			
				|  |  | +    std::complex<FloatType> an,
 | 
	
		
			
				|  |  | +    std::complex<FloatType> bn,
 | 
	
		
			
				|  |  | +    FloatType Pi,
 | 
	
		
			
				|  |  | +    FloatType Tau) {
 | 
	
		
			
				|  |  | +  return calc_S1(n, an, bn, Tau, Pi);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//****************************************************************************
 | 
	
		
			
				|  |  | +// This function calculates the logarithmic derivatives of the Riccati-Bessel
 | 
	
		
			
				|  |  | +// functions (D1 and D3) for a complex argument (z).
 | 
	
		
			
				|  |  | +// Equations (16a), (16b) and (18a) - (18d)
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Input parameters:
 | 
	
		
			
				|  |  | +//   z: Complex argument to evaluate D1 and D3
 | 
	
		
			
				|  |  | +//   nmax_: Maximum number of terms to calculate D1 and D3
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Output parameters:
 | 
	
		
			
				|  |  | +//   D1, D3: Logarithmic derivatives of the Riccati-Bessel functions
 | 
	
		
			
				|  |  | +//****************************************************************************
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +void MultiLayerMie<FloatType>::calcD1D3(
 | 
	
		
			
				|  |  | +    const std::complex<FloatType> z,
 | 
	
		
			
				|  |  | +    std::vector<std::complex<FloatType>>& D1,
 | 
	
		
			
				|  |  | +    std::vector<std::complex<FloatType>>& D3) {
 | 
	
		
			
				|  |  | +  std::vector<std::complex<FloatType>> PsiZeta(nmax_ + 1);
 | 
	
		
			
				|  |  | +  evalDownwardD1(z, D1);
 | 
	
		
			
				|  |  | +  evalUpwardD3(z, D1, D3, PsiZeta);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//*****************************************************************************
 | 
	
		
			
				|  |  | +// This function calculates the Riccati-Bessel functions (Psi and Zeta) for a
 | 
	
		
			
				|  |  | +// complex argument (z).
 | 
	
		
			
				|  |  | +// Equations (20a) - (21b)
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Input parameters:
 | 
	
		
			
				|  |  | +//   z: Complex argument to evaluate Psi and Zeta
 | 
	
		
			
				|  |  | +//   nmax: Maximum number of terms to calculate Psi and Zeta
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Output parameters:
 | 
	
		
			
				|  |  | +//   Psi, Zeta: Riccati-Bessel functions
 | 
	
		
			
				|  |  | +//*****************************************************************************
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +void MultiLayerMie<FloatType>::calcPsiZeta(
 | 
	
		
			
				|  |  | +    std::complex<FloatType> z,
 | 
	
		
			
				|  |  | +    std::vector<std::complex<FloatType>>& Psi,
 | 
	
		
			
				|  |  | +    std::vector<std::complex<FloatType>>& Zeta) {
 | 
	
		
			
				|  |  | +  std::vector<std::complex<FloatType>> D1(nmax_ + 1), D3(nmax_ + 1),
 | 
	
		
			
				|  |  | +      PsiZeta(nmax_ + 1);
 | 
	
		
			
				|  |  | +  // First, calculate the logarithmic derivatives
 | 
	
		
			
				|  |  | +  evalDownwardD1(z, D1);
 | 
	
		
			
				|  |  | +  // Now, use the upward recurrence to calculate Psi equations (20ab)
 | 
	
		
			
				|  |  | +  evalUpwardPsi(z, D1, Psi);
 | 
	
		
			
				|  |  | +  // Now, use the upward recurrence to calculate Psi*Zeta equations (18ad)
 | 
	
		
			
				|  |  | +  evalUpwardD3(z, D1, D3, PsiZeta);
 | 
	
		
			
				|  |  | +  for (unsigned int i = 0; i < Zeta.size(); i++) {
 | 
	
		
			
				|  |  | +    Zeta[i] = PsiZeta[i] / Psi[i];
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Calculate bn - equation (6)                                            //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  std::complex<FloatType> MultiLayerMie<FloatType>::calc_bn(int n, FloatType XL, std::complex<FloatType> Hb, std::complex<FloatType> mL,
 | 
	
		
			
				|  |  | -                                              std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL,
 | 
	
		
			
				|  |  | -                                              std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1) {
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    std::complex<FloatType> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
 | 
	
		
			
				|  |  | -    std::complex<FloatType> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    return Num/Denom;
 | 
	
		
			
				|  |  | +  //    evalUpwardZeta(z, D3, Zeta);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +void MultiLayerMie<FloatType>::calcPiTauAllTheta(
 | 
	
		
			
				|  |  | +    const double from_Theta,
 | 
	
		
			
				|  |  | +    const double to_Theta,
 | 
	
		
			
				|  |  | +    std::vector<std::vector<FloatType>>& Pi,
 | 
	
		
			
				|  |  | +    std::vector<std::vector<FloatType>>& Tau) {
 | 
	
		
			
				|  |  | +  const unsigned int perimeter_points = Pi.size();
 | 
	
		
			
				|  |  | +  for (auto& val : Pi)
 | 
	
		
			
				|  |  | +    val.resize(available_maximal_nmax_, static_cast<FloatType>(0.0));
 | 
	
		
			
				|  |  | +  for (auto& val : Tau)
 | 
	
		
			
				|  |  | +    val.resize(available_maximal_nmax_, static_cast<FloatType>(0.0));
 | 
	
		
			
				|  |  | +  double delta_Theta =
 | 
	
		
			
				|  |  | +      eval_delta<double>(perimeter_points, from_Theta, to_Theta);
 | 
	
		
			
				|  |  | +  for (unsigned int i = 0; i < perimeter_points; i++) {
 | 
	
		
			
				|  |  | +    auto Theta = static_cast<FloatType>(from_Theta + i * delta_Theta);
 | 
	
		
			
				|  |  | +    // Calculate angular functions Pi and Tau
 | 
	
		
			
				|  |  | +    calcPiTau(nmm::cos(Theta), Pi[i], Tau[i]);
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Calculates S1 - equation (25a)                                         //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  std::complex<FloatType> MultiLayerMie<FloatType>::calc_S1(int n, std::complex<FloatType> an, std::complex<FloatType> bn,
 | 
	
		
			
				|  |  | -                                              FloatType Pi, FloatType Tau) {
 | 
	
		
			
				|  |  | -    return FloatType(n + n + 1)*(Pi*an + Tau*bn)/FloatType(n*n + n);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//*******************************************************************************
 | 
	
		
			
				|  |  | +// This function calculates Pi and Tau for a given value of cos(Theta).
 | 
	
		
			
				|  |  | +// Equations (26a) - (26c)
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Input parameters:
 | 
	
		
			
				|  |  | +//   nmax_: Maximum number of terms to calculate Pi and Tau
 | 
	
		
			
				|  |  | +//   nTheta: Number of scattering angles
 | 
	
		
			
				|  |  | +//   Theta: Array containing all the scattering angles where the scattering
 | 
	
		
			
				|  |  | +//          amplitudes will be calculated
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Output parameters:
 | 
	
		
			
				|  |  | +//   Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) -
 | 
	
		
			
				|  |  | +//   (26c)
 | 
	
		
			
				|  |  | +//*******************************************************************************
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +void MultiLayerMie<FloatType>::calcPiTau(const FloatType& costheta,
 | 
	
		
			
				|  |  | +                                         std::vector<FloatType>& Pi,
 | 
	
		
			
				|  |  | +                                         std::vector<FloatType>& Tau) {
 | 
	
		
			
				|  |  | +  int nmax = Pi.size();
 | 
	
		
			
				|  |  | +  if (Pi.size() != Tau.size())
 | 
	
		
			
				|  |  | +    throw std::invalid_argument(
 | 
	
		
			
				|  |  | +        "Error! Pi and Tau vectors should have the same size!");
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //****************************************************//
 | 
	
		
			
				|  |  | +  // Equations (26a) - (26c)                            //
 | 
	
		
			
				|  |  | +  //****************************************************//
 | 
	
		
			
				|  |  | +  // Initialize Pi and Tau
 | 
	
		
			
				|  |  | +  Pi[0] = 1.0;  // n=1
 | 
	
		
			
				|  |  | +  Tau[0] = costheta;
 | 
	
		
			
				|  |  | +  // Calculate the actual values
 | 
	
		
			
				|  |  | +  if (nmax > 1) {
 | 
	
		
			
				|  |  | +    Pi[1] = 3 * costheta * Pi[0];  // n=2
 | 
	
		
			
				|  |  | +    Tau[1] = 2 * costheta * Pi[1] - 3 * Pi[0];
 | 
	
		
			
				|  |  | +    for (int i = 2; i < nmax; i++) {  // n=[3..nmax_]
 | 
	
		
			
				|  |  | +      Pi[i] = ((i + i + 1) * costheta * Pi[i - 1] - (i + 1) * Pi[i - 2]) / i;
 | 
	
		
			
				|  |  | +      Tau[i] = (i + 1) * costheta * Pi[i] - (i + 2) * Pi[i - 1];
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Calculates S2 - equation (25b) (it's the same as (25a), just switches  //
 | 
	
		
			
				|  |  | -  // Pi and Tau)                                                            //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  std::complex<FloatType> MultiLayerMie<FloatType>::calc_S2(int n, std::complex<FloatType> an, std::complex<FloatType> bn,
 | 
	
		
			
				|  |  | -                                              FloatType Pi, FloatType Tau) {
 | 
	
		
			
				|  |  | -    return calc_S1(n, an, bn, Tau, Pi);
 | 
	
		
			
				|  |  | +}  // end of MultiLayerMie::calcPiTau(...)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//*****************************************************************************
 | 
	
		
			
				|  |  | +// This function calculates vector spherical harmonics (eq. 4.50, p. 95 BH),
 | 
	
		
			
				|  |  | +// required to calculate the near-field parameters.
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Input parameters:
 | 
	
		
			
				|  |  | +//   Rho: Radial distance
 | 
	
		
			
				|  |  | +//   Phi: Azimuthal angle
 | 
	
		
			
				|  |  | +//   Theta: Polar angle
 | 
	
		
			
				|  |  | +//   rn: Either the spherical Ricatti-Bessel function of first or third kind
 | 
	
		
			
				|  |  | +//   Dn: Logarithmic derivative of rn
 | 
	
		
			
				|  |  | +//   Pi, Tau: Angular functions Pi and Tau
 | 
	
		
			
				|  |  | +//   n: Order of vector spherical harmonics
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Output parameters:
 | 
	
		
			
				|  |  | +//   Mo1n, Me1n, No1n, Ne1n: Complex vector spherical harmonics
 | 
	
		
			
				|  |  | +//*****************************************************************************
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +template <typename evalType>
 | 
	
		
			
				|  |  | +void MultiLayerMie<FloatType>::calcSpherHarm(
 | 
	
		
			
				|  |  | +    const std::complex<evalType> Rho,
 | 
	
		
			
				|  |  | +    const evalType Theta,
 | 
	
		
			
				|  |  | +    const evalType Phi,
 | 
	
		
			
				|  |  | +    const std::complex<evalType>& rn,
 | 
	
		
			
				|  |  | +    const std::complex<evalType>& Dn,
 | 
	
		
			
				|  |  | +    const evalType& Pi,
 | 
	
		
			
				|  |  | +    const evalType& Tau,
 | 
	
		
			
				|  |  | +    const evalType& n,
 | 
	
		
			
				|  |  | +    std::vector<std::complex<evalType>>& Mo1n,
 | 
	
		
			
				|  |  | +    std::vector<std::complex<evalType>>& Me1n,
 | 
	
		
			
				|  |  | +    std::vector<std::complex<evalType>>& No1n,
 | 
	
		
			
				|  |  | +    std::vector<std::complex<evalType>>& Ne1n) {
 | 
	
		
			
				|  |  | +  // using eq 4.50 in BH
 | 
	
		
			
				|  |  | +  std::complex<evalType> c_zero(0.0, 0.0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //    using nmm::sin;
 | 
	
		
			
				|  |  | +  //    using nmm::cos;
 | 
	
		
			
				|  |  | +  auto sin_Phi = sin_t(Phi);
 | 
	
		
			
				|  |  | +  auto cos_Phi = cos_t(Phi);
 | 
	
		
			
				|  |  | +  auto sin_Theta = sin(Theta);
 | 
	
		
			
				|  |  | +  Mo1n[0] = c_zero;
 | 
	
		
			
				|  |  | +  Mo1n[1] = cos_Phi * Pi * rn / Rho;
 | 
	
		
			
				|  |  | +  Mo1n[2] = -sin_Phi * Tau * rn / Rho;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  Me1n[0] = c_zero;
 | 
	
		
			
				|  |  | +  Me1n[1] = -sin_Phi * Pi * rn / Rho;
 | 
	
		
			
				|  |  | +  Me1n[2] = -cos_Phi * Tau * rn / Rho;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  No1n[0] = sin_Phi * (n * n + n) * sin_Theta * Pi * rn / Rho / Rho;
 | 
	
		
			
				|  |  | +  No1n[1] = sin_Phi * Tau * Dn * rn / Rho;
 | 
	
		
			
				|  |  | +  No1n[2] = cos_Phi * Pi * Dn * rn / Rho;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  Ne1n[0] = cos_Phi * (n * n + n) * sin_Theta * Pi * rn / Rho / Rho;
 | 
	
		
			
				|  |  | +  Ne1n[1] = cos_Phi * Tau * Dn * rn / Rho;
 | 
	
		
			
				|  |  | +  Ne1n[2] = -sin_Phi * Pi * Dn * rn / Rho;
 | 
	
		
			
				|  |  | +}  // end of MultiLayerMie::calcSpherHarm(...)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//********************************************************************************
 | 
	
		
			
				|  |  | +// This function calculates the scattering coefficients required to calculate
 | 
	
		
			
				|  |  | +// both the near- and far-field parameters.
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Input parameters:
 | 
	
		
			
				|  |  | +//   L: Number of layers
 | 
	
		
			
				|  |  | +//   pl: Index of PEC layer. If there is none just send -1
 | 
	
		
			
				|  |  | +//   x: Array containing the size parameters of the layers [0..L-1]
 | 
	
		
			
				|  |  | +//   m: Array containing the relative refractive indexes of the layers [0..L-1]
 | 
	
		
			
				|  |  | +//   nmax: Maximum number of multipolar expansion terms to be used for the
 | 
	
		
			
				|  |  | +//         calculations. Only use it if you know what you are doing, otherwise
 | 
	
		
			
				|  |  | +//         set this parameter to -1 and the function will calculate it.
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Output parameters:
 | 
	
		
			
				|  |  | +//   an, bn: Complex scattering amplitudes
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Return value:
 | 
	
		
			
				|  |  | +//   Number of multipolar expansion terms used for the calculations
 | 
	
		
			
				|  |  | +//********************************************************************************
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +void MultiLayerMie<FloatType>::calcScattCoeffs() {
 | 
	
		
			
				|  |  | +  isScaCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | +  an_.clear();
 | 
	
		
			
				|  |  | +  bn_.clear();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  const std::vector<FloatType>& x = size_param_;
 | 
	
		
			
				|  |  | +  const std::vector<std::complex<FloatType>>& m = refractive_index_;
 | 
	
		
			
				|  |  | +  const int& pl = PEC_layer_position_;
 | 
	
		
			
				|  |  | +  const int L = refractive_index_.size();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //************************************************************************//
 | 
	
		
			
				|  |  | +  // Calculate the index of the first layer. It can be either 0 (default)   //
 | 
	
		
			
				|  |  | +  // or the index of the outermost PEC layer. In the latter case all layers //
 | 
	
		
			
				|  |  | +  // below the PEC are discarded.                                           //
 | 
	
		
			
				|  |  | +  // ***********************************************************************//
 | 
	
		
			
				|  |  | +  int fl = (pl > 0) ? pl : 0;
 | 
	
		
			
				|  |  | +  if (nmax_preset_ <= 0)
 | 
	
		
			
				|  |  | +    nmax_ = calcNmax();
 | 
	
		
			
				|  |  | +  else
 | 
	
		
			
				|  |  | +    nmax_ = nmax_preset_;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::complex<FloatType> z1, z2;
 | 
	
		
			
				|  |  | +  //**************************************************************************//
 | 
	
		
			
				|  |  | +  // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which  //
 | 
	
		
			
				|  |  | +  // means that index = layer number - 1 or index = n - 1. The only exception //
 | 
	
		
			
				|  |  | +  // are the arrays for representing D1, D3 and Q because they need a value   //
 | 
	
		
			
				|  |  | +  // for the index 0 (zero), hence it is important to consider this shift     //
 | 
	
		
			
				|  |  | +  // between different arrays. The change was done to optimize memory usage.  //
 | 
	
		
			
				|  |  | +  //**************************************************************************//
 | 
	
		
			
				|  |  | +  // Allocate memory to the arrays
 | 
	
		
			
				|  |  | +  std::vector<std::complex<FloatType>> D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
 | 
	
		
			
				|  |  | +      D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::vector<std::vector<std::complex<FloatType>>> Q(L), Ha(L), Hb(L);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  for (int l = 0; l < L; l++) {
 | 
	
		
			
				|  |  | +    Q[l].resize(nmax_ + 1, static_cast<FloatType>(0.0));
 | 
	
		
			
				|  |  | +    Ha[l].resize(nmax_, static_cast<FloatType>(0.0));
 | 
	
		
			
				|  |  | +    Hb[l].resize(nmax_, static_cast<FloatType>(0.0));
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +  an_.resize(nmax_, static_cast<FloatType>(0.0));
 | 
	
		
			
				|  |  | +  bn_.resize(nmax_, static_cast<FloatType>(0.0));
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  // This function calculates the logarithmic derivatives of the Riccati-Bessel       //
 | 
	
		
			
				|  |  | -  // functions (D1 and D3) for a complex argument (z).                                //
 | 
	
		
			
				|  |  | -  // Equations (16a), (16b) and (18a) - (18d)                                         //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | -  //   z: Complex argument to evaluate D1 and D3                                      //
 | 
	
		
			
				|  |  | -  //   nmax_: Maximum number of terms to calculate D1 and D3                          //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | -  //   D1, D3: Logarithmic derivatives of the Riccati-Bessel functions                //
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  void MultiLayerMie<FloatType>::calcD1D3(const std::complex<FloatType> z,
 | 
	
		
			
				|  |  | -                               std::vector<std::complex<FloatType> > &D1,
 | 
	
		
			
				|  |  | -                               std::vector<std::complex<FloatType> > &D3) {
 | 
	
		
			
				|  |  | -    std::vector<std::complex<FloatType> > PsiZeta(nmax_+1);
 | 
	
		
			
				|  |  | -    evalDownwardD1(z, D1);
 | 
	
		
			
				|  |  | -    evalUpwardD3 (z, D1, D3, PsiZeta);
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | +  std::vector<std::complex<FloatType>> PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a       //
 | 
	
		
			
				|  |  | -  // complex argument (z).                                                            //
 | 
	
		
			
				|  |  | -  // Equations (20a) - (21b)                                                          //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | -  //   z: Complex argument to evaluate Psi and Zeta                                   //
 | 
	
		
			
				|  |  | -  //   nmax: Maximum number of terms to calculate Psi and Zeta                        //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | -  //   Psi, Zeta: Riccati-Bessel functions                                            //
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  void MultiLayerMie<FloatType>::calcPsiZeta(std::complex<FloatType> z,
 | 
	
		
			
				|  |  | -                                  std::vector<std::complex<FloatType> > &Psi,
 | 
	
		
			
				|  |  | -                                  std::vector<std::complex<FloatType> > &Zeta) {
 | 
	
		
			
				|  |  | -    std::vector<std::complex<FloatType> > D1(nmax_ + 1), D3(nmax_ + 1),
 | 
	
		
			
				|  |  | -        PsiZeta(nmax_+1);
 | 
	
		
			
				|  |  | -    // First, calculate the logarithmic derivatives
 | 
	
		
			
				|  |  | -    evalDownwardD1(z, D1);
 | 
	
		
			
				|  |  | -    // Now, use the upward recurrence to calculate Psi equations (20ab)
 | 
	
		
			
				|  |  | -    evalUpwardPsi(z,  D1, Psi);
 | 
	
		
			
				|  |  | -    // Now, use the upward recurrence to calculate Psi*Zeta equations (18ad)
 | 
	
		
			
				|  |  | -    evalUpwardD3 (z, D1, D3, PsiZeta);
 | 
	
		
			
				|  |  | -    for (unsigned int i = 0; i < Zeta.size(); i++) {
 | 
	
		
			
				|  |  | -      Zeta[i] = PsiZeta[i]/Psi[i];
 | 
	
		
			
				|  |  | +  //*************************************************//
 | 
	
		
			
				|  |  | +  // Calculate D1 and D3 for z1 in the first layer   //
 | 
	
		
			
				|  |  | +  //*************************************************//
 | 
	
		
			
				|  |  | +  if (fl == pl) {  // PEC layer
 | 
	
		
			
				|  |  | +    for (int n = 0; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | +      D1_mlxl[n] = std::complex<FloatType>(0.0, -1.0);
 | 
	
		
			
				|  |  | +      D3_mlxl[n] = std::complex<FloatType>(0.0, 1.0);
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | -//    evalUpwardZeta(z, D3, Zeta);
 | 
	
		
			
				|  |  | +  } else {  // Regular layer
 | 
	
		
			
				|  |  | +    z1 = x[fl] * m[fl];
 | 
	
		
			
				|  |  | +    // Calculate D1 and D3
 | 
	
		
			
				|  |  | +    calcD1D3(z1, D1_mlxl, D3_mlxl);
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  void MultiLayerMie<FloatType>::calcPiTauAllTheta(const double from_Theta, const double to_Theta,
 | 
	
		
			
				|  |  | -                                                   std::vector<std::vector<FloatType> > &Pi,
 | 
	
		
			
				|  |  | -                                                   std::vector<std::vector<FloatType> > &Tau) {
 | 
	
		
			
				|  |  | -    const unsigned int perimeter_points = Pi.size();
 | 
	
		
			
				|  |  | -    for (auto &val:Pi) val.resize(available_maximal_nmax_, static_cast<FloatType>(0.0));
 | 
	
		
			
				|  |  | -    for (auto &val:Tau) val.resize(available_maximal_nmax_, static_cast<FloatType>(0.0));
 | 
	
		
			
				|  |  | -    double delta_Theta = eval_delta<double>(perimeter_points, from_Theta, to_Theta);
 | 
	
		
			
				|  |  | -    for (unsigned int i=0; i < perimeter_points; i++) {
 | 
	
		
			
				|  |  | -      auto Theta = static_cast<FloatType>(from_Theta + i*delta_Theta);
 | 
	
		
			
				|  |  | -      // Calculate angular functions Pi and Tau
 | 
	
		
			
				|  |  | -      calcPiTau(nmm::cos(Theta), Pi[i], Tau[i]);
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | +  //******************************************************************//
 | 
	
		
			
				|  |  | +  // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
 | 
	
		
			
				|  |  | +  //******************************************************************//
 | 
	
		
			
				|  |  | +  for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | +    Ha[fl][n] = D1_mlxl[n + 1];
 | 
	
		
			
				|  |  | +    Hb[fl][n] = D1_mlxl[n + 1];
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  // This function calculates Pi and Tau for a given value of cos(Theta).             //
 | 
	
		
			
				|  |  | -  // Equations (26a) - (26c)                                                          //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | -  //   nmax_: Maximum number of terms to calculate Pi and Tau                         //
 | 
	
		
			
				|  |  | -  //   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | -  //   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | -  //          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | -  //   Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c)   //
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  void MultiLayerMie<FloatType>::calcPiTau(const FloatType &costheta,
 | 
	
		
			
				|  |  | -                                std::vector<FloatType> &Pi, std::vector<FloatType> &Tau) {
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    int nmax = Pi.size();
 | 
	
		
			
				|  |  | -    if (Pi.size() != Tau.size())
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("Error! Pi and Tau vectors should have the same size!");
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    //****************************************************//
 | 
	
		
			
				|  |  | -    // Equations (26a) - (26c)                            //
 | 
	
		
			
				|  |  | -    //****************************************************//
 | 
	
		
			
				|  |  | -    // Initialize Pi and Tau
 | 
	
		
			
				|  |  | -    Pi[0] = 1.0;  // n=1
 | 
	
		
			
				|  |  | -    Tau[0] = costheta;
 | 
	
		
			
				|  |  | -    // Calculate the actual values
 | 
	
		
			
				|  |  | -    if (nmax > 1) {
 | 
	
		
			
				|  |  | -      Pi[1] = 3*costheta*Pi[0]; //n=2
 | 
	
		
			
				|  |  | -      Tau[1] = 2*costheta*Pi[1] - 3*Pi[0];
 | 
	
		
			
				|  |  | -      for (int i = 2; i < nmax; i++) { //n=[3..nmax_]
 | 
	
		
			
				|  |  | -        Pi[i] = ((i + i + 1)*costheta*Pi[i - 1] - (i + 1)*Pi[i - 2])/i;
 | 
	
		
			
				|  |  | -        Tau[i] = (i + 1)*costheta*Pi[i] - (i + 2)*Pi[i - 1];
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -  }  // end of MultiLayerMie::calcPiTau(...)
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  // This function calculates vector spherical harmonics (eq. 4.50, p. 95 BH),        //
 | 
	
		
			
				|  |  | -  // required to calculate the near-field parameters.                                 //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | -  //   Rho: Radial distance                                                           //
 | 
	
		
			
				|  |  | -  //   Phi: Azimuthal angle                                                           //
 | 
	
		
			
				|  |  | -  //   Theta: Polar angle                                                             //
 | 
	
		
			
				|  |  | -  //   rn: Either the spherical Ricatti-Bessel function of first or third kind        //
 | 
	
		
			
				|  |  | -  //   Dn: Logarithmic derivative of rn                                               //
 | 
	
		
			
				|  |  | -  //   Pi, Tau: Angular functions Pi and Tau                                          //
 | 
	
		
			
				|  |  | -  //   n: Order of vector spherical harmonics                                         //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | -  //   Mo1n, Me1n, No1n, Ne1n: Complex vector spherical harmonics                     //
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  template <typename FloatType>  template <typename evalType>
 | 
	
		
			
				|  |  | -  void MultiLayerMie<FloatType>::calcSpherHarm(const std::complex<evalType> Rho, const evalType Theta, const evalType Phi,
 | 
	
		
			
				|  |  | -                                    const std::complex<evalType> &rn, const std::complex<evalType> &Dn,
 | 
	
		
			
				|  |  | -                                    const evalType &Pi, const evalType &Tau, const evalType &n,
 | 
	
		
			
				|  |  | -                                    std::vector<std::complex<evalType> > &Mo1n, std::vector<std::complex<evalType> > &Me1n,
 | 
	
		
			
				|  |  | -                                    std::vector<std::complex<evalType> > &No1n, std::vector<std::complex<evalType> > &Ne1n) {
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    // using eq 4.50 in BH
 | 
	
		
			
				|  |  | -    std::complex<evalType> c_zero(0.0, 0.0);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -//    using nmm::sin;
 | 
	
		
			
				|  |  | -//    using nmm::cos;
 | 
	
		
			
				|  |  | -    auto sin_Phi = sin_t(Phi);
 | 
	
		
			
				|  |  | -    auto cos_Phi = cos_t(Phi);
 | 
	
		
			
				|  |  | -    auto sin_Theta = sin(Theta);
 | 
	
		
			
				|  |  | -    Mo1n[0] = c_zero;
 | 
	
		
			
				|  |  | -    Mo1n[1] = cos_Phi*Pi*rn/Rho;
 | 
	
		
			
				|  |  | -    Mo1n[2] = -sin_Phi*Tau*rn/Rho;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    Me1n[0] = c_zero;
 | 
	
		
			
				|  |  | -    Me1n[1] = -sin_Phi*Pi*rn/Rho;
 | 
	
		
			
				|  |  | -    Me1n[2] = -cos_Phi*Tau*rn/Rho;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    No1n[0] = sin_Phi*(n*n + n)*sin_Theta*Pi*rn/Rho/Rho;
 | 
	
		
			
				|  |  | -    No1n[1] = sin_Phi*Tau*Dn*rn/Rho;
 | 
	
		
			
				|  |  | -    No1n[2] = cos_Phi*Pi*Dn*rn/Rho;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    Ne1n[0] = cos_Phi*(n*n + n)*sin_Theta*Pi*rn/Rho/Rho;
 | 
	
		
			
				|  |  | -    Ne1n[1] = cos_Phi*Tau*Dn*rn/Rho;
 | 
	
		
			
				|  |  | -    Ne1n[2] = -sin_Phi*Pi*Dn*rn/Rho;
 | 
	
		
			
				|  |  | -  }  // end of MultiLayerMie::calcSpherHarm(...)
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  // This function calculates the scattering coefficients required to calculate       //
 | 
	
		
			
				|  |  | -  // both the near- and far-field parameters.                                         //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | -  //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | -  //   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | -  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | -  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | -  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | -  //         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | -  //         set this parameter to -1 and the function will calculate it.             //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | -  //   an, bn: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Return value:                                                                    //
 | 
	
		
			
				|  |  | -  //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  void MultiLayerMie<FloatType>::calcScattCoeffs() {
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    isScaCoeffsCalc_ = false;
 | 
	
		
			
				|  |  | -    an_.clear();
 | 
	
		
			
				|  |  | -    bn_.clear();
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    const std::vector<FloatType> &x = size_param_;
 | 
	
		
			
				|  |  | -    const std::vector<std::complex<FloatType> > &m = refractive_index_;
 | 
	
		
			
				|  |  | -    const int &pl = PEC_layer_position_;
 | 
	
		
			
				|  |  | -    const int L = refractive_index_.size();
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    //************************************************************************//
 | 
	
		
			
				|  |  | -    // Calculate the index of the first layer. It can be either 0 (default)   //
 | 
	
		
			
				|  |  | -    // or the index of the outermost PEC layer. In the latter case all layers //
 | 
	
		
			
				|  |  | -    // below the PEC are discarded.                                           //
 | 
	
		
			
				|  |  | -    // ***********************************************************************//
 | 
	
		
			
				|  |  | -    int fl = (pl > 0) ? pl : 0;
 | 
	
		
			
				|  |  | -    if (nmax_preset_ <= 0) nmax_ = calcNmax();
 | 
	
		
			
				|  |  | -    else nmax_ = nmax_preset_;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    std::complex<FloatType> z1, z2;
 | 
	
		
			
				|  |  | -    //**************************************************************************//
 | 
	
		
			
				|  |  | -    // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which  //
 | 
	
		
			
				|  |  | -    // means that index = layer number - 1 or index = n - 1. The only exception //
 | 
	
		
			
				|  |  | -    // are the arrays for representing D1, D3 and Q because they need a value   //
 | 
	
		
			
				|  |  | -    // for the index 0 (zero), hence it is important to consider this shift     //
 | 
	
		
			
				|  |  | -    // between different arrays. The change was done to optimize memory usage.  //
 | 
	
		
			
				|  |  | -    //**************************************************************************//
 | 
	
		
			
				|  |  | -    // Allocate memory to the arrays
 | 
	
		
			
				|  |  | -    std::vector<std::complex<FloatType> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
 | 
	
		
			
				|  |  | -                                       D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    std::vector<std::vector<std::complex<FloatType> > > Q(L), Ha(L), Hb(L);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    for (int l = 0; l < L; l++) {
 | 
	
		
			
				|  |  | -      Q[l].resize(nmax_ + 1, static_cast<FloatType>(0.0));
 | 
	
		
			
				|  |  | -      Ha[l].resize(nmax_, static_cast<FloatType>(0.0));
 | 
	
		
			
				|  |  | -      Hb[l].resize(nmax_, static_cast<FloatType>(0.0));
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    an_.resize(nmax_, static_cast<FloatType>(0.0));
 | 
	
		
			
				|  |  | -    bn_.resize(nmax_, static_cast<FloatType>(0.0));
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    std::vector<std::complex<FloatType> > PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
 | 
	
		
			
				|  |  | +  //*****************************************************//
 | 
	
		
			
				|  |  | +  // Iteration from the second layer to the last one (L) //
 | 
	
		
			
				|  |  | +  //*****************************************************//
 | 
	
		
			
				|  |  | +  std::complex<FloatType> Temp, Num, Denom;
 | 
	
		
			
				|  |  | +  std::complex<FloatType> G1, G2;
 | 
	
		
			
				|  |  | +  for (int l = fl + 1; l < L; l++) {
 | 
	
		
			
				|  |  | +    //************************************************************//
 | 
	
		
			
				|  |  | +    // Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L   //
 | 
	
		
			
				|  |  | +    //************************************************************//
 | 
	
		
			
				|  |  | +    z1 = x[l] * m[l];
 | 
	
		
			
				|  |  | +    z2 = x[l - 1] * m[l];
 | 
	
		
			
				|  |  | +    // Calculate D1 and D3 for z1
 | 
	
		
			
				|  |  | +    calcD1D3(z1, D1_mlxl, D3_mlxl);
 | 
	
		
			
				|  |  | +    // Calculate D1 and D3 for z2
 | 
	
		
			
				|  |  | +    calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      //*************************************************//
 | 
	
		
			
				|  |  | -    // Calculate D1 and D3 for z1 in the first layer   //
 | 
	
		
			
				|  |  | +    // Calculate Q, Ha and Hb in the layers fl + 1..L   //
 | 
	
		
			
				|  |  |      //*************************************************//
 | 
	
		
			
				|  |  | -    if (fl == pl) {  // PEC layer
 | 
	
		
			
				|  |  | -      for (int n = 0; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | -        D1_mlxl[n] = std::complex<FloatType>(0.0, - 1.0);
 | 
	
		
			
				|  |  | -        D3_mlxl[n] = std::complex<FloatType>(0.0, 1.0);
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | -    } else { // Regular layer
 | 
	
		
			
				|  |  | -      z1 = x[fl]* m[fl];
 | 
	
		
			
				|  |  | -      // Calculate D1 and D3
 | 
	
		
			
				|  |  | -      calcD1D3(z1, D1_mlxl, D3_mlxl);
 | 
	
		
			
				|  |  | +    // Upward recurrence for Q - equations (19a) and (19b)
 | 
	
		
			
				|  |  | +    Num =
 | 
	
		
			
				|  |  | +        std::complex<FloatType>(nmm::exp(-2.0 * (z1.imag() - z2.imag())), 0.0) *
 | 
	
		
			
				|  |  | +        std::complex<FloatType>(
 | 
	
		
			
				|  |  | +            nmm::cos(-2.0 * z2.real()) - nmm::exp(-2.0 * z2.imag()),
 | 
	
		
			
				|  |  | +            nmm::sin(-2.0 * z2.real()));
 | 
	
		
			
				|  |  | +    Denom = std::complex<FloatType>(
 | 
	
		
			
				|  |  | +        nmm::cos(-2.0 * z1.real()) - nmm::exp(-2.0 * z1.imag()),
 | 
	
		
			
				|  |  | +        nmm::sin(-2.0 * z1.real()));
 | 
	
		
			
				|  |  | +    Q[l][0] = Num / Denom;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | +      Num = (z1 * D1_mlxl[n] + FloatType(n)) *
 | 
	
		
			
				|  |  | +            (FloatType(n) - z1 * D3_mlxl[n - 1]);
 | 
	
		
			
				|  |  | +      Denom = (z2 * D1_mlxlM1[n] + FloatType(n)) *
 | 
	
		
			
				|  |  | +              (FloatType(n) - z2 * D3_mlxlM1[n - 1]);
 | 
	
		
			
				|  |  | +      Q[l][n] = ((pow2(x[l - 1] / x[l]) * Q[l][n - 1]) * Num) / Denom;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
 | 
	
		
			
				|  |  | +    for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | +      // Ha
 | 
	
		
			
				|  |  | +      if ((l - 1) == pl) {  // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | +        G1 = -D1_mlxlM1[n];
 | 
	
		
			
				|  |  | +        G2 = -D3_mlxlM1[n];
 | 
	
		
			
				|  |  | +      } else {
 | 
	
		
			
				|  |  | +        G1 = (m[l] * Ha[l - 1][n - 1]) - (m[l - 1] * D1_mlxlM1[n]);
 | 
	
		
			
				|  |  | +        G2 = (m[l] * Ha[l - 1][n - 1]) - (m[l - 1] * D3_mlxlM1[n]);
 | 
	
		
			
				|  |  | +      }  // end of if PEC
 | 
	
		
			
				|  |  | +      Temp = Q[l][n] * G1;
 | 
	
		
			
				|  |  | +      Num = (G2 * D1_mlxl[n]) - (Temp * D3_mlxl[n]);
 | 
	
		
			
				|  |  | +      Denom = G2 - Temp;
 | 
	
		
			
				|  |  | +      Ha[l][n - 1] = Num / Denom;
 | 
	
		
			
				|  |  | +      // Hb
 | 
	
		
			
				|  |  | +      if ((l - 1) == pl) {  // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | +        G1 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | +        G2 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | +      } else {
 | 
	
		
			
				|  |  | +        G1 = (m[l - 1] * Hb[l - 1][n - 1]) - (m[l] * D1_mlxlM1[n]);
 | 
	
		
			
				|  |  | +        G2 = (m[l - 1] * Hb[l - 1][n - 1]) - (m[l] * D3_mlxlM1[n]);
 | 
	
		
			
				|  |  | +      }  // end of if PEC
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Temp = Q[l][n] * G1;
 | 
	
		
			
				|  |  | +      Num = (G2 * D1_mlxl[n]) - (Temp * D3_mlxl[n]);
 | 
	
		
			
				|  |  | +      Denom = (G2 - Temp);
 | 
	
		
			
				|  |  | +      Hb[l][n - 1] = (Num / Denom);
 | 
	
		
			
				|  |  | +    }  // end of for Ha and Hb terms
 | 
	
		
			
				|  |  | +  }    // end of for layers iteration
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //**************************************//
 | 
	
		
			
				|  |  | +  // Calculate Psi and Zeta for XL         //
 | 
	
		
			
				|  |  | +  //**************************************//
 | 
	
		
			
				|  |  | +  // Calculate PsiXL and ZetaXL
 | 
	
		
			
				|  |  | +  calcPsiZeta(std::complex<FloatType>(x[L - 1], 0.0), PsiXL, ZetaXL);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //*********************************************************************//
 | 
	
		
			
				|  |  | +  // Finally, we calculate the scattering coefficients (an and bn) and   //
 | 
	
		
			
				|  |  | +  // the angular functions (Pi and Tau). Note that for these arrays the  //
 | 
	
		
			
				|  |  | +  // first layer is 0 (zero), in future versions all arrays will follow  //
 | 
	
		
			
				|  |  | +  // this convention to save memory. (13 Nov, 2014)                      //
 | 
	
		
			
				|  |  | +  //*********************************************************************//
 | 
	
		
			
				|  |  | +  FloatType a0 = 0, b0 = 0;
 | 
	
		
			
				|  |  | +  for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | +    //********************************************************************//
 | 
	
		
			
				|  |  | +    // Expressions for calculating an and bn coefficients are not valid if //
 | 
	
		
			
				|  |  | +    // there is only one PEC layer (ie, for a simple PEC sphere).          //
 | 
	
		
			
				|  |  | +    //********************************************************************//
 | 
	
		
			
				|  |  | +    if (pl < (L - 1)) {
 | 
	
		
			
				|  |  | +      an_[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1],
 | 
	
		
			
				|  |  | +                       ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | +      bn_[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1],
 | 
	
		
			
				|  |  | +                       ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | +    } else {
 | 
	
		
			
				|  |  | +      an_[n] = calc_an(n + 1, x[L - 1], std::complex<FloatType>(0.0, 0.0),
 | 
	
		
			
				|  |  | +                       std::complex<FloatType>(1.0, 0.0), PsiXL[n + 1],
 | 
	
		
			
				|  |  | +                       ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | +      bn_[n] = PsiXL[n + 1] / ZetaXL[n + 1];
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    if (n == 0) {
 | 
	
		
			
				|  |  | +      a0 = cabs(an_[0]);
 | 
	
		
			
				|  |  | +      b0 = cabs(bn_[0]);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    if (n == nmax_ - 1 && nmax_preset_ <= 0 &&
 | 
	
		
			
				|  |  | +        (cabs(an_[n]) / a0 > convergence_threshold_ &&
 | 
	
		
			
				|  |  | +         cabs(bn_[n]) / b0 > convergence_threshold_)) {
 | 
	
		
			
				|  |  | +      std::cout << "Failed to converge in Mie series for nmax=" << nmax_
 | 
	
		
			
				|  |  | +                << std::endl;
 | 
	
		
			
				|  |  | +      std::cout << "convergence threshold: " << convergence_threshold_
 | 
	
		
			
				|  |  | +                << std::endl;
 | 
	
		
			
				|  |  | +      std::cout << "Mie series a[nmax]/a[1]:" << cabs(an_[n]) / a0
 | 
	
		
			
				|  |  | +                << " and b[nmax]/b[1]:" << cabs(bn_[n]) / b0 << std::endl;
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    //******************************************************************//
 | 
	
		
			
				|  |  | -    // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
 | 
	
		
			
				|  |  | -    //******************************************************************//
 | 
	
		
			
				|  |  | -    for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | -      Ha[fl][n] = D1_mlxl[n + 1];
 | 
	
		
			
				|  |  | -      Hb[fl][n] = D1_mlxl[n + 1];
 | 
	
		
			
				|  |  | +    // TODO seems to provide not enough terms for near-field calclulation.
 | 
	
		
			
				|  |  | +    //      if (cabs(an_[n]) / a0 < convergence_threshold_ &&
 | 
	
		
			
				|  |  | +    //          cabs(bn_[n]) / b0 < convergence_threshold_) {
 | 
	
		
			
				|  |  | +    //        if (nmax_preset_ <= 0) nmax_ = n;
 | 
	
		
			
				|  |  | +    //        break;
 | 
	
		
			
				|  |  | +    //      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    if (nmm::isnan(an_[n].real()) || nmm::isnan(an_[n].imag()) ||
 | 
	
		
			
				|  |  | +        nmm::isnan(bn_[n].real()) || nmm::isnan(bn_[n].imag())) {
 | 
	
		
			
				|  |  | +      std::cout
 | 
	
		
			
				|  |  | +          << "nmax value was changed due to unexpected error!!! New values is "
 | 
	
		
			
				|  |  | +          << n << " (was " << nmax_ << ")" << std::endl;
 | 
	
		
			
				|  |  | +      nmax_ = n;
 | 
	
		
			
				|  |  | +      break;
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | -    //*****************************************************//
 | 
	
		
			
				|  |  | -    // Iteration from the second layer to the last one (L) //
 | 
	
		
			
				|  |  | -    //*****************************************************//
 | 
	
		
			
				|  |  | -    std::complex<FloatType> Temp, Num, Denom;
 | 
	
		
			
				|  |  | -    std::complex<FloatType> G1, G2;
 | 
	
		
			
				|  |  | -    for (int l = fl + 1; l < L; l++) {
 | 
	
		
			
				|  |  | -      //************************************************************//
 | 
	
		
			
				|  |  | -      //Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L   //
 | 
	
		
			
				|  |  | -      //************************************************************//
 | 
	
		
			
				|  |  | -      z1 = x[l]*m[l];
 | 
	
		
			
				|  |  | -      z2 = x[l - 1]*m[l];
 | 
	
		
			
				|  |  | -      //Calculate D1 and D3 for z1
 | 
	
		
			
				|  |  | -      calcD1D3(z1, D1_mlxl, D3_mlxl);
 | 
	
		
			
				|  |  | -      //Calculate D1 and D3 for z2
 | 
	
		
			
				|  |  | -      calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -      //*************************************************//
 | 
	
		
			
				|  |  | -      //Calculate Q, Ha and Hb in the layers fl + 1..L   //
 | 
	
		
			
				|  |  | -      //*************************************************//
 | 
	
		
			
				|  |  | -      // Upward recurrence for Q - equations (19a) and (19b)
 | 
	
		
			
				|  |  | -      Num = std::complex<FloatType>(nmm::exp(-2.0*(z1.imag() - z2.imag())), 0.0)
 | 
	
		
			
				|  |  | -      *std::complex<FloatType>(nmm::cos(-2.0*z2.real()) - nmm::exp(-2.0*z2.imag()), nmm::sin(-2.0*z2.real()));
 | 
	
		
			
				|  |  | -      Denom = std::complex<FloatType>(nmm::cos(-2.0*z1.real()) - nmm::exp(-2.0*z1.imag()), nmm::sin(-2.0*z1.real()));
 | 
	
		
			
				|  |  | -      Q[l][0] = Num/Denom;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -      for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | -        Num = (z1*D1_mlxl[n] + FloatType(n))*(FloatType(n) - z1*D3_mlxl[n - 1]);
 | 
	
		
			
				|  |  | -        Denom = (z2*D1_mlxlM1[n] + FloatType(n))*(FloatType(n) - z2*D3_mlxlM1[n - 1]);
 | 
	
		
			
				|  |  | -        Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | -      // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
 | 
	
		
			
				|  |  | -      for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | -        //Ha
 | 
	
		
			
				|  |  | -        if ((l - 1) == pl) { // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | -          G1 = -D1_mlxlM1[n];
 | 
	
		
			
				|  |  | -          G2 = -D3_mlxlM1[n];
 | 
	
		
			
				|  |  | -        } else {
 | 
	
		
			
				|  |  | -          G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
 | 
	
		
			
				|  |  | -          G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
 | 
	
		
			
				|  |  | -        }  // end of if PEC
 | 
	
		
			
				|  |  | -        Temp = Q[l][n]*G1;
 | 
	
		
			
				|  |  | -        Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
 | 
	
		
			
				|  |  | -        Denom = G2 - Temp;
 | 
	
		
			
				|  |  | -        Ha[l][n - 1] = Num/Denom;
 | 
	
		
			
				|  |  | -        //Hb
 | 
	
		
			
				|  |  | -        if ((l - 1) == pl) { // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | -          G1 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | -          G2 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | -        } else {
 | 
	
		
			
				|  |  | -          G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
 | 
	
		
			
				|  |  | -          G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
 | 
	
		
			
				|  |  | -        }  // end of if PEC
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -        Temp = Q[l][n]*G1;
 | 
	
		
			
				|  |  | -        Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
 | 
	
		
			
				|  |  | -        Denom = (G2- Temp);
 | 
	
		
			
				|  |  | -        Hb[l][n - 1] = (Num/ Denom);
 | 
	
		
			
				|  |  | -      }  // end of for Ha and Hb terms
 | 
	
		
			
				|  |  | -    }  // end of for layers iteration
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    //**************************************//
 | 
	
		
			
				|  |  | -    //Calculate Psi and Zeta for XL         //
 | 
	
		
			
				|  |  | -    //**************************************//
 | 
	
		
			
				|  |  | -    // Calculate PsiXL and ZetaXL
 | 
	
		
			
				|  |  | -    calcPsiZeta(std::complex<FloatType>(x[L - 1],0.0), PsiXL, ZetaXL);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    //*********************************************************************//
 | 
	
		
			
				|  |  | -    // Finally, we calculate the scattering coefficients (an and bn) and   //
 | 
	
		
			
				|  |  | -    // the angular functions (Pi and Tau). Note that for these arrays the  //
 | 
	
		
			
				|  |  | -    // first layer is 0 (zero), in future versions all arrays will follow  //
 | 
	
		
			
				|  |  | -    // this convention to save memory. (13 Nov, 2014)                      //
 | 
	
		
			
				|  |  | -    //*********************************************************************//
 | 
	
		
			
				|  |  | -    FloatType a0=0, b0=0;
 | 
	
		
			
				|  |  | -    for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | -      //********************************************************************//
 | 
	
		
			
				|  |  | -      //Expressions for calculating an and bn coefficients are not valid if //
 | 
	
		
			
				|  |  | -      //there is only one PEC layer (ie, for a simple PEC sphere).          //
 | 
	
		
			
				|  |  | -      //********************************************************************//
 | 
	
		
			
				|  |  | -      if (pl < (L - 1)) {
 | 
	
		
			
				|  |  | -        an_[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | -        bn_[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | -      } else {
 | 
	
		
			
				|  |  | -        an_[n] = calc_an(n + 1, x[L - 1], std::complex<FloatType>(0.0, 0.0), std::complex<FloatType>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | -        bn_[n] = PsiXL[n + 1]/ZetaXL[n + 1];
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | -      if (n == 0) {a0 = cabs(an_[0]); b0 = cabs(bn_[0]);}
 | 
	
		
			
				|  |  | -      if (n == nmax_ - 1 && nmax_preset_ <= 0
 | 
	
		
			
				|  |  | -          && (cabs(an_[n]) / a0 > convergence_threshold_ &&
 | 
	
		
			
				|  |  | -              cabs(bn_[n]) / b0 > convergence_threshold_)) {
 | 
	
		
			
				|  |  | -        std::cout << "Failed to converge in Mie series for nmax="<<nmax_ << std::endl;
 | 
	
		
			
				|  |  | -        std::cout << "convergence threshold: "<< convergence_threshold_ << std::endl;
 | 
	
		
			
				|  |  | -        std::cout << "Mie series a[nmax]/a[1]:" << cabs(an_[n]) / a0 << " and b[nmax]/b[1]:" << cabs(bn_[n]) / b0 << std::endl;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | +  }  // end of for an and bn terms
 | 
	
		
			
				|  |  | +  isScaCoeffsCalc_ = true;
 | 
	
		
			
				|  |  | +}  // end of MultiLayerMie::calcScattCoeffs()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//*******************************************************************************
 | 
	
		
			
				|  |  | +// This function calculates the actual scattering parameters and amplitudes
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Input parameters:
 | 
	
		
			
				|  |  | +//   L: Number of layers
 | 
	
		
			
				|  |  | +//   pl: Index of PEC layer. If there is none just send -1
 | 
	
		
			
				|  |  | +//   x: Array containing the size parameters of the layers [0..L-1]
 | 
	
		
			
				|  |  | +//   m: Array containing the relative refractive indexes of the layers [0..L-1]
 | 
	
		
			
				|  |  | +//   nTheta: Number of scattering angles
 | 
	
		
			
				|  |  | +//   Theta: Array containing all the scattering angles where the scattering
 | 
	
		
			
				|  |  | +//          amplitudes will be calculated
 | 
	
		
			
				|  |  | +//   nmax_: Maximum number of multipolar expansion terms to be used for the
 | 
	
		
			
				|  |  | +//         calculations. Only use it if you know what you are doing, otherwise
 | 
	
		
			
				|  |  | +//         set this parameter to -1 and the function will calculate it
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Output parameters:
 | 
	
		
			
				|  |  | +//   Qext: Efficiency factor for extinction
 | 
	
		
			
				|  |  | +//   Qsca: Efficiency factor for scattering
 | 
	
		
			
				|  |  | +//   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)
 | 
	
		
			
				|  |  | +//   Qbk: Efficiency factor for backscattering
 | 
	
		
			
				|  |  | +//   Qpr: Efficiency factor for the radiation pressure
 | 
	
		
			
				|  |  | +//   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)
 | 
	
		
			
				|  |  | +//   Albedo: Single scattering albedo (Albedo = Qsca/Qext)
 | 
	
		
			
				|  |  | +//   S1, S2: Complex scattering amplitudes
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Return value:
 | 
	
		
			
				|  |  | +//   Number of multipolar expansion terms used for the calculations
 | 
	
		
			
				|  |  | +//*******************************************************************************
 | 
	
		
			
				|  |  | +template <typename FloatType>
 | 
	
		
			
				|  |  | +void MultiLayerMie<FloatType>::RunMieCalculation() {
 | 
	
		
			
				|  |  | +  if (size_param_.size() != refractive_index_.size())
 | 
	
		
			
				|  |  | +    throw std::invalid_argument(
 | 
	
		
			
				|  |  | +        "Each size parameter should have only one index!");
 | 
	
		
			
				|  |  | +  if (size_param_.size() == 0)
 | 
	
		
			
				|  |  | +    throw std::invalid_argument("Initialize model first!");
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  const std::vector<FloatType>& x = size_param_;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // MarkUncalculated();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // Calculate scattering coefficients
 | 
	
		
			
				|  |  | +  if (!isScaCoeffsCalc_)
 | 
	
		
			
				|  |  | +    calcScattCoeffs();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // Initialize the scattering parameters
 | 
	
		
			
				|  |  | +  Qext_ = 0.0;
 | 
	
		
			
				|  |  | +  Qsca_ = 0.0;
 | 
	
		
			
				|  |  | +  Qabs_ = 0.0;
 | 
	
		
			
				|  |  | +  Qbk_ = 0.0;
 | 
	
		
			
				|  |  | +  Qpr_ = 0.0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  asymmetry_factor_ = 0.0;
 | 
	
		
			
				|  |  | +  albedo_ = 0.0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // Initialize the scattering amplitudes
 | 
	
		
			
				|  |  | +  std::vector<std::complex<FloatType>> tmp1(theta_.size(),
 | 
	
		
			
				|  |  | +                                            std::complex<FloatType>(0.0, 0.0));
 | 
	
		
			
				|  |  | +  S1_.swap(tmp1);
 | 
	
		
			
				|  |  | +  S2_ = S1_;
 | 
	
		
			
				|  |  | +  // Precalculate cos(theta) - gives about 5% speed up.
 | 
	
		
			
				|  |  | +  std::vector<FloatType> costheta(theta_.size(), static_cast<FloatType>(0.0));
 | 
	
		
			
				|  |  | +  for (unsigned int t = 0; t < theta_.size(); t++) {
 | 
	
		
			
				|  |  | +    costheta[t] = nmm::cos(theta_[t]);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -//  // TODO seems to provide not enough terms for near-field calclulation.
 | 
	
		
			
				|  |  | -//      if (cabs(an_[n]) / a0 < convergence_threshold_ &&
 | 
	
		
			
				|  |  | -//          cabs(bn_[n]) / b0 < convergence_threshold_) {
 | 
	
		
			
				|  |  | -//        if (nmax_preset_ <= 0) nmax_ = n;
 | 
	
		
			
				|  |  | -//        break;
 | 
	
		
			
				|  |  | -//      }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -      if (nmm::isnan(an_[n].real()) || nmm::isnan(an_[n].imag()) ||
 | 
	
		
			
				|  |  | -          nmm::isnan(bn_[n].real()) || nmm::isnan(bn_[n].imag())
 | 
	
		
			
				|  |  | -          ) {
 | 
	
		
			
				|  |  | -        std::cout << "nmax value was changed due to unexpected error!!! New values is "<< n
 | 
	
		
			
				|  |  | -                  << " (was "<<nmax_<<")"<<std::endl;
 | 
	
		
			
				|  |  | -        nmax_ = n;
 | 
	
		
			
				|  |  | -        break;
 | 
	
		
			
				|  |  | +  std::vector<FloatType> Pi(nmax_), Tau(nmax_);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::complex<FloatType> Qbktmp(0.0, 0.0);
 | 
	
		
			
				|  |  | +  std::vector<std::complex<FloatType>> Qbktmp_ch(nmax_ - 1, Qbktmp);
 | 
	
		
			
				|  |  | +  // By using downward recurrence we avoid loss of precision due to float
 | 
	
		
			
				|  |  | +  // rounding errors See:
 | 
	
		
			
				|  |  | +  // https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
 | 
	
		
			
				|  |  | +  //      http://en.wikipedia.org/wiki/Loss_of_significance
 | 
	
		
			
				|  |  | +  for (int n = nmax_ - 2; n >= 0; n--) {
 | 
	
		
			
				|  |  | +    //      for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | +    const int n1 = n + 1;
 | 
	
		
			
				|  |  | +    if (mode_n_ == Modes::kAll) {
 | 
	
		
			
				|  |  | +      // Equation (27)
 | 
	
		
			
				|  |  | +      Qext_ += (n1 + n1 + 1.0) * (an_[n].real() + bn_[n].real());
 | 
	
		
			
				|  |  | +      // Equation (28)
 | 
	
		
			
				|  |  | +      Qsca_ += (n1 + n1 + 1.0) *
 | 
	
		
			
				|  |  | +               (an_[n].real() * an_[n].real() + an_[n].imag() * an_[n].imag() +
 | 
	
		
			
				|  |  | +                bn_[n].real() * bn_[n].real() + bn_[n].imag() * bn_[n].imag());
 | 
	
		
			
				|  |  | +      //        std::cout<<"n ="<< n1 << " ext:"<<Qext_ <<"
 | 
	
		
			
				|  |  | +      //        sca:"<<Qsca_<<std::endl;
 | 
	
		
			
				|  |  | +      // Equation (29)
 | 
	
		
			
				|  |  | +      Qpr_ += ((n1 * (n1 + 2.0) / (n1 + 1.0)) *
 | 
	
		
			
				|  |  | +                   ((an_[n] * std::conj(an_[n1]) + bn_[n] * std::conj(bn_[n1]))
 | 
	
		
			
				|  |  | +                        .real()) +
 | 
	
		
			
				|  |  | +               ((n1 + n1 + 1.0) / (n1 * (n1 + 1.0))) *
 | 
	
		
			
				|  |  | +                   (an_[n] * std::conj(bn_[n])).real());
 | 
	
		
			
				|  |  | +      // Equation (33)
 | 
	
		
			
				|  |  | +      Qbktmp += (FloatType)(n1 + n1 + 1.0) * (1.0 - 2.0 * (n1 % 2)) *
 | 
	
		
			
				|  |  | +                (an_[n] - bn_[n]);
 | 
	
		
			
				|  |  | +      // Calculate the scattering amplitudes (S1 and S2) Equations (25a) - (25b)
 | 
	
		
			
				|  |  | +      for (unsigned int t = 0; t < theta_.size(); t++) {
 | 
	
		
			
				|  |  | +        calcPiTau(costheta[t], Pi, Tau);
 | 
	
		
			
				|  |  | +        S1_[t] += calc_S1(n1, an_[n], bn_[n], Pi[n], Tau[n]);
 | 
	
		
			
				|  |  | +        S2_[t] += calc_S2(n1, an_[n], bn_[n], Pi[n], Tau[n]);
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    }  // end of for an and bn terms
 | 
	
		
			
				|  |  | -    isScaCoeffsCalc_ = true;
 | 
	
		
			
				|  |  | -  }  // end of MultiLayerMie::calcScattCoeffs()
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  // This function calculates the actual scattering parameters and amplitudes         //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | -  //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | -  //   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | -  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | -  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | -  //   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | -  //   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | -  //          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | -  //   nmax_: Maximum number of multipolar expansion terms to be used for the         //
 | 
	
		
			
				|  |  | -  //         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | -  //         set this parameter to -1 and the function will calculate it              //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | -  //   Qext: Efficiency factor for extinction                                         //
 | 
	
		
			
				|  |  | -  //   Qsca: Efficiency factor for scattering                                         //
 | 
	
		
			
				|  |  | -  //   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
 | 
	
		
			
				|  |  | -  //   Qbk: Efficiency factor for backscattering                                      //
 | 
	
		
			
				|  |  | -  //   Qpr: Efficiency factor for the radiation pressure                              //
 | 
	
		
			
				|  |  | -  //   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
 | 
	
		
			
				|  |  | -  //   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
 | 
	
		
			
				|  |  | -  //   S1, S2: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Return value:                                                                    //
 | 
	
		
			
				|  |  | -  //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  template <typename FloatType>
 | 
	
		
			
				|  |  | -  void MultiLayerMie<FloatType>::RunMieCalculation() {
 | 
	
		
			
				|  |  | -    if (size_param_.size() != refractive_index_.size())
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("Each size parameter should have only one index!");
 | 
	
		
			
				|  |  | -    if (size_param_.size() == 0)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("Initialize model first!");
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    const std::vector<FloatType> &x = size_param_;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    //MarkUncalculated();
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    // Calculate scattering coefficients
 | 
	
		
			
				|  |  | -    if (!isScaCoeffsCalc_) calcScattCoeffs();
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    // Initialize the scattering parameters
 | 
	
		
			
				|  |  | -    Qext_ = 0.0;
 | 
	
		
			
				|  |  | -    Qsca_ = 0.0;
 | 
	
		
			
				|  |  | -    Qabs_ = 0.0;
 | 
	
		
			
				|  |  | -    Qbk_ = 0.0;
 | 
	
		
			
				|  |  | -    Qpr_ = 0.0;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    asymmetry_factor_ = 0.0;
 | 
	
		
			
				|  |  | -    albedo_ = 0.0;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    // Initialize the scattering amplitudes
 | 
	
		
			
				|  |  | -    std::vector<std::complex<FloatType> > tmp1(theta_.size(),std::complex<FloatType>(0.0, 0.0));
 | 
	
		
			
				|  |  | -    S1_.swap(tmp1);
 | 
	
		
			
				|  |  | -    S2_ = S1_;
 | 
	
		
			
				|  |  | -    // Precalculate cos(theta) - gives about 5% speed up.
 | 
	
		
			
				|  |  | -    std::vector<FloatType> costheta(theta_.size(), static_cast<FloatType>(0.0));
 | 
	
		
			
				|  |  | -    for (unsigned int t = 0; t < theta_.size(); t++) {
 | 
	
		
			
				|  |  | -      costheta[t] = nmm::cos(theta_[t]);
 | 
	
		
			
				|  |  | +      continue;
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    std::vector<FloatType> Pi(nmax_), Tau(nmax_);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    std::complex<FloatType> Qbktmp(0.0, 0.0);
 | 
	
		
			
				|  |  | -    std::vector< std::complex<FloatType> > Qbktmp_ch(nmax_ - 1, Qbktmp);
 | 
	
		
			
				|  |  | -    // By using downward recurrence we avoid loss of precision due to float rounding errors
 | 
	
		
			
				|  |  | -    // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
 | 
	
		
			
				|  |  | -    //      http://en.wikipedia.org/wiki/Loss_of_significance
 | 
	
		
			
				|  |  | -    for (int n = nmax_ - 2; n >= 0; n--) {
 | 
	
		
			
				|  |  | -//      for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | -      const int n1 = n + 1;
 | 
	
		
			
				|  |  | -      if (mode_n_ == Modes::kAll) {
 | 
	
		
			
				|  |  | -        // Equation (27)
 | 
	
		
			
				|  |  | -        Qext_ += (n1 + n1 + 1.0) * (an_[n].real() + bn_[n].real());
 | 
	
		
			
				|  |  | -        // Equation (28)
 | 
	
		
			
				|  |  | -        Qsca_ += (n1 + n1 + 1.0) * (an_[n].real() * an_[n].real() + an_[n].imag() * an_[n].imag()
 | 
	
		
			
				|  |  | -            + bn_[n].real() * bn_[n].real() + bn_[n].imag() * bn_[n].imag());
 | 
	
		
			
				|  |  | -//        std::cout<<"n ="<< n1 << " ext:"<<Qext_ <<" sca:"<<Qsca_<<std::endl;
 | 
	
		
			
				|  |  | -        // Equation (29)
 | 
	
		
			
				|  |  | -        Qpr_ += ((n1 * (n1 + 2.0) / (n1 + 1.0)) * ((an_[n] * std::conj(an_[n1]) + bn_[n] * std::conj(bn_[n1])).real())
 | 
	
		
			
				|  |  | -            + ((n1 + n1 + 1.0) / (n1 * (n1 + 1.0))) * (an_[n] * std::conj(bn_[n])).real());
 | 
	
		
			
				|  |  | -        // Equation (33)
 | 
	
		
			
				|  |  | -        Qbktmp += (FloatType) (n1 + n1 + 1.0) * (1.0 - 2.0 * (n1 % 2)) * (an_[n] - bn_[n]);
 | 
	
		
			
				|  |  | -        // Calculate the scattering amplitudes (S1 and S2) Equations (25a) - (25b)
 | 
	
		
			
				|  |  | +    if (n1 == mode_n_) {
 | 
	
		
			
				|  |  | +      if (mode_type_ == Modes::kElectric || mode_type_ == Modes::kAll) {
 | 
	
		
			
				|  |  | +        Qext_ += (n1 + n1 + 1.0) * (an_[n].real());
 | 
	
		
			
				|  |  | +        Qsca_ += (n1 + n1 + 1.0) * (an_[n].real() * an_[n].real() +
 | 
	
		
			
				|  |  | +                                    an_[n].imag() * an_[n].imag());
 | 
	
		
			
				|  |  | +        Qpr_ += std::nan("");
 | 
	
		
			
				|  |  | +        Qbktmp +=
 | 
	
		
			
				|  |  | +            (FloatType)(n1 + n1 + 1.0) * (1.0 - 2.0 * (n1 % 2)) * (an_[n]);
 | 
	
		
			
				|  |  |          for (unsigned int t = 0; t < theta_.size(); t++) {
 | 
	
		
			
				|  |  |            calcPiTau(costheta[t], Pi, Tau);
 | 
	
		
			
				|  |  | -          S1_[t] += calc_S1(n1, an_[n], bn_[n], Pi[n], Tau[n]);
 | 
	
		
			
				|  |  | -          S2_[t] += calc_S2(n1, an_[n], bn_[n], Pi[n], Tau[n]);
 | 
	
		
			
				|  |  | +          S1_[t] += calc_S1(n1, an_[n], static_cast<std::complex<FloatType>>(0),
 | 
	
		
			
				|  |  | +                            Pi[n], Tau[n]);
 | 
	
		
			
				|  |  | +          S2_[t] += calc_S2(n1, an_[n], static_cast<std::complex<FloatType>>(0),
 | 
	
		
			
				|  |  | +                            Pi[n], Tau[n]);
 | 
	
		
			
				|  |  |          }
 | 
	
		
			
				|  |  | -        continue;
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  | -      if (n1 == mode_n_) {
 | 
	
		
			
				|  |  | -        if (mode_type_ == Modes::kElectric || mode_type_ == Modes::kAll) {
 | 
	
		
			
				|  |  | -          Qext_ += (n1 + n1 + 1.0) * (an_[n].real());
 | 
	
		
			
				|  |  | -          Qsca_ += (n1 + n1 + 1.0) * (an_[n].real() * an_[n].real() + an_[n].imag() * an_[n].imag());
 | 
	
		
			
				|  |  | -          Qpr_ += std::nan("");
 | 
	
		
			
				|  |  | -          Qbktmp += (FloatType) (n1 + n1 + 1.0) * (1.0 - 2.0 * (n1 % 2)) * (an_[n]);
 | 
	
		
			
				|  |  | -          for (unsigned int t = 0; t < theta_.size(); t++) {
 | 
	
		
			
				|  |  | -            calcPiTau(costheta[t], Pi, Tau);
 | 
	
		
			
				|  |  | -            S1_[t] += calc_S1(n1, an_[n], static_cast<std::complex<FloatType>>(0), Pi[n], Tau[n]);
 | 
	
		
			
				|  |  | -            S2_[t] += calc_S2(n1, an_[n], static_cast<std::complex<FloatType>>(0), Pi[n], Tau[n]);
 | 
	
		
			
				|  |  | -          }
 | 
	
		
			
				|  |  | -        }
 | 
	
		
			
				|  |  | -        if (mode_type_ == Modes::kMagnetic || mode_type_ == Modes::kAll) {
 | 
	
		
			
				|  |  | -          Qext_ += (n1 + n1 + 1.0) * (bn_[n].real());
 | 
	
		
			
				|  |  | -          Qsca_ += (n1 + n1 + 1.0) * (bn_[n].real() * bn_[n].real() + bn_[n].imag() * bn_[n].imag());
 | 
	
		
			
				|  |  | -          Qpr_ += std::nan("");
 | 
	
		
			
				|  |  | -          Qbktmp += (FloatType) (n1 + n1 + 1.0) * (1.0 - 2.0 * (n1 % 2)) * (bn_[n]);
 | 
	
		
			
				|  |  | -          for (unsigned int t = 0; t < theta_.size(); t++) {
 | 
	
		
			
				|  |  | -            calcPiTau(costheta[t], Pi, Tau);
 | 
	
		
			
				|  |  | -            S1_[t] += calc_S1(n1, static_cast<std::complex<FloatType>>(0), bn_[n], Pi[n], Tau[n]);
 | 
	
		
			
				|  |  | -            S2_[t] += calc_S2(n1, static_cast<std::complex<FloatType>>(0), bn_[n], Pi[n], Tau[n]);
 | 
	
		
			
				|  |  | -          }
 | 
	
		
			
				|  |  | +      if (mode_type_ == Modes::kMagnetic || mode_type_ == Modes::kAll) {
 | 
	
		
			
				|  |  | +        Qext_ += (n1 + n1 + 1.0) * (bn_[n].real());
 | 
	
		
			
				|  |  | +        Qsca_ += (n1 + n1 + 1.0) * (bn_[n].real() * bn_[n].real() +
 | 
	
		
			
				|  |  | +                                    bn_[n].imag() * bn_[n].imag());
 | 
	
		
			
				|  |  | +        Qpr_ += std::nan("");
 | 
	
		
			
				|  |  | +        Qbktmp +=
 | 
	
		
			
				|  |  | +            (FloatType)(n1 + n1 + 1.0) * (1.0 - 2.0 * (n1 % 2)) * (bn_[n]);
 | 
	
		
			
				|  |  | +        for (unsigned int t = 0; t < theta_.size(); t++) {
 | 
	
		
			
				|  |  | +          calcPiTau(costheta[t], Pi, Tau);
 | 
	
		
			
				|  |  | +          S1_[t] += calc_S1(n1, static_cast<std::complex<FloatType>>(0), bn_[n],
 | 
	
		
			
				|  |  | +                            Pi[n], Tau[n]);
 | 
	
		
			
				|  |  | +          S2_[t] += calc_S2(n1, static_cast<std::complex<FloatType>>(0), bn_[n],
 | 
	
		
			
				|  |  | +                            Pi[n], Tau[n]);
 | 
	
		
			
				|  |  |          }
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | -    FloatType x2 = pow2(x.back());
 | 
	
		
			
				|  |  | -    Qext_ = 2.0*(Qext_)/x2;                                 // Equation (27)
 | 
	
		
			
				|  |  | -    Qsca_ = 2.0*(Qsca_)/x2;                                 // Equation (28)
 | 
	
		
			
				|  |  | -    Qpr_ = Qext_ - 4.0*(Qpr_)/x2;                           // Equation (29)
 | 
	
		
			
				|  |  | -    Qabs_ = Qext_ - Qsca_;                                  // Equation (30)
 | 
	
		
			
				|  |  | -    albedo_ = Qsca_/Qext_;                                  // Equation (31)
 | 
	
		
			
				|  |  | -    asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_;               // Equation (32)
 | 
	
		
			
				|  |  | -    Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2;    // Equation (33)
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    isMieCalculated_ = true;
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | +  FloatType x2 = pow2(x.back());
 | 
	
		
			
				|  |  | +  Qext_ = 2.0 * (Qext_) / x2;                  // Equation (27)
 | 
	
		
			
				|  |  | +  Qsca_ = 2.0 * (Qsca_) / x2;                  // Equation (28)
 | 
	
		
			
				|  |  | +  Qpr_ = Qext_ - 4.0 * (Qpr_) / x2;            // Equation (29)
 | 
	
		
			
				|  |  | +  Qabs_ = Qext_ - Qsca_;                       // Equation (30)
 | 
	
		
			
				|  |  | +  albedo_ = Qsca_ / Qext_;                     // Equation (31)
 | 
	
		
			
				|  |  | +  asymmetry_factor_ = (Qext_ - Qpr_) / Qsca_;  // Equation (32)
 | 
	
		
			
				|  |  | +  Qbk_ = (Qbktmp.real() * Qbktmp.real() + Qbktmp.imag() * Qbktmp.imag()) /
 | 
	
		
			
				|  |  | +         x2;  // Equation (33)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  isMieCalculated_ = true;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  }  // end of namespace nmie
 | 
	
		
			
				|  |  |  #endif  // SRC_NMIE_BASIC_HPP_
 |