123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337 |
- #!/usr/bin/env python3
- # -*- coding: UTF-8 -*-
- from scipy.special import hankel2 as H2n
- import matplotlib.pyplot as plt
- import numpy as np
- import os
- import scipy.io
- c = 299792458.0
- eps_0 = 8.854187817e-12 # F/m
- pi = np.pi
- # r of monitor
- #r = 146.513e-9
- r = 800e-9
- # debug = True
- # verbose = 7
- debug = False
- verbose = 6
- def read_data_mat(fname):
- #data = "z, dip.power, Ex, Ey, Ez, Hx, Hy, Hz, n_Au"
- # 0, 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 "
- mat = scipy.io.loadmat(fname)
-
- lambd = np.reshape(mat["lambda"],(-1))
- dippower = np.reshape(mat["dippower"],(-1))
- vacpower = np.reshape(mat["vacpower"],(-1))
- z = np.reshape(mat["z"],(-1))
- n_Au = np.reshape(mat["n_fdtd"],(-1))
- onez = np.ones((len(z)))
- data1 = {}
- r1 = mat["mon1_E"][0,0][4][0,0]
- E1 = mat["mon1_E"][0,0][0]
- H1 = mat["mon1_H"][0,0][0]
- data2 = {}
- r2 = mat["mon2_E"][0,0][4][0,0]
- E2 = mat["mon2_E"][0,0][0]
- H2 = mat["mon2_H"][0,0][0]
- for i in range(len(lambd)):
- fdata = np.vstack(( z.astype(np.complex128), dippower[i]*onez.astype(np.complex128)
- ,E1[:,0,i], E1[:,1,i], E1[:,2,i]
- ,H1[:,0,i], H1[:,1,i], H1[:,2,i]
- ,n_Au[i]*onez.astype(np.complex128), dippower[i]*onez.astype(np.complex128)
- ))
- data1[lambd[i]]=fdata
- fdata = np.vstack(( z.astype(np.complex128), dippower[i]*onez.astype(np.complex128)
- ,E2[:,0,i], E2[:,1,i], E2[:,2,i]
- ,H2[:,0,i], H2[:,1,i], H2[:,2,i]
- ,n_Au[i]*onez.astype(np.complex128), dippower[i]*onez.astype(np.complex128)
- ))
- data2[lambd[i]]=fdata
- if debug: break
- return ((r1,data1),(r2,data2))
- def read_data(dirname):
- data = {}
- WLs = []
- for r,d,f in os.walk(dirname):
- for fname in f:
- WLs.append(fname)
- for fname in WLs:
- fdata = np.transpose(
- np.genfromtxt(dirname+"/"+fname, delimiter=", ",skip_header=1
- ,dtype=None, encoding = None
- , converters={0: lambda s: complex(s),
- 1: lambda s: complex(s),
- 2: lambda s: complex(s.replace('i', 'j')),
- 3: lambda s: complex(s.replace('i', 'j')),
- 4: lambda s: complex(s.replace('i', 'j')),
- 5: lambda s: complex(s.replace('i', 'j')),
- 6: lambda s: complex(s.replace('i', 'j')),
- 7: lambda s: complex(s.replace('i', 'j')),
- 8: lambda s: complex(s.replace('i', 'j'))
- }
- )
- )
- data[float(fname[2:-4])]=fdata
- if debug: break
- return data
- def find_nearest(array,value):
- idx = (np.abs(array-value)).argmin()
- return array[idx],idx
- def get_WLs_idx(WLs, data):
- dist = 1 #mkm
- mmedia = 1 # vacuum
- shift = 1 # one mesh step
- WLs_idx = []
- for wl in WLs:
- val, idx = find_nearest(data[dist][mmedia][shift][0,:],wl*1e-9)
- WLs_idx.append(idx)
- return WLs_idx
- # def check_field_match(data_in_air, data_in_gold,wl_idx,z_vec,kappa1,kappa2,eps2):
- # z = z_vec[i]*1e-9
- # if verbose > 8: print("z =",z)
- # H1_0 = H1[i]/np.exp(-kappa1[wl_idx]*z)
- # H2_0 = H2[i]/np.exp(-kappa2[wl_idx]*z)
- # E1_0 = E1[i]/np.exp(-kappa1[wl_idx]*z)
- # E2_0 = E2[i]/np.exp(-kappa2[wl_idx]*z)
- # E2_0e = E2[i]/np.exp(-kappa2[wl_idx]*z)*eps2[wl_idx]
- # if verbose > 8:
- # print("H0 air (%5.4g %+5.4gj)"%(np.real(H1_0), np.imag(H1_0)),
- # " from H1 (%5.4g %+5.4gj)"%(np.real(H1[i]), np.imag(H1[i])))
- def cross(a, b):
- c = [a[1]*b[2] - a[2]*b[1],
- a[2]*b[0] - a[0]*b[2],
- a[0]*b[1] - a[1]*b[0]]
- return c
- def analyze(data,wl):
- # print(data[0,:]) # all z values
- #data = "z, dip.power, Ex, Ey, Ez, Hx, Hy, Hz, n_Au, vac. power"
- # 0, 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9"
- lambd = wl
- omega = 2*pi*c/lambd
- eps_d = complex(1) # air, z>0
- eps_m = data[8,0]**2 # metal, z<0
- dip_power = data[1,0]
- vac_power = data[9,0]
- z = data[0,:]
- idx_d = np.nonzero(z>1e-10)
- idx_0 = np.nonzero(np.logical_and(z<=1e-10, z>=-1e-10))
- idx_m = np.nonzero(z<-1e-10)
- z_d = z[idx_d]
- z_0 = z[idx_0]
- z_m = z[idx_m]
- if (not np.array_equal(np.hstack((z_m, z_0, z_d)), z)):
- print("ERROR! loosing z values!")
- raise
-
- Ex_m = data[2,idx_m][0]
- Ey_m = data[3,idx_m][0]
- Ez_m = data[4,idx_m][0]
- Hx_m = data[5,idx_m][0]
- Hy_m = data[6,idx_m][0]
- Hz_m = data[7,idx_m][0]
- E_m = np.transpose(np.array([Ex_m,Ey_m,Ez_m]))
- H_m = np.transpose(np.array([Hx_m,Hy_m,Hz_m]))
-
- Ex_d = data[2,idx_d][0]
- Ey_d = data[3,idx_d][0]
- Ez_d = data[4,idx_d][0]
- Hx_d = data[5,idx_d][0]
- Hy_d = data[6,idx_d][0]
- Hz_d = data[7,idx_d][0]
- E_d = np.transpose(np.array([Ex_d,Ey_d,Ez_d]))
- H_d = np.transpose(np.array([Hx_d,Hy_d,Hz_d]))
-
- k_0 = omega/c #air
- k_sp = k_0*np.sqrt(eps_d*eps_m/(eps_d+eps_m)) # eq5, supmat
- chi_d = np.sqrt( eps_d*k_0**2 - k_sp**2 ) # desc. after eq6c, supmat
- chi_m = np.sqrt( eps_m*k_0**2 - k_sp**2 ) # desc. after eq6c, supmat
- # # TODO!!! alt
- # chi_d = np.sqrt( k_sp**2 - eps_d*k_0**2 ) # desc. after eq6c, supmat
- # chi_m = np.sqrt( k_sp**2 - eps_m*k_0**2 ) # desc. after eq6c, supmat
- mul = -1 #TODO!!! minus???
- h_sp_d = np.exp(mul*1j*chi_d*z_d) # eq6a, supmat
- e_sp_x_d = chi_d/(omega*eps_0*eps_d)*np.exp(mul*1j*chi_d*z_d) # eq6b, supmat
- e_sp_z_d = -k_sp/(omega*eps_0*eps_d)*np.exp(mul*1j*chi_d*z_d) # eq6c, supmat
- h_sp_m = np.exp(1j*-chi_m*z_m) # eq6a, supmat
- e_sp_x_m = -chi_m/(omega*eps_0*eps_m)*np.exp(1j*-chi_m*z_m) # eq6b, supmat
- e_sp_z_m = -k_sp/(omega*eps_0*eps_m)*np.exp(1j*-chi_m*z_m) # eq6c, supmat
- if verbose > 8:
- print("WL =",1e9*wl)
- # if 1e9*wl > 763 and 1e9*wl < 766:
- print(1j*1e9/chi_d)
- print(1j*1e9/chi_m)
- print("_d")
- print(1e9*z_d)
- print(h_sp_d)
- print("_m")
- print(1e9*z_m)
- print(h_sp_m)
- zero_m = np.zeros(len(h_sp_m))
- zero_d = np.zeros(len(h_sp_d))
- E_minus_sp_0_m = np.transpose([1j*H2n(1,k_sp*r)*e_sp_x_m,
- zero_m,
- H2n(0,k_sp*r)*e_sp_z_m]) # eq11, supmat, replace E_plus to E_minus and H1n to H2n
- H_minus_sp_0_m = np.transpose([zero_m,
- 1j*H2n(1,k_sp*r)*h_sp_m,
- zero_m]) # eq11, supmat, replace E_plus to E_minus and H1n to H2n
- E_minus_sp_0_d = np.transpose([1j*H2n(1,k_sp*r)*e_sp_x_d,
- zero_d,
- H2n(0,k_sp*r)*e_sp_z_d]) # eq11, supmat, replace E_plus to E_minus and H1n to H2n
- H_minus_sp_0_d = np.transpose([zero_d,
- 1j*H2n(1,k_sp*r)*h_sp_d,
- zero_d]) # eq11, supmat, replace E_plus to E_minus and H1n to H2n
- # E_m H_m E_d H_d
- N_sp_0 = ( ((-1)**0) * (4.0j / (omega*eps_0*k_sp))
- * (eps_d**2 - eps_m**2) / ((eps_m*eps_d)**(3/2)) )
-
- tmp_m = np.cross(E_minus_sp_0_m,H_m) - np.cross(E_m, H_minus_sp_0_m)
- #tmp_m = np.cross(E_minus_sp_0_m,np.conj(H_m)) + np.cross(np.conj(E_m), H_minus_sp_0_m)
- radail_pojeciton_m = np.transpose(tmp_m)[0]
- integrand_m = (2*pi/N_sp_0)*radail_pojeciton_m*r
- # a = E_minus_sp_0_m[0]*1e9
- # print("\n\nE_minus:", a )
- # b = H_m[0]*1e9
- # print("H_m:",b)
- # print("\ncross:",np.cross(E_minus_sp_0_m*1e9,H_m*1e9)[0])
- # print("cross:",np.array(cross(a,b)))
- tmp_d = np.cross(E_minus_sp_0_d,H_d) - np.cross(E_d, H_minus_sp_0_d)
- #tmp_d = np.cross(E_minus_sp_0_d,np.conj(H_d)) + np.cross(np.conj(E_d), H_minus_sp_0_d)
- radail_pojeciton_d = np.transpose(tmp_d)[0]
- integrand_d = (2*pi/N_sp_0)*radail_pojeciton_d*r
-
- A_sp_0_m = np.trapz(integrand_m, z_m)
- A_sp_0_d = np.trapz(integrand_d, z_d)
- A_sp_0 = A_sp_0_m + A_sp_0_d
- return np.absolute(A_sp_0)**2
- # print("S from full field",np.real(np.cross(E,np.conj(H))))
- # print("H0 air (%5.4g %+5.4gj)"%(np.real(H1_0[wl_idx]), np.imag(H1_0[wl_idx])),
- # " from H1 (%5.4g %+5.4gj)"%(np.real(H1[0][wl_idx]), np.imag(H1[0][wl_idx])))
- # #plasmon_power = 1.0/2.0 * np.real( E1[0] * np.conj(H1[0])) # TODO check minus sign!!
- # plasmon_power = -1.0/2.0 * 2.0*np.pi*R * ( # TODO check minus sign!!
- # np.real( E1_0 * np.conj(H1_0) )
- # / (2.0 * np.real(kappa1))
- # +
- # np.real( E2_0 * np.conj(H1_0) )
- # / (2.0 * np.real(kappa2))
- # )* np.exp( 2.0*np.imag(k_spp)*R ) # TODO check minus sign!!
- # #print(np.abs(plasmon_power/ dip_power))
- # eta0 = plasmon_power[0]/ dip_power[0] *100
- # ppw = plasmon_power[0]
- # print("\n")
- # print(dirname)
- # print("Power: plasmon %4.3g W of dipoles %4.3g W, efficiency %5.3g%% from:"%(ppw, float(np.abs(dip_power[0])),float(np.abs( eta0))), ppw, eta0)
- # plt.plot(lambd*1e9, plasmon_power/ dip_power)
- # plt.ylim(0,0.04)
- # plt.xlim(550,800)
- # #plt.plot(lambd*1e9, np.real(eps2))
- # # plt.plot(lambd*1e9, np.real(k_spp))
- # # plt.plot(lambd*1e9, k_0)
- # #plt.semilogy(lambd*1e9, np.absolute(plasmon_power/ dip_power))
- # # # legend = []
- # # # legend.append(zshift[shift]+"@"+str(WLs[i])+" nm")
- # # # plt.legend(legend)
- # # # #plt.xlabel(r'THz')
- # plt.xlabel(r'$\lambda$, nm')
- # plt.ylabel(r'$P_{spp}/P_{dipole}$',labelpad=-5)
- # #plt.title(' R = '+str(core_r)+' nm')
- # plt.savefig(dirname+"_power_ratio."+file_ext)
- # plt.clf()
- # plt.close()
-
- file_ext="pdf"
- def main (monitor_index):
- #dirname="bigourdan-Au-sub-dipole-W.fsp.1D.monitor_1.results"
- #dirname="bigourdan-Au-sub-dipole-W-2mon.fsp.1D.monitor_2.results"
- #data = read_data(dirname)
- #filename = 'bigourdan-Au-sub-dipole-W-2mon.fsp.1D.mat'
- filename="bg-Au-sub-dipole-Au.fsp.1D.mat"
- data2 = read_data_mat(filename)
- r,data = data2[monitor_index]
- if verbose > 5:
- print("r =",r)
- WLs = []
- A2 = []
- for wl in data:
- WLs.append(wl)
- A2.append(analyze(data[wl],wl))
- WLs1 = np.array(WLs)
- A21 = np.array(A2)
- #return
- # #dirname="bigourdan-Au-sub-Cyl-dipole-W.fsp.1D.monitor_1.results"
- # dirname="bigourdan-Au-sub-Cyl-dipole-W-2mon.fsp.1D.monitor_2.results"
- # data = read_data(dirname)
- #filename = 'bg-Au-sub-Au-dipole-Au.fsp.1D.mat'
- filename = 'bg-Au-sub-Si-dipole-Au.fsp.1D.mat'
- data2 = read_data_mat(filename)
- r,data = data2[monitor_index]
- WLs = []
- A2 = []
- for wl in data:
- WLs.append(wl)
- A2.append(analyze(data[wl],wl))
- #print(WLs)
- WLs2 = np.array(WLs)
- A22 = np.array(A2)
-
- # data = np.vstack((WLs,A2))
- # print(np.sort(data))
-
- plt.plot(WLs1*1e9, A22/A21, color="black",label="eff.")
- # plt.plot(WLs1*1e9, A21, color="black",label="x 275, no ant.")
- # plt.plot(WLs2*1e9, A22, color="red", label="with antena")
- plt.legend()
- plt.xlabel(r'$\lambda$, nm')
- # if monitor_index == 0:
- # plt.ylim(0,2)
- # else:
- # plt.ylim(0,0.32)
- #plt.ylim(0,2)
- plt.ylabel(r'$^{|A^{ant}_{sp}|^2}/_{|A^0_{sp}|^2}$',labelpad=1,size=14)
- plt.title("r = %4.1f nm"%(r*1e9))
- plt.savefig(filename+str(monitor_index)+"_A2."+file_ext)
- plt.clf()
- plt.close()
- main(0)
- main(1)
|