123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 |
- #!/usr/bin/env python3
- # -*- coding: UTF-8 -*-
- import numpy as np
- import matplotlib.pyplot as plt
- c = 299792458
- pi = np.pi
- verbose = 6
- def read_data(dirname, distance, zshift):
- media = [1,2] # 1 - positive zshift, 2 - negative (need to add a minus sign for real shift).
- #min_mesh_step = 2.5 #nm
- data = []
- data.append([])
- for x in distance:
- data.append([])
- data[x].append([])
- for m in media:
- data[x].append([])
- for z in zshift:
- monitor_name = "mon_x"+str(x)+"mkm_media"+str(m)+"_zshift"+z+"nm"
- data[x][m].append(
- np.transpose(
- np.genfromtxt(dirname+"/"+monitor_name+".txt", delimiter=", ",skip_header=1
- ,dtype=None, encoding = None
- , converters={0: lambda s: complex(s),
- 1: lambda s: complex(s),
- 2: lambda s: complex(s.replace('i', 'j')),
- 3: lambda s: complex(s.replace('i', 'j')),
- 4: lambda s: complex(s.replace('i', 'j')),
- 5: lambda s: complex(s.replace('i', 'j')),
- 6: lambda s: complex(s.replace('i', 'j')),
- 7: lambda s: complex(s.replace('i', 'j')),
- 8: lambda s: complex(s.replace('i', 'j'))
- }
- )
- )
- )
- return data
- def find_nearest(array,value):
- idx = (np.abs(array-value)).argmin()
- return array[idx],idx
- def get_WLs_idx(WLs, data):
- dist = 1 #mkm
- mmedia = 1 # vacuum
- shift = 1 # one mesh step
- WLs_idx = []
- for wl in WLs:
- val, idx = find_nearest(data[dist][mmedia][shift][0,:],wl*1e-9)
- WLs_idx.append(idx)
- return WLs_idx
- def check_field_match(data_in_air, data_in_gold,wl_idx,z_vec,kappa1,kappa2,eps2):
- H1 = data_in_air[:,6,wl_idx]
- H2 = data_in_gold[:,6,wl_idx]
- E1 = data_in_air[:,4,wl_idx]
- E2 = data_in_gold[:,4,wl_idx]
- for i in range(len(z_vec)):
- z = z_vec[i]*1e-9
- if verbose > 8: print("z =",z)
- H1_0 = H1[i]/np.exp(-kappa1[wl_idx]*z)
- H2_0 = H2[i]/np.exp(-kappa2[wl_idx]*z)
- E1_0 = E1[i]/np.exp(-kappa1[wl_idx]*z)
- E2_0 = E2[i]/np.exp(-kappa2[wl_idx]*z)
- E2_0e = E2[i]/np.exp(-kappa2[wl_idx]*z)*eps2[wl_idx]
- if verbose > 8:
- print("H0 air (%5.4g %+5.4gj)"%(np.real(H1_0), np.imag(H1_0)),
- " from H1 (%5.4g %+5.4gj)"%(np.real(H1[i]), np.imag(H1[i])))
- print("H0 gold (%5.4g %+5.4gj)"%(np.real(H2_0), np.imag(H2_0)),
- " from H2 (%5.4g %+5.4gj)"%(np.real(H2[i]), np.imag(H2[i])))
- print("E0 air (%5.4g %+5.4gj)"%(np.real(E1_0), np.imag(E1_0)),
- " from E1 (%5.4g %+5.4gj)"%(np.real(E1[i]), np.imag(E1[i])))
- print("E0*eps2 (%5.4g %+5.4gj)"%(np.real(E2_0e), np.imag(E2_0e)),
- " from E2 (%5.4g %+5.4gj)"%(np.real(E2[i]), np.imag(E2[i])))
- print("E0 gold (%5.4g %+5.4gj)"%(np.real(E2_0), np.imag(E2_0)))
- def analyze(data, dist, z_vec, wl_idx):
- ''' dist in mkm!!!
- '''
- #data = [dist][mmedia][shift] "lambda, dip.power, Ex, Ey, Ez, Hx, Hy, Hz, n_Au"
- # 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 "
- data_in_air = np.array(data[dist][1])
- data_in_gold = np.array(data[dist][2])
- lambd = data_in_air[0][0,:]
- omega = 2*pi*c/lambd
- dip_power = data_in_air[0][1,:]
- Ex = data_in_air[0,2,0]
- Ey = data_in_air[0,3,0]
- Ez = data_in_air[0,4,0]
- Hx = data_in_air[0,5,0]
- Hy = data_in_air[0,6,0]
- Hz = data_in_air[0,7,0]
- E = np.array([Ex,Ey,Ez])
- H = np.array([Hx,Hy,Hz])
- print("S from full field",np.real(np.cross(E,np.conj(H))))
-
- eps1 = complex(1)
- n_Au = data_in_air[0][8,:]
- eps2 = n_Au**2
- k_0 = omega/c #air
- k_spp = k_0*np.sqrt(eps1*eps2/(eps1+eps2))
- kappa1= np.sqrt(k_spp**2 - eps1*k_0**2)
- kappa2= np.sqrt(k_spp**2 - eps2*k_0**2)
- check_field_match(data_in_air, data_in_gold,wl_idx,z_vec,kappa1,kappa2,eps2)
- H1 = data_in_air[:,6]
- E1 = data_in_air[:,4]
-
- z = z_vec[0]*1e-9
- if verbose > 5: print("Using data from air monitor at z =",z)
- H1_0 = H1[0]/np.exp(-kappa1*z)
- E1_0 = E1[0]/np.exp(-kappa1*z)
- E2_0 = E1[0]/eps2
- if verbose > 5:
- print("H0 air (%5.4g %+5.4gj)"%(np.real(H1_0[wl_idx]), np.imag(H1_0[wl_idx])),
- " from H1 (%5.4g %+5.4gj)"%(np.real(H1[0][wl_idx]), np.imag(H1[0][wl_idx])))
- print("E0 air (%5.4g %+5.4gj)"%(np.real(E1_0[wl_idx]), np.imag(E1_0[wl_idx])),
- " from E1 (%5.4g %+5.4gj)"%(np.real(E1[0][wl_idx]), np.imag(E1[0][wl_idx])))
- print("E0 gold (%5.4g %+5.4gj)"%(np.real(E2_0[wl_idx]), np.imag(E2_0[wl_idx])), " from E1")
- R = dist*1e-6
- print("R =",R)
- #plasmon_power = 1.0/2.0 * np.real( E1[0] * np.conj(H1[0])) # TODO check minus sign!!
- plasmon_power = -1.0/2.0 * 2.0*np.pi*R * ( # TODO check minus sign!!
- np.real( E1_0 * np.conj(H1_0) )
- / (2.0 * np.real(kappa1))
- +
- np.real( E2_0 * np.conj(H1_0) )
- / (2.0 * np.real(kappa2))
- )* np.exp( 2.0*np.imag(k_spp)*R ) # TODO check minus sign!!
- #print(np.abs(plasmon_power/ dip_power))
- eta0 = plasmon_power[0]/ dip_power[0] *100
- ppw = plasmon_power[0]
- print("\n")
- print(dirname)
- print("Power: plasmon %4.3g W of dipoles %4.3g W, efficiency %5.3g%% from:"%(ppw, float(np.abs(dip_power[0])),float(np.abs( eta0))), ppw, eta0)
- plt.plot(lambd*1e9, plasmon_power/ dip_power)
- plt.ylim(0,1.0)
- #plt.plot(lambd*1e9, np.real(eps2))
- # plt.plot(lambd*1e9, np.real(k_spp))
- # plt.plot(lambd*1e9, k_0)
- #plt.semilogy(lambd*1e9, np.absolute(plasmon_power/ dip_power))
- # # legend = []
- # # legend.append(zshift[shift]+"@"+str(WLs[i])+" nm")
- # # plt.legend(legend)
- # # #plt.xlabel(r'THz')
- plt.xlabel(r'$\lambda$, nm')
- plt.ylabel(r'$P_{spp}/P_{dipole}$',labelpad=-5)
- #plt.title(' R = '+str(core_r)+' nm')
- plt.savefig(dirname+"_power_ratio."+file_ext)
- plt.clf()
- plt.close()
-
- file_ext="pdf"
- #dirname="template-dipole-on-sphere-on-surf-z.fsp.results"
- #dirname="Au-JC-R100-Au-JC.fsp.results"
- #dirname="Au-McPeak-R100-Si-Green.fsp.results"
- #dirname="Au-McPeak-R100-Au-McPeak.fsp.results"
- #dirname="Au-McPeak-R0.fsp.results"
- #dirname="Au-McPeak-R100-Si-Green-1500.fsp.results"
- #dirname="Au-McPeak-R100-Si-Green-1500-l.fsp.results"
- dirname="Au-McPeak-R50-Si-Green-1500-l.fsp.results"
- def main ():
- distance = [1,2,3,4,5,6,7,8,9,10] #mkm
- zshift = ["5","20","200","400","600"]
- z_vec = [int(val) for val in zshift]
- data = read_data(dirname, distance, zshift)
- #WLs=[300,350,400,450,600,700,800]
- #WLs=[600,700, 800, 450]
- WLs=[800]#, 450]
- WLs_idx = get_WLs_idx(WLs, data)
- dist = 10 #mkm
- wl_idx = WLs_idx[0]
-
- analyze(data, dist, z_vec, wl_idx)
- # legend = []
- # for shift in range(len(zshift)):
- # for i in range(len(WLs)):
- # pl_data = []
- # idx = WLs_idx[i]
- # legend.append(zshift[shift]+"@"+str(WLs[i])+" nm")
- # for dist in distance:
- # pl_data.append(np.absolute(data[dist][mmedia][shift][2,idx]*np.sqrt(dist)))
- # print(len(pl_data))
- # plt.semilogy(distance, pl_data,marker="o")
- # plt.legend(legend)
- # # #plt.xlabel(r'THz')
- # plt.xlabel(r'Monitor R, $\mu$m')
- # plt.ylabel(r'$Abs(E_x) \sqrt{R}$',labelpad=-5)
- # # plt.title(' r = '+str(core_r))
- # plt.savefig(dirname+"_WLs."+file_ext)
- # plt.clf()
- # plt.close()
- main()
|