my_mod_convprel-symbol.json 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841
  1. {
  2. "nodes": [
  3. {
  4. "op": "null",
  5. "name": "/first_input6",
  6. "attrs": {
  7. "__dtype__": "0",
  8. "__shape__": "(0, 8)"
  9. },
  10. "inputs": []
  11. },
  12. {
  13. "op": "null",
  14. "name": "first/kernel6",
  15. "attrs": {
  16. "__dtype__": "0",
  17. "__shape__": "(8, 256)"
  18. },
  19. "inputs": []
  20. },
  21. {
  22. "op": "dot",
  23. "name": "dot27",
  24. "inputs": [[0, 0, 0], [1, 0, 0]]
  25. },
  26. {
  27. "op": "null",
  28. "name": "first/bias6",
  29. "attrs": {
  30. "__dtype__": "0",
  31. "__shape__": "(256,)"
  32. },
  33. "inputs": []
  34. },
  35. {
  36. "op": "broadcast_add",
  37. "name": "broadcast_add103",
  38. "inputs": [[2, 0, 0], [3, 0, 0]]
  39. },
  40. {
  41. "op": "LeakyReLU",
  42. "name": "leakyrelu79",
  43. "attrs": {
  44. "act_type": "leaky",
  45. "slope": "0.0"
  46. },
  47. "inputs": [[4, 0, 0]]
  48. },
  49. {
  50. "op": "null",
  51. "name": "p_re_lu_9/alpha1",
  52. "attrs": {
  53. "__dtype__": "0",
  54. "__shape__": "(256,)"
  55. },
  56. "inputs": []
  57. },
  58. {
  59. "op": "_mul_scalar",
  60. "name": "_mulscalar61",
  61. "attrs": {"scalar": "-1.0"},
  62. "inputs": [[6, 0, 0]]
  63. },
  64. {
  65. "op": "_mul_scalar",
  66. "name": "_mulscalar63",
  67. "attrs": {"scalar": "-1.0"},
  68. "inputs": [[4, 0, 0]]
  69. },
  70. {
  71. "op": "LeakyReLU",
  72. "name": "leakyrelu81",
  73. "attrs": {
  74. "act_type": "leaky",
  75. "slope": "0.0"
  76. },
  77. "inputs": [[8, 0, 0]]
  78. },
  79. {
  80. "op": "broadcast_mul",
  81. "name": "broadcast_mul31",
  82. "inputs": [[7, 0, 0], [9, 0, 0]]
  83. },
  84. {
  85. "op": "broadcast_add",
  86. "name": "broadcast_add105",
  87. "inputs": [[5, 0, 0], [10, 0, 0]]
  88. },
  89. {
  90. "op": "Reshape",
  91. "name": "reshape75",
  92. "attrs": {"shape": "(0, 4, 64)"},
  93. "inputs": [[11, 0, 0]]
  94. },
  95. {
  96. "op": "repeat",
  97. "name": "repeat7",
  98. "attrs": {
  99. "axis": "1",
  100. "repeats": "2"
  101. },
  102. "inputs": [[12, 0, 0]]
  103. },
  104. {
  105. "op": "expand_dims",
  106. "name": "expand_dims101",
  107. "attrs": {"axis": "2"},
  108. "inputs": [[13, 0, 0]]
  109. },
  110. {
  111. "op": "transpose",
  112. "name": "transpose153",
  113. "attrs": {"axes": "[0, 3, 1, 2]"},
  114. "inputs": [[14, 0, 0]]
  115. },
  116. {
  117. "op": "null",
  118. "name": "Conv1/kernel4",
  119. "attrs": {
  120. "__dtype__": "0",
  121. "__shape__": "(3, 64, 64)"
  122. },
  123. "inputs": []
  124. },
  125. {
  126. "op": "expand_dims",
  127. "name": "expand_dims103",
  128. "attrs": {"axis": "1"},
  129. "inputs": [[16, 0, 0]]
  130. },
  131. {
  132. "op": "transpose",
  133. "name": "transpose154",
  134. "attrs": {"axes": "(3, 2, 0, 1)"},
  135. "inputs": [[17, 0, 0]]
  136. },
  137. {
  138. "op": "Convolution",
  139. "name": "Conv1/conv1d8",
  140. "attrs": {
  141. "dilate": "(1, 1)",
  142. "kernel": "(3, 1)",
  143. "no_bias": "True",
  144. "num_filter": "64",
  145. "pad": "(1, 0)",
  146. "stride": "(1, 1)"
  147. },
  148. "inputs": [[15, 0, 0], [18, 0, 0]]
  149. },
  150. {
  151. "op": "transpose",
  152. "name": "transpose155",
  153. "attrs": {"axes": "[0, 2, 3, 1]"},
  154. "inputs": [[19, 0, 0]]
  155. },
  156. {
  157. "op": "Reshape",
  158. "name": "reshape77",
  159. "attrs": {"shape": "(0, 8, 64)"},
  160. "inputs": [[20, 0, 0]]
  161. },
  162. {
  163. "op": "null",
  164. "name": "Conv1/bias4",
  165. "attrs": {
  166. "__dtype__": "0",
  167. "__shape__": "(64,)"
  168. },
  169. "inputs": []
  170. },
  171. {
  172. "op": "broadcast_add",
  173. "name": "broadcast_add107",
  174. "inputs": [[21, 0, 0], [22, 0, 0]]
  175. },
  176. {
  177. "op": "LeakyReLU",
  178. "name": "leakyrelu83",
  179. "attrs": {
  180. "act_type": "leaky",
  181. "slope": "0.0"
  182. },
  183. "inputs": [[23, 0, 0]]
  184. },
  185. {
  186. "op": "null",
  187. "name": "p_re_lu_10/alpha1",
  188. "attrs": {
  189. "__dtype__": "0",
  190. "__shape__": "(8, 64)"
  191. },
  192. "inputs": []
  193. },
  194. {
  195. "op": "_mul_scalar",
  196. "name": "_mulscalar65",
  197. "attrs": {"scalar": "-1.0"},
  198. "inputs": [[25, 0, 0]]
  199. },
  200. {
  201. "op": "_mul_scalar",
  202. "name": "_mulscalar67",
  203. "attrs": {"scalar": "-1.0"},
  204. "inputs": [[23, 0, 0]]
  205. },
  206. {
  207. "op": "LeakyReLU",
  208. "name": "leakyrelu85",
  209. "attrs": {
  210. "act_type": "leaky",
  211. "slope": "0.0"
  212. },
  213. "inputs": [[27, 0, 0]]
  214. },
  215. {
  216. "op": "broadcast_mul",
  217. "name": "broadcast_mul33",
  218. "inputs": [[26, 0, 0], [28, 0, 0]]
  219. },
  220. {
  221. "op": "broadcast_add",
  222. "name": "broadcast_add109",
  223. "inputs": [[24, 0, 0], [29, 0, 0]]
  224. },
  225. {
  226. "op": "expand_dims",
  227. "name": "expand_dims105",
  228. "attrs": {"axis": "2"},
  229. "inputs": [[30, 0, 0]]
  230. },
  231. {
  232. "op": "transpose",
  233. "name": "transpose159",
  234. "attrs": {"axes": "[0, 3, 1, 2]"},
  235. "inputs": [[31, 0, 0]]
  236. },
  237. {
  238. "op": "null",
  239. "name": "Conv2/kernel4",
  240. "attrs": {
  241. "__dtype__": "0",
  242. "__shape__": "(3, 64, 32)"
  243. },
  244. "inputs": []
  245. },
  246. {
  247. "op": "expand_dims",
  248. "name": "expand_dims107",
  249. "attrs": {"axis": "1"},
  250. "inputs": [[33, 0, 0]]
  251. },
  252. {
  253. "op": "transpose",
  254. "name": "transpose160",
  255. "attrs": {"axes": "(3, 2, 0, 1)"},
  256. "inputs": [[34, 0, 0]]
  257. },
  258. {
  259. "op": "Convolution",
  260. "name": "Conv2/conv1d8",
  261. "attrs": {
  262. "dilate": "(1, 1)",
  263. "kernel": "(3, 1)",
  264. "no_bias": "True",
  265. "num_filter": "32",
  266. "pad": "(1, 0)",
  267. "stride": "(1, 1)"
  268. },
  269. "inputs": [[32, 0, 0], [35, 0, 0]]
  270. },
  271. {
  272. "op": "transpose",
  273. "name": "transpose161",
  274. "attrs": {"axes": "[0, 2, 3, 1]"},
  275. "inputs": [[36, 0, 0]]
  276. },
  277. {
  278. "op": "Reshape",
  279. "name": "reshape79",
  280. "attrs": {"shape": "(0, 8, 32)"},
  281. "inputs": [[37, 0, 0]]
  282. },
  283. {
  284. "op": "null",
  285. "name": "Conv2/bias4",
  286. "attrs": {
  287. "__dtype__": "0",
  288. "__shape__": "(32,)"
  289. },
  290. "inputs": []
  291. },
  292. {
  293. "op": "broadcast_add",
  294. "name": "broadcast_add111",
  295. "inputs": [[38, 0, 0], [39, 0, 0]]
  296. },
  297. {
  298. "op": "LeakyReLU",
  299. "name": "leakyrelu87",
  300. "attrs": {
  301. "act_type": "leaky",
  302. "slope": "0.0"
  303. },
  304. "inputs": [[40, 0, 0]]
  305. },
  306. {
  307. "op": "null",
  308. "name": "p_re_lu_11/alpha1",
  309. "attrs": {
  310. "__dtype__": "0",
  311. "__shape__": "(8, 32)"
  312. },
  313. "inputs": []
  314. },
  315. {
  316. "op": "_mul_scalar",
  317. "name": "_mulscalar69",
  318. "attrs": {"scalar": "-1.0"},
  319. "inputs": [[42, 0, 0]]
  320. },
  321. {
  322. "op": "_mul_scalar",
  323. "name": "_mulscalar71",
  324. "attrs": {"scalar": "-1.0"},
  325. "inputs": [[40, 0, 0]]
  326. },
  327. {
  328. "op": "LeakyReLU",
  329. "name": "leakyrelu89",
  330. "attrs": {
  331. "act_type": "leaky",
  332. "slope": "0.0"
  333. },
  334. "inputs": [[44, 0, 0]]
  335. },
  336. {
  337. "op": "broadcast_mul",
  338. "name": "broadcast_mul35",
  339. "inputs": [[43, 0, 0], [45, 0, 0]]
  340. },
  341. {
  342. "op": "broadcast_add",
  343. "name": "broadcast_add113",
  344. "inputs": [[41, 0, 0], [46, 0, 0]]
  345. },
  346. {
  347. "op": "expand_dims",
  348. "name": "expand_dims109",
  349. "attrs": {"axis": "2"},
  350. "inputs": [[47, 0, 0]]
  351. },
  352. {
  353. "op": "transpose",
  354. "name": "transpose165",
  355. "attrs": {"axes": "[0, 3, 1, 2]"},
  356. "inputs": [[48, 0, 0]]
  357. },
  358. {
  359. "op": "null",
  360. "name": "Conv3/kernel4",
  361. "attrs": {
  362. "__dtype__": "0",
  363. "__shape__": "(3, 32, 32)"
  364. },
  365. "inputs": []
  366. },
  367. {
  368. "op": "expand_dims",
  369. "name": "expand_dims111",
  370. "attrs": {"axis": "1"},
  371. "inputs": [[50, 0, 0]]
  372. },
  373. {
  374. "op": "transpose",
  375. "name": "transpose166",
  376. "attrs": {"axes": "(3, 2, 0, 1)"},
  377. "inputs": [[51, 0, 0]]
  378. },
  379. {
  380. "op": "Convolution",
  381. "name": "Conv3/conv1d8",
  382. "attrs": {
  383. "dilate": "(1, 1)",
  384. "kernel": "(3, 1)",
  385. "no_bias": "True",
  386. "num_filter": "32",
  387. "pad": "(1, 0)",
  388. "stride": "(1, 1)"
  389. },
  390. "inputs": [[49, 0, 0], [52, 0, 0]]
  391. },
  392. {
  393. "op": "transpose",
  394. "name": "transpose167",
  395. "attrs": {"axes": "[0, 2, 3, 1]"},
  396. "inputs": [[53, 0, 0]]
  397. },
  398. {
  399. "op": "Reshape",
  400. "name": "reshape81",
  401. "attrs": {"shape": "(0, 8, 32)"},
  402. "inputs": [[54, 0, 0]]
  403. },
  404. {
  405. "op": "null",
  406. "name": "Conv3/bias4",
  407. "attrs": {
  408. "__dtype__": "0",
  409. "__shape__": "(32,)"
  410. },
  411. "inputs": []
  412. },
  413. {
  414. "op": "broadcast_add",
  415. "name": "broadcast_add115",
  416. "inputs": [[55, 0, 0], [56, 0, 0]]
  417. },
  418. {
  419. "op": "LeakyReLU",
  420. "name": "leakyrelu91",
  421. "attrs": {
  422. "act_type": "leaky",
  423. "slope": "0.0"
  424. },
  425. "inputs": [[57, 0, 0]]
  426. },
  427. {
  428. "op": "null",
  429. "name": "p_re_lu_12/alpha1",
  430. "attrs": {
  431. "__dtype__": "0",
  432. "__shape__": "(8, 32)"
  433. },
  434. "inputs": []
  435. },
  436. {
  437. "op": "_mul_scalar",
  438. "name": "_mulscalar73",
  439. "attrs": {"scalar": "-1.0"},
  440. "inputs": [[59, 0, 0]]
  441. },
  442. {
  443. "op": "_mul_scalar",
  444. "name": "_mulscalar75",
  445. "attrs": {"scalar": "-1.0"},
  446. "inputs": [[57, 0, 0]]
  447. },
  448. {
  449. "op": "LeakyReLU",
  450. "name": "leakyrelu93",
  451. "attrs": {
  452. "act_type": "leaky",
  453. "slope": "0.0"
  454. },
  455. "inputs": [[61, 0, 0]]
  456. },
  457. {
  458. "op": "broadcast_mul",
  459. "name": "broadcast_mul37",
  460. "inputs": [[60, 0, 0], [62, 0, 0]]
  461. },
  462. {
  463. "op": "broadcast_add",
  464. "name": "broadcast_add117",
  465. "inputs": [[58, 0, 0], [63, 0, 0]]
  466. },
  467. {
  468. "op": "expand_dims",
  469. "name": "expand_dims113",
  470. "attrs": {"axis": "2"},
  471. "inputs": [[64, 0, 0]]
  472. },
  473. {
  474. "op": "transpose",
  475. "name": "transpose171",
  476. "attrs": {"axes": "[0, 3, 1, 2]"},
  477. "inputs": [[65, 0, 0]]
  478. },
  479. {
  480. "op": "null",
  481. "name": "Conv4/kernel4",
  482. "attrs": {
  483. "__dtype__": "0",
  484. "__shape__": "(3, 32, 32)"
  485. },
  486. "inputs": []
  487. },
  488. {
  489. "op": "expand_dims",
  490. "name": "expand_dims115",
  491. "attrs": {"axis": "1"},
  492. "inputs": [[67, 0, 0]]
  493. },
  494. {
  495. "op": "transpose",
  496. "name": "transpose172",
  497. "attrs": {"axes": "(3, 2, 0, 1)"},
  498. "inputs": [[68, 0, 0]]
  499. },
  500. {
  501. "op": "Convolution",
  502. "name": "Conv4/conv1d8",
  503. "attrs": {
  504. "dilate": "(1, 1)",
  505. "kernel": "(3, 1)",
  506. "no_bias": "True",
  507. "num_filter": "32",
  508. "pad": "(1, 0)",
  509. "stride": "(1, 1)"
  510. },
  511. "inputs": [[66, 0, 0], [69, 0, 0]]
  512. },
  513. {
  514. "op": "transpose",
  515. "name": "transpose173",
  516. "attrs": {"axes": "[0, 2, 3, 1]"},
  517. "inputs": [[70, 0, 0]]
  518. },
  519. {
  520. "op": "Reshape",
  521. "name": "reshape83",
  522. "attrs": {"shape": "(0, 8, 32)"},
  523. "inputs": [[71, 0, 0]]
  524. },
  525. {
  526. "op": "null",
  527. "name": "Conv4/bias4",
  528. "attrs": {
  529. "__dtype__": "0",
  530. "__shape__": "(32,)"
  531. },
  532. "inputs": []
  533. },
  534. {
  535. "op": "broadcast_add",
  536. "name": "broadcast_add119",
  537. "inputs": [[72, 0, 0], [73, 0, 0]]
  538. },
  539. {
  540. "op": "LeakyReLU",
  541. "name": "leakyrelu95",
  542. "attrs": {
  543. "act_type": "leaky",
  544. "slope": "0.0"
  545. },
  546. "inputs": [[74, 0, 0]]
  547. },
  548. {
  549. "op": "null",
  550. "name": "p_re_lu_13/alpha1",
  551. "attrs": {
  552. "__dtype__": "0",
  553. "__shape__": "(8, 32)"
  554. },
  555. "inputs": []
  556. },
  557. {
  558. "op": "_mul_scalar",
  559. "name": "_mulscalar77",
  560. "attrs": {"scalar": "-1.0"},
  561. "inputs": [[76, 0, 0]]
  562. },
  563. {
  564. "op": "_mul_scalar",
  565. "name": "_mulscalar79",
  566. "attrs": {"scalar": "-1.0"},
  567. "inputs": [[74, 0, 0]]
  568. },
  569. {
  570. "op": "LeakyReLU",
  571. "name": "leakyrelu97",
  572. "attrs": {
  573. "act_type": "leaky",
  574. "slope": "0.0"
  575. },
  576. "inputs": [[78, 0, 0]]
  577. },
  578. {
  579. "op": "broadcast_mul",
  580. "name": "broadcast_mul39",
  581. "inputs": [[77, 0, 0], [79, 0, 0]]
  582. },
  583. {
  584. "op": "broadcast_add",
  585. "name": "broadcast_add121",
  586. "inputs": [[75, 0, 0], [80, 0, 0]]
  587. },
  588. {
  589. "op": "expand_dims",
  590. "name": "expand_dims117",
  591. "attrs": {"axis": "2"},
  592. "inputs": [[81, 0, 0]]
  593. },
  594. {
  595. "op": "transpose",
  596. "name": "transpose177",
  597. "attrs": {"axes": "[0, 3, 1, 2]"},
  598. "inputs": [[82, 0, 0]]
  599. },
  600. {
  601. "op": "null",
  602. "name": "Conv5/kernel4",
  603. "attrs": {
  604. "__dtype__": "0",
  605. "__shape__": "(3, 32, 32)"
  606. },
  607. "inputs": []
  608. },
  609. {
  610. "op": "expand_dims",
  611. "name": "expand_dims119",
  612. "attrs": {"axis": "1"},
  613. "inputs": [[84, 0, 0]]
  614. },
  615. {
  616. "op": "transpose",
  617. "name": "transpose178",
  618. "attrs": {"axes": "(3, 2, 0, 1)"},
  619. "inputs": [[85, 0, 0]]
  620. },
  621. {
  622. "op": "Convolution",
  623. "name": "Conv5/conv1d8",
  624. "attrs": {
  625. "dilate": "(1, 1)",
  626. "kernel": "(3, 1)",
  627. "no_bias": "True",
  628. "num_filter": "32",
  629. "pad": "(1, 0)",
  630. "stride": "(1, 1)"
  631. },
  632. "inputs": [[83, 0, 0], [86, 0, 0]]
  633. },
  634. {
  635. "op": "transpose",
  636. "name": "transpose179",
  637. "attrs": {"axes": "[0, 2, 3, 1]"},
  638. "inputs": [[87, 0, 0]]
  639. },
  640. {
  641. "op": "Reshape",
  642. "name": "reshape85",
  643. "attrs": {"shape": "(0, 8, 32)"},
  644. "inputs": [[88, 0, 0]]
  645. },
  646. {
  647. "op": "null",
  648. "name": "Conv5/bias4",
  649. "attrs": {
  650. "__dtype__": "0",
  651. "__shape__": "(32,)"
  652. },
  653. "inputs": []
  654. },
  655. {
  656. "op": "broadcast_add",
  657. "name": "broadcast_add123",
  658. "inputs": [[89, 0, 0], [90, 0, 0]]
  659. },
  660. {
  661. "op": "LeakyReLU",
  662. "name": "leakyrelu99",
  663. "attrs": {
  664. "act_type": "leaky",
  665. "slope": "0.0"
  666. },
  667. "inputs": [[91, 0, 0]]
  668. },
  669. {
  670. "op": "null",
  671. "name": "p_re_lu_14/alpha1",
  672. "attrs": {
  673. "__dtype__": "0",
  674. "__shape__": "(8, 32)"
  675. },
  676. "inputs": []
  677. },
  678. {
  679. "op": "_mul_scalar",
  680. "name": "_mulscalar81",
  681. "attrs": {"scalar": "-1.0"},
  682. "inputs": [[93, 0, 0]]
  683. },
  684. {
  685. "op": "_mul_scalar",
  686. "name": "_mulscalar83",
  687. "attrs": {"scalar": "-1.0"},
  688. "inputs": [[91, 0, 0]]
  689. },
  690. {
  691. "op": "LeakyReLU",
  692. "name": "leakyrelu101",
  693. "attrs": {
  694. "act_type": "leaky",
  695. "slope": "0.0"
  696. },
  697. "inputs": [[95, 0, 0]]
  698. },
  699. {
  700. "op": "broadcast_mul",
  701. "name": "broadcast_mul41",
  702. "inputs": [[94, 0, 0], [96, 0, 0]]
  703. },
  704. {
  705. "op": "broadcast_add",
  706. "name": "broadcast_add125",
  707. "inputs": [[92, 0, 0], [97, 0, 0]]
  708. },
  709. {
  710. "op": "Flatten",
  711. "name": "flatten11",
  712. "inputs": [[98, 0, 0]]
  713. }
  714. ],
  715. "arg_nodes": [
  716. 0,
  717. 1,
  718. 3,
  719. 6,
  720. 16,
  721. 22,
  722. 25,
  723. 33,
  724. 39,
  725. 42,
  726. 50,
  727. 56,
  728. 59,
  729. 67,
  730. 73,
  731. 76,
  732. 84,
  733. 90,
  734. 93
  735. ],
  736. "node_row_ptr": [
  737. 0,
  738. 1,
  739. 2,
  740. 3,
  741. 4,
  742. 5,
  743. 6,
  744. 7,
  745. 8,
  746. 9,
  747. 10,
  748. 11,
  749. 12,
  750. 13,
  751. 14,
  752. 15,
  753. 16,
  754. 17,
  755. 18,
  756. 19,
  757. 20,
  758. 21,
  759. 22,
  760. 23,
  761. 24,
  762. 25,
  763. 26,
  764. 27,
  765. 28,
  766. 29,
  767. 30,
  768. 31,
  769. 32,
  770. 33,
  771. 34,
  772. 35,
  773. 36,
  774. 37,
  775. 38,
  776. 39,
  777. 40,
  778. 41,
  779. 42,
  780. 43,
  781. 44,
  782. 45,
  783. 46,
  784. 47,
  785. 48,
  786. 49,
  787. 50,
  788. 51,
  789. 52,
  790. 53,
  791. 54,
  792. 55,
  793. 56,
  794. 57,
  795. 58,
  796. 59,
  797. 60,
  798. 61,
  799. 62,
  800. 63,
  801. 64,
  802. 65,
  803. 66,
  804. 67,
  805. 68,
  806. 69,
  807. 70,
  808. 71,
  809. 72,
  810. 73,
  811. 74,
  812. 75,
  813. 76,
  814. 77,
  815. 78,
  816. 79,
  817. 80,
  818. 81,
  819. 82,
  820. 83,
  821. 84,
  822. 85,
  823. 86,
  824. 87,
  825. 88,
  826. 89,
  827. 90,
  828. 91,
  829. 92,
  830. 93,
  831. 94,
  832. 95,
  833. 96,
  834. 97,
  835. 98,
  836. 99,
  837. 100
  838. ],
  839. "heads": [[99, 0, 0]],
  840. "attrs": {"mxnet_version": ["int", 10300]}
  841. }